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Abstract

We consider Poisson hail models and characterize up to boundaries the collection of
critical moments which guarantee stability. In particular, we treat the case of infinite
speed of propagation.
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1. Introduction

1.1. Model and dynamics

In this article we treat the Poisson hail model introduced in [2]. This can be viewed as a
system of interacting queues. In this system Zd represents a collection of servers. As with
a classical system, jobs arrive at random times and require random amounts of service. The
‘interacting’ part is that in the Poisson hail system the arriving job requires simultaneous
service from a random team of servers, that is a finite subset of Zd. Each individual server
operates a first-come first-served (FCFS) policy, which in this context means that server x ∈Zd

only works on a job once all previously arrived jobs that required service from x have been
completed. Once a team of servers has begun a job, they work continuously on the job until
completion. The FCFS condition implies, for example, that x may be unable to work on any
job at a given moment, because of the prior arrival of a job requiring a large team of servers
(among them x) on which no work is possible until a yet earlier job requiring the work of some
server y (also in this big team) is completed. We now define our model more precisely.

Let � = (�x)x∈Zd be a collection of independent and identically distributed (i.i.d.) marked

Poisson processes on R+ with marks in R+ × 2Z
d
, where the second coordinate is stipulated

to be a finite subset of Zd. Each point in �x is denoted by (t, τ, B), and the triple corresponds
to a job ‘centered’ at x. The t stands for the arrival time of the job, while the pair (τ, B) stands
for the service time τ and the team of servers x + B required for the job. Here ‘centered’
has no geometrical meaning beyond requiring B to contain the origin 0. The collection of points
Nx = {t : ∃(t, τ, B) ∈ �x} is a Poisson process with rate λ for each x, and the pairs (τ, B) are
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316 T. MOUNTFORD AND Z. WANG

assumed to be i.i.d. over arriving jobs. Thus, in our article, the model is translation-invariant.
We make the simplifying assumption that B is almost surely always a cube, as in [2], with a
center at the origin and a radius R (in l∞-norm, |x| = maxd

i=1|xi|). As we are to give a sufficient
condition for stability (which is to be defined in Subsection 1.3 below), this is not a very
restrictive assumption. We also discuss general shapes for jobs at the end of Subsection 1.3;
see Remark 1.1. Thus a job arriving at server x at time t can be thought of as a pair (τ, R),
rather than a pair (τ, B). The pair (τ, R) gives the sizes of the job, τ being the temporal size
and R the spatial. As stated, these ‘marks’ are i.i.d. over arrival points and servers. When
we write P((τ, R) ∈ A) or P(R ∈ B) we are referring to the underlying probability distribution
for the marks. We write P̃ for the law of the pair (τ, R) ((τ, R) ∼ P̃), so P̃(A) = P((τ, R) ∈
A). Throughout the paper we assume that the system is nontrivial, in the sense that there is
interaction between the servers; that is, P̃(R+ × {0}) < 1. If (t, τ, R) is in �x, this signifies that
at time t, a job arrives needing τ units of service from the team x + [−R, R]d (or that a job
(τ, R) arrives at time t). It should not be clear that such a system defines a queueing process,
since in general it does not.

We now describe how a queueing system that respects the FCFS stipulation and corresponds
to the given job arrivals may be constructed. We do not claim that this is the only means of
constructing a queueing system that corresponds to job arrivals {�x}x∈Zd . We first need to
assume that for a single site x (and therefore for all sites, by translation-invariance), the arrival
rate of jobs requiring service from x is finite, i.e.,

λ
∑
y∈Zd

P(0 ∈ B + y) < ∞. (1.1)

Under the assumption of nontriviality, this rate is strictly above λ. We take a non-random
sequence of finite subsets of Zd that increase up to Zd, Ξn, n = 1, 2 . . .. We have by our finite
rate assumption that on the time interval [0, n] there are only a finite number, Nn, of jobs
arriving that require service from some server x ∈ Ξn. For fixed n, the arrival times are almost
surely distinct and ordered

0 < tn1 < tn2 < . . . < tnNn
< n.

The tni and Nn correspond to Ξn and not to a particular x in it. We construct a (stage-n) FCFS
queueing system based on this finite set of jobs in a straightforward way: the job

(
τ n

r , Rn
r

)
arriving at xn

r at time tnr will be served on the time interval [σ n
r , σ n

r + τ n
r ) by the serving team

xn
r + [−Rn

r , Rn
r ]d, where the σ n

r are recursively defined (for n fixed) as follows: σ n
1 = tn1, and for

1 < r ≤ Nn,

σ n
r = max

{
max

x∈xn
r +[−Rn

r ,R
n
r ]d

(
max

j<r:x∈xn
j +[−Rn

j ,R
n
j ]d

σ n
j + τ n

j

)
, tnr

}
.

For a fixed job (τ, R) arriving at a (t, x), if t ≤ n and x ∈ Ξn, then t is on the above list, i.e.,
t = tnm(n) for some 1 ≤ m(n) ≤ Nn for n large. As n increases, m(n) and σ n

m(n) increase with n

once m(n) is well-defined. If for each x ∈Zd and each job (t, τ, R) that arrives at x there exists
finite n0 such that

∀n ≥ n0, σ n
m(n) = σ

n0
m(n0) = σ,

then we can define the interacting queueing system where the job is served by the team x +
[−R, R]d on the time interval [σ, σ + τ ). Suppose that jobs (s1, τ1, R1) and (s2, τ2, R2) arrive
at x1 and x2 respectively, with s1 < s2, and that (x1 + [−R1, R1]d) ∩ (x2 + [−R2, R2]d) �= ∅.
Let the beginning service times for the two jobs at stage n (again for all n sufficiently large)
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be respectively σ n
m1(n)

and σ n
m2(n)

. Then, from the FCFS policy applied to each stage-n finite
queueing system, we have σ n

m2(n)
≥ σ n

m1(n)
+ τ1. Thus the final queueing system respects FCFS.

The choice of (Ξn)n above can be arbitrary. For any two sequences (Ξn)n and (Ξ̃n)n, there exist
n̄ and n such that Ξn ⊂ Ξ̃n ⊂ Ξn̄, and therefore we get from monotonicity that σ

n
m(n) ≤ σ̃ n

m(n) ≤
σ n̄

m(n̄).
To see when a finite σ might exist, we fix x and t and consider a dual model {Gx,t

s }0≤s≤t =
{Gs}0≤s≤t. This is defined by the following rules:

(i) G0 = G′
0 = {x}, τ0 = 0 (here (G′

i )i≥0 is the jump chain for G.).

(ii) For i ≥ 1, Ti = inf{s > Ti−1 such that a job arrives at t − s requiring service from
some y ∈ G′

i−1}. Let xi + [−Ri, Ri]d be the service team for this job. Then G′
i = G′

i−1 ∪(
xi + [−Ri, Ri]d

)
.

(iii) For s ∈ [Ti, Ti+1), we have Gs = G′
i; for T∞ = limi Ti, we have Gs =Zd on [t ∧ T∞, t].

If T∞ ≤ t, we say the dual explodes. This dual model is a similar object to the duals of interact-
ing particle systems. It is easily seen from (1.1) that for all x, t, if Gx,t does not explode, then
for every arriving job requiring service from x in the time interval [0, t], there exists σ such
that for all n large, σ n

m(n) = σ , and so the queueing system is defined if Gx,t does not explode
for every x and t. In Subsection 1.2 below, we will see the connection between the dual Gx,t

and admissible paths.
A central quantity in the model is the workload at site x and time t, which we denote by

W(t, x). We discuss the workload of a system heuristically and will provide a formal definition
in Subsection 1.2. Intuitively speaking, W(t, x) is the additional time required beyond time t
for server x to have serviced all jobs (requiring service from x) arriving during the time interval
[0, t]. We can understand the dynamics of W(t, x) using the following two equations. Suppose
job (τ, R) arrives at server y at time t. Then by the FCFS rule,

W(t+, x) =
{

sup|z−y|≤R W(t−, z) + τ if |x − y| ≤ R,

W(t−, x) otherwise,
(1.2)

where |x − y| stands for the l∞-norm in Zd. By convention, we always assume that t → W(t, x)
is right-continuous: W(t, x) = W(t+, x). Suppose no job requiring service from site x arrives
during time [s, t]. Then W(t, x) decreases linearly in t at rate 1 until it reaches zero:

W(t, x) = max{(W(s, x) − (t − s)) , 0}; (1.3)

see [1, 2, 4]. The following initial condition for W(t, x) is in force throughout the paper: for all
x in Zd,

W(0, x) = 0. (1.4)

One way to visualize the model and the workload W(t, x) is to think of jobs as hailstones
falling randomly on hot ground; this model will be similar to the well-known game Tetris. A job
(τ, R) received by a server x can be viewed as a hailstone with a base x + [−R, R]d and a height
τ . The hailstone falls on sites x + [−R, R]d, and the FCFS rule requires the hailstone to fall on
top of all previously arrived hailstones that required service from a server in x + [−R, R]d. The
hailstone starts to melt at a constant rate 1 once its base touches the hot ground. In this way,
W(t, x) can be interpreted as the height function at site x evolving in time t. See Figure 1 for an
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FIGURE 1. Workloads before and after a job arrival.

illustration of how workload changes when a job arrives. In this example, we fix a time t, and
a job with size (τ, R) = (1, 2) arrives at site −1. Before its arrival, the workload is 2 at sites
−4, −3, 2; it is 1 at sites −2, −1, 0, 3; and it is 3 at sites 1, 4. After the arrival of the new job,
the workload is 2 at sites −4, 2; it is 4 at sites −3, −2, −1; it is 1 at site 3; and it is 3 at site 4.

1.2. Admissible paths, workload, and time scales

We now rigorously define workload via admissible paths. Suppose the arrival times (Nx)x∈Zd

and spatial sizes R of jobs are known. For any 0 ≤ u ≤ t, an admissible path is a piece-
wise constant, right-continuous (càdlàg) function γ : [u, t] →Zd such that, if γ (s) �= γ (s − ),
then there is a job arriving at time s ∈ [u, t] with center x for some x ∈Zd (equivalently,
Nx(s) = Nx(s − ) + 1) and sizes (τ, R), and it intersects the path γ in the following sense:

γ(s), γ(s − ) ∈ B(x, R) := {y : |y − x| ≤ R}. (1.5)

We also write γu,t when we want to emphasize that the admissible path is on a fixed interval
[u, t]. So, given x ∈Zd and t > 0, the dual model {Gx,t

s }0≤s≤t has y ∈ Gx,t
s if and only if there

exists an admissible path γt−s,t : [t − s, t] →Zd with γt−s,t(t − s) = y and γt−s,t(t) = x. For each
admissible path γu,t, we can define its load

U(γu,t) =
∑

τi, (1.6)

by summing over all jobs intersecting the admissible path γu,t in the sense of (1.5), and assign
it a score

V(γu,t) = U(γu,t) − (t − u) =
∑

τi − (t − u). (1.7)

The workload at the site (t, x) is the maximal score over all admissible paths γu,t starting at
some positive time u ∈ [0, t] and ending at γu,t(t) = x (see [2]):

W(t, x) = sup
0≤u≤t

⎛
⎜⎝ sup

γu,t(t)=x,
γu,t admissible

V(γu,t)

⎞
⎟⎠. (1.8)

If one admits the value ∞ as a possible value, then W(t, x) is well-defined given any {�(x)}x∈Zd ,
whether a queueing model can be defined or not. However, in the case where the dual model
does not explode, we have that the random variable W(t, x) equals the additional time that
the queueing model requires until x has served all jobs that arrived before time t and required
service from x; see [1, 2, 4]. If one takes (1.8) as a definition of W(t, x) without reference
to a queueing system, then in fact (see Remark 1.1 after Theorem 1.1) there are nontrivial
models that have workload W(t, x) = ∞ almost surely for any time t > 0. However, this is
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FIGURE 2. Admissible path, score, and workload.

not the focus of our article. Instead, we study the stability of the system, and derive suffi-
cient conditions for it, though these sufficient conditions for stability imply that the workload
is finite for any positive time t almost surely. From (1.8), one can verify the properties (1.2)
and (1.3). See Figure 2 for an illustration of an admissible path, its score, and its workload.
In this example, horizontal intervals represent job arrivals with temporal sizes τi. The high-
lighted curve represents an admissible path γu,t which passes jobs τ2, τ4, τ6, τ7. The load of
γu,t is U(γu,t) = τ2 + τ4 + τ6 + τ7, and γu,t has a score V(γu,t) = τ2 + τ4 + τ6 + τ7 − (t − u).
The workload W(t, 0) is the supremum of these scores over all such paths starting from some
(u, y) and ending at (t, 0).

We set the initial starting point γ (0) = 0 to obtain a new random variable

W̃(t, 0) = sup
0≤u≤t

sup
γ0,u(0) = 0,

γ0,u admissible

V(γ0,u), (1.9)

which by time-reversibility and homogeneity of Poisson processes has the same distribution
as W(t, x) for any (t, x). An advantage of using W̃(t, 0) is that W̃(t, 0) is increasing in t almost
surely. This monotonicity is different from the monotonicity in Remark 1.1 below, and we
apply it in Lemma 3.1. Since the growth estimate in Lemma 3.1 is related to sup U(γ0,t), we
also remark that W̃(t, 0) involves all admissible paths with initial point (0, 0) and some ending
time u ≤ t, whereas W(t, 0) involves admissible paths with the fixed final point (t, 0). Another
advantage of W̃(t, 0) is that it enjoys superadditivity properties.

1.3. Stability and results

We now define stability. From (1.8), given a system {�(x)}x∈Zd , we see that W(t, 0) is
stochastically increasing in t. Given a law P̃ for the pair (τ, R), we say that the family of
{�(x)}x∈Zd , as λ varies, is stable if there exists a λ1 > 0 such that for rate 0 < λ < λ1, the
system {�(x)}x∈Zd is such that {W(t, 0)}t≥0 is tight. In this case, we also say P̃ is tight. We are
interested in the stability of systems. We stress that the notion of stability depends on the law
P̃ and not on the existence of a queueing model. It is not clear that a queueing system can be
defined when our dual model explodes. But for such a model to exist meaningfully, it must
have its workload given by (1.8). By translation-invariance, P̃ is stable if and only if, for any
x ∈Zd, {W(t, x)}t≥0 is tight. The central question in this article is to understand the stability of
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FIGURE 3. Stability and critical moments.

the system. It is natural to expect that if λ is small, then W(t, 0) does not grow quickly in time,
and it decreases if there are no job arrivals, but if a job of large spatial size follows a job of
large temporal size, the system has many sites with large workload. In fact, one can show that
one of three scenarios holds for a system:

(a) W(t, 0) is infinite for some time t > 0 with probability one,

(b) the system is unstable but with W(t, 0) finite for any time t > 0 with probability one, or

(c) the system is stable with W(t, 0) finite for any time t > 0 with probability one.

In [4], Foss, Konstantopoulos, and Mountford showed that a finite (d + 1 + ε)th moment for
the sum of R and τ is sufficient for stability, and they also showed that for every 0 < ε < d + 1,
there is an unstable system with a finite (d + 1 − ε)th moment for the sum of R and τ . As a
consequence, d + 1 is a critical moment for the sum of R and τ . Their method is via techniques
introduced in the study of greedy lattice animals on Zd; see for instance [3, 5]. We can interpret
these two results by considering critical moments for positive random variables R and τ . Let

α := sup
{

a ≥ −d : E
[
Rd+a

]
< ∞

}
, β := sup

{
b ≥ −1 : E

[
τ 1+b

]
< ∞

}
. (1.10)

So every law P̃ defines a point (α, β) in [−d, ∞] × [−1, ∞]. We say that a law P̃ is in a region
A if the corresponding pair (α, β) is in A. We divide up the space for (α, β) into regions; see
Figure 3.

The results of [4] say that the system is always stable in Region I = {α > 1, β > d}, and there
exists an unstable system for every point in Region II = {α < 1, β < d}. Stability in Region III
= {α > 1, β < d}, Region IV = {0 ≤ α < 1, β > d, αβ < d}, and Region V = {0 < α < 1, αβ >

d} is not clear from [4]. Our results are as follows.

Theorem 1.1. Consider the Poisson hail problem in any dimension d ≥ 1. Let d + α, 1 + β be
the critical moments for R and τ as defined in (1.10). Then the following hold:

1. Every nontrivial system in Regions II and III, {β < d} is unstable.

2. Every nontrivial system in {α < 0 or β ≤ 0} is unstable.

3. For every point (α, β) in Region IV = {αβ < d, β > d, 0 < α < 1}, there is an unstable
system with

E
[
Rd+α + τ 1+β

]
< ∞.
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Theorem 1.2. Consider the Poisson hail problem in dimension d ≥ 1. Any system with param-
eters (α, β) in Region V = {αβ > d, 0 < α < 1} or on the ray {(α, β) : β > d, α = 1} is
stable.

These results (and [6]) permit a classification of the models according to the parameters
(α, β). We do not consider boundaries between regions, though for some boundaries simple
monotonicity considerations permit a classification. The proofs of these various classifications
are obtained as follows:

I. This is shown in [4].

II. This is the content of Theorem 1.1(1).

III. This is the content of Theorem 1.1(1).

IV. This is the content of Theorem 1.1(3) and [6].

V. This is the content of Theorem 1.2.

Region IV is the only one for which the stability or instability of a system with (α, β) in the
given region is not determined by the region. In fact [6] shows that for any (α, β) in Region IV,
there exist both stable models and unstable models corresponding to (α, β).

We end this subsection with a remark on monotonicity properties for the workload W(t, x),
which can be found in [4]. One can also verify these properties using the formula for workload
W(t, x); see (1.8) in the previous subsection.

Remark 1.1. The model has the following monotonicity properties: W(t, x) increases if we
(a) increase the temporal size of the stones or (b) enlarge the spatial shape. Thanks to the
monotonicity of the model, we can do the following:

1. We can treat general convex shapes as hailstones in the system. One way to do this is
to generalize R to represent the maximal distance between two points in the hailstone
(under a certain norm). By enlarging the spatial shape of the hailstone to a cube with
diameter R, we get an upper bound for W(t, x). Using Theorem 2.1, we can get a similar
upper bound for workloads for general shapes. This ‘upper bound’ may not be optimal
if the shape does not have nonempty interior.

2. We can construct a new system from a generic stable system using the following
strategy: for fixed increasing sequences (Si), (Tj), we enlarge the job sizes (τ, R) to
(Tj+1, Si+1), if Si ≤ R < Si+1 and Tj ≤ τ < Tj+1 for some i, j. The new system has sizes
R (and τ ) with distribution satisfying (1.11) (and (2.10); see below), for some parame-
ters (α, β) and two normalizing constants c1, c2 > 0. The parameters (α, β) of the new
system are typically smaller than the parameters (αo, βo) of the original system, but they
can be chosen to be in Region V for appropriate (Si), (Tj). For details, see the discussion
of Theorem 1.2 in Subsection 2.2.

Systems in Regions IV and V behave differently from systems in Region I because the tail
behaviors of R are different. A major difference is that the spatial growth of admissible paths
can be arbitrarily fast in Regions IV and V, and the spatial growth introduces different time
scales. To illustrate this, we consider a system in dimension d = 1 belonging to the region
{0 < α < 1}, where the spatial size R has distribution of the form

P(R = Si) = c1S−(d+α)
i , and R ∈ {Si}i≥1, (1.11)
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for some increasing sequence (Si) that is increasing at least geometrically fast, and for a nor-
malizing constant c1. To analyze W(t, 0), it is equivalent to analyze W̃(t, 0), which we now do.
In dimension d = 1, we have the advantage of being able to define the leftmost and rightmost
points, Lt and Rt, reached by admissible paths with initial point (0, 0) by time t:

Lt = inf
γ (0)=0,

γ admissible

γ (t), Rt = sup
γ (0)=0,

γ admissible

γ (t).

It is not hard to see that D(t) = Rt − Lt can be compared to two (non-independent) compound
Poisson processes, ∑

i

1

2
Si · vi(t) ≤ D(t) ≤

∑
i

2Si · Vi(t), (1.12)

where, for i fixed, vi and Vi are not independent, but (vi(t), Vi(t))i≥1 are independent as i varies,
and for each i, vi(t) and Vi(t) are Poisson variables with rates

( c
2 S−α

i t
)

i and
(
2cS−α

i t
)

i. The
lower bound indicates that D(t) grows superlinearly,

lim
t→∞

D(t)

t
≥ lim

t→∞
vi(t)

2t
Si = 1

2
S1−α

i ,

while the upper bound indicates that D(s) has increments of sizes at most 2Si at time scales Sα
i .

The different speeds S1−α
i in different time scales Sα

i indicate that the ‘domain of influence’
Rt for W̃(t, 0) is also growing at different speeds on different time scales, and this leads to
nontrivial growth behaviors of W̃(t, 0). We use one example in the proof of Theorem 1.1, where
we construct unstable models with lim supt→∞

W(t,0)
t = ∞ almost surely. In these models, we

find jobs of large temporal sizes with high probability in time–space boxes with increasing
spatial and temporal sizes. In particular, the ratio between the spatial size and the temporal size
of these time–space boxes diverges as the temporal size grows.

1.4. Overview of proofs and outline of paper

The proof of Theorem 1.1 is similar to the proof of Theorem 2 in [4]. We look at time–
space boxes of increasing size and consider the probability of obtaining jobs of large temporal
sizes in these boxes connected via some admissible path. We can concatenate disjoint boxes
so that the numbers of jobs inside are independent, and apply the law of large numbers for
independent random variables to estimate the probability of getting an admissible path with a
high score. A detailed proof of Theorem 1.1 is presented in Subsection 2.1.

The proof of Theorem 1.2 relies on two reductions. In Section 2 we reduce a generic system
to a new system by enlarging job sizes to some discrete values as suggested in Remark 1.1.
The new system may have smaller parameters (α, β) despite still being in Region V, and the
workload of the new system dominates the workload of the original system stochastically. We
choose the job sizes via two sequences of specific forms; see (2.3). These values allow us
to obtain some conditions (see (3.2)–(3.8) in Section 3) under which we prove Theorem 2.1.
These conditions are not necessary, but they enable the proof of Theorem 2.1. In Section 3,
we further reduce the proof of Theorem 1.2 to two technical propositions. The principal task
essentially reduces to showing Proposition 3.2.

The program for showing Proposition 3.2 consists of two steps, corresponding to Sections 4
and 5. The objective is to show that for fixed temporal size Tj, with large probability as t tends to
infinity, all admissible paths of length t with a fixed endpoint intersect at most t

T1+δ
′

j

such jobs,
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for δ′ > 0 not depending on j. In Section 4 we take the first step: we choose an ‘appropriate’
spatial size Si0 corresponding to j and show through various percolation arguments that, with
high probability, all admissible paths starting at a given place which do not ‘use’ job sizes Si

for i > i0 have the desired bounds. In fact, we show that the bounds hold outside exponentially
small probabilities. It is here that the condition αβ > d is used. In Section 5 we use an induction
argument on i to show that given an appropriate bound for admissible paths that do not ‘use’
job sizes Sk for k > i, we can find an appropriate bound for admissible paths that do not ‘use’
job sizes Sk for k > i + 1. The price to be paid is that the rate of the exponential bound for
the bad events decreases as we pass from i to i + 1. Given that we have chosen the Si to
be increasing superexponentially, this does not pose a problem. The paper is concluded in
Section 6 by putting together the results of Sections 4 and 5 to obtain Proposition 3.2.

2. Behaviors around the critical curve αβ = d

In this section, we first prove Theorem 1.1, which includes unstable cases in Regions II, III,
and IV. We understand the importance of the curve L = {αβ = d} from the construction of an
unstable model in Region IV; see (2.2) below. We also look into models with parameters (α, β)
above the critical curve, {αβ > d}. We then show that the proof of Theorem 1.2 need only be
given for P̃ which are discrete with possible values (for τ and R) well separated.

2.1. Unstable models in Regions II, III; constructing unstable models in Region IV

The proof of Theorem 1.1 is similar to that in [4, Section 5]. It is an application of the
graphical construction and the law of large numbers for independent random variables. We
investigate any generic model in Regions II and III, {β < d}, and also construct an unstable
model in Region IV = {αβ > d, 0 ≤ α < 1}.

Proof of Theorem 1.1.

1. (Regions II, III.) Let the arrival rate be λ > 0. By the assumption that the system is
nontrivial, we can use a large-deviation estimate for a continuous-time random walk to
see that there exist a strictly positive c0 = c0(λ) and n0 < ∞ such that for any n ≥ n0,

inf
x∈[−c0n,c0n]d

P(there exists an admissible path γ with γ (n) = 0, γ (0) = x) > 1 − e−c0n.

We choose strictly positive ε <
d−β

3 . By the definition of β we see that E(τ 1+β+ε) = ∞,
so there exists a sequence ni increasing to infinity such that

P(τ ≥ 3ni) ≥ 1

n1+β+2ε
i

.

We may assume that ni > n0 for all i ≥ 0.
For any i ≥ 1, the event that W(2ni, 0) ≤ ni is contained in the union of the following
two events:

• {�(t, x) ∈ [0, ni] × [−c0ni, c0ni]d so that a job arrives at (t, x) with τ ≥ 3ni},
• {� an admissible path γ : [ni, 2ni] with γ (ni) = x and γ (2ni) = 0}.

But the probability of the first event is bounded by

e
−λ

(2c0ni+1)dni

n
1+β+2ε
i ,
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which tends to zero as ni tends to infinity, while the second event, conditioned on the
existence of an x for the first chosen by non-random ordering of sites, has probability
bounded by e−c0ni , by our choice of c0. Thus the distributions {W(2ni, 0)}i≥0 are not
tight.

2. (Regions outside {α ≥ 0, β > 0}.) The first case deals with β ≤ 0, so we need only treat
α < 0. We suppose e1 > 0 fixed so that P(τ > e1) > e1. We fix M ≥ 4, and, as in the pre-
vious case, we fix ε > 0 and less than −α

3 . Again we have the existence of ni increasing
to infinity with

P(R ≥ 3ni) ≥ 1

nd−ε
i

.

For every i, the event {W(1, 0) < Me1 − 1} is contained in the union of the following
two events:

• { for some 1 ≤ k ≤ M, �(x, t) ∈ [−ni, ni]d ×
[
1 − k−1

M , 1 − 2k−1
2M

]
such that a job

arrives at (x, t) with R ≥ 3ni},
• {∃1 ≤ k ≤ M such that � (x, t) ∈ [−ni, ni]d ×

[
1 − 2k−1

2M , 1 − k
M

]
such that a job

arrives at (x, t) with τ > e1}.
So, as above, P(W(1, 0) < Me1 − 1) is bounded by the sum

Me
−(2ni+1)d λ

2Mnd−ε
i + Me−(2ni+1)dλe1/2M .

We see the lack of tightness from the arbitrariness of i.

3. (Region IV.) For any point (α, β) in Region IV= {αβ < d, 0 < α < 1, β > d}, we con-
struct an unstable system having (α, β) as its moment parameters. Note that unlike in
the previous two cases, we are not claiming that any distribution with parameters in this
region is necessarily unstable.
For this system, jobs have discrete spatial and temporal sizes. In particular, for every
positive integer i, we define Ri := 2(1+β)i and τi := 2(d+α)i. The jobs have only sizes
(τi, Ri) for some i ∈N, and with probability

P̃({(τi, ri)}) = P((τ, R) = (τi, Ri)) = c · 2−(d+α)(1+β)i, (2.1)

where c is a normalizing constant c = (∑∞
i=1 2−(d+α)(1+β)i

)−1
. It is easy to check that

this system is in Region IV, and we only need to show that it is unstable. The argument
is similar to that of the first case. We consider W( τi

4 , 0). The number Ni of (τi, Ri) jobs
arriving at a space–time point in [−Ri

4 , Ri
4 ]d × [0, τi

4 ] is a Poisson random variable with
parameter

c2−(d+1)Rd
i τi2

−(d+α)(1+β)i = c2−(d+1)2i(d−αβ). (2.2)

Since d > αβ, this parameter tends to infinity as i becomes large. By considering the
admissible path γ (s) ≡ 0 for 0 ≤ s ≤ τi

4 , we have that W( τi
4 , 0) is stochastically greater

than τi(Ni − 1
4 ). This suffices to show the lack of tightness. �

Remark 2.1. We have the following two remarks on the workload W(t, x); the proofs are
extensions of arguments in the above proof, and we omit their details:
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1. In the proof of the first case, we use the fact that the parameter β is strictly smaller
than d, which implies the (d + 1 − ε

2 )th moment of τ is infinite. In fact, with some extra
work, we can show that the model is unstable with the condition that τ has an infinite
(d + 1)th moment, so that there are also unstable models with parameters (α, β) on the
boundary of Regions II, III (i.e. β = d). Similarly, we can also show that the model is
unstable with the condition that R has an infinite dth moment, when α = 0.

2. When α < 0, the workload W(t, 0) is infinite almost surely, for any t > 0.

2.2. Reduction of Theorem 1.2

The purpose of this subsection is to reduce the proof of Theorem 1.2 to proving correspond-
ing results for a ‘discrete’ comparison process. This discretization, as mentioned, permits the
use of inductive arguments. The reduced result, Theorem 2.1 below, is subsequently further
reduced in the next section. That is, our objective is to reduce proving Theorem 1.2 to proving
Theorem 2.1 below.

Recall that (τ ′, R′) ∼ P̃ means that P̃ is the law of (τ ′, R′). We say that the law ˜̃P dominates
P̃ if

∃τ ′ ≤ τ and R′ ≤ R such that (τ ′, R′) ∼ P̃ and (τ, R) ∼ ˜̃P.

The main tool which follows from Remark 1.1 is the following.

Proposition 2.1. If ˜̃P dominates P̃ and ˜̃P is stable, then so is P̃.

We now give a family of distributions P̃θ,A for θ, A > 0 which always dominate a given P̃.
Given θ , A and P̃ ∈ V , we choose the sequences

Si = 2(1+δ)A(1+θ)2i
, Ti = 2αA(1+θ)2i+1

, (2.3)

for i ≥ 1. We also adopt the convention T0 = 0. The value δ > 0 is specified as a function of θ

and P̃ below. Given these sequences, P̃θ,A denotes the law of (τ ′, R′) obtained from (τ, R) ∼ P̃
by specifying as in Remark 1.1(2). Thus, from Proposition 2.1, we have that Theorem 1.2 is
implied by the following.

Proposition 2.2. For P̃ in Region V, there exists θ sufficiently small so that there exists A
sufficiently large so that P̃θ,A is stable.

It remains to discuss the value δ. We also introduce a fourth value κ > 0 which plays a role
in our analysis. Consider a generic P̃ in Region V. Notice that Region V = {α < 1, αβ > d} is
an open set; we can find parameters α0, β0 with αo · βo > d ≥ 1, 0 < αo < 1, such that the job
sizes (τo, Ro) satisfy moment conditions

E
[
Rd+αo

o + τ 1+βo
o

]
< ∞. (2.4)

Although the critical moments (αc, βc) of P̃ may not have strict inequality as in (2.4), from the
definitions (1.10), we can always approximate (αc, βc) by (α0, β0).

For θ > 0, we define α1, β1 parametrized by θ as follows:

α1 = d + αo

(1 + θ )2
− d, and β1 = 1 + βo

(1 + θ )2
− 1. (2.5)
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Since limθ↓0 α1β1 = αoβo > d, we can find a θ > 0 such that the pair (α1, β1) is a point in
Region V,

0 < α1 < α0 < 1, and α1β1 > d. (2.6)

Then we can define δ by

δ = min

(
α1β1 − d

d + α1
,
θ

3

)
> 0 (2.7)

and take a κ < min{ 1
8 , δ

4(1+δ) }. It follows immediately that θ > 3δ > 3κ
1−κ

, and therefore we
have

θ >
3κ

1 − κ
. (2.8)

By the Markov inequality and (2.4), we have for each job in the new system (i.e, (τ, R)
chosen from law P̃θ,A), for i ≥ 1, j ≥ 1,

P(R = Si+1) ≤ P(Ro ≥ Si) ≤E[Rd+α0
o ]S−(d+α0)

i ,

P(τ = Tj+1) ≤ P(τo ≥ Tj) ≤E[τ 1+β0
o ]T−(1+β0)

j ,

which, from the choices of (α1, β1) and Si+1 = S(1+θ)2

i , Tj+1 = T (1+θ)2

j , are bounded by

E[Rd+α0
o ]S−(d+α0)

i =E[Rd+α0
o ]S

− d+α0
(1+θ)2

i+1 ≤ c1S−(d+α1)
i+1 ,

E[τ 1+β0
o ]T−(1+β0)

j =E[τ 1+β0
o ]T

− 1+β0
(1+θ)2

j+1 ≤ c2T−(1+β1)
j+1 ,

for some c1, c2 > 0.
Therefore, the distribution of (τ, R) in the new system (i.e. P̃θ,A) satisfies, for i ≥ 1, j ≥ 1,

P(R = Si) ≤ c1S−(d+α1)
i , (2.9)

P(τ = Tj) ≤ c2T−(1+β1)
j , (2.10)

for some c1, c2 > 0. Note that while c1, c2 depend on A, the exponents α1, β1 do not.
Our final reduction is just to suppose that in the inequalities (2.9) and (2.10) we may take

equality. Given a law P̃θ,A satisfying the above inequalities, it is immediate that by adding mass
at the points (0, Sj) and (Tj, 0), we can construct a measure μ (of mass at least 1) such that,

for μ, we have equality in (2.9) and (2.10). Let ˜̃Pθ,A be μ normalized to be a probability. We

now simply note, using basic Poisson process properties, that for each λ > 0, the system ˜̃Pθ,A

at rate |μ|λ dominates the system P̃ at rate λ (with the obvious meaning of ‘dominates’ in this
context). Thus we have that, to prove Proposition 2.2 (and therefore Theorem 1.2), it suffices
to show the following.

Theorem 2.1. Given P̃ in Region V, let θ > 0 be such that for all A > 0, the law ˜̃Pθ,A is in

Region V, and such that for (τ, R) ∼ ˜̃Pθ,A, P(R = Si) = c1S−(d+α1)
i and P(τ = Tj) = c2T−(1+β1)

j

for some c1 and c2. Then for A sufficiently large, ˜̃Pθ,A is stable.
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3. A stable discretized model and its growth estimates

In this section, we focus on the new discrete system introduced in Theorem 2.1. Our
main goal in this section is to reduce the proof of Theorem 2.1 to that of a technical result,
Proposition 3.2.

We start with some conditions satisfied by the job sizes for ˜̃Pθ,A, when A is sufficiently large.
The specific form (2.3) of job sizes is convenient for presenting the estimates and proofs in this
section. In principle, there are many other choices for (Si, Tj), as long as the system belongs
to Region V. The form (2.3) of (Si, Tj) and a large enough A imply the conditions (3.2)–(3.8)
below, and they appear in the assumptions of two technical propositions, Proposition 3.1 and
Proposition 3.2. Again, these conditions are not necessary for the stability, but they aid our
proofs. We will discuss their roles after stating them.

For large A, the sequences (Si), (Tj) satisfy the following conditions:

1. The choice of exponents implies that for i > 1,

Sα(1+θ)
i = T1+δ

i . (3.1)

2. The scales �t2i−1 = Sα
i ≥ 1, �t2i = T1+δ

i ≥ 1 are well separated: for all i ≥ 1,

�i�ti
1+κ < �−(i+1)�ti+1

1−κ , (3.2)

where � = 10 + d
ακ

. In fact, for each i we can choose

li = �−i�t−κ
i , ri = �i�tκi (3.3)

so that we have an increasing sequence of times in R+,

0 < l1�t1 < r1�t1 < l2�t2 < r2�t2 < . . . . (3.4)

To prevent confusion, we point out that the symbol �ti means not the increment of time
ti+1 − ti, but a scale corresponding to i.
We prove (3.2) when i is odd, i = 2j − 1. Indeed, there is an A > 0 such that for all j ≥ 1,

(�t2j−1)κ = 2Aκα(1+δ)(1+θ)2j
> 22Aκαθ(1+δ)j > ρ4j−1.

Then by (2.8), we have that 1 + θ > 1+2κ
1−κ

. Therefore, from (3.1),

�4j−1�t2j−1
1+κ < �t2j−1

1+2κ < �t2j−1
(1+θ)(1−κ) = �t2j

(1−κ),

which implies (3.2). We can similarly prove the case when i is even; we omit the proof.
In fact, (3.2) also implies the following two conditions (when A is large); see (3.5) (3.6)
below, and for a short proof see the end of Item 4:

3. Higher scales have little influence over lower scales: for all i ≥ 1,

∑
j>0

�2j�t2(i+j)−1
−(1−κ) < �t2i

−1. (3.5)
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4. Summability: for each C > 0,∑
i>1

exp(−C�ti
κ ) ln (�ti) < ∞. (3.6)

The inequalities (3.5) and (3.6) follow from (3.2). In fact, (3.2) implies that for all i ≥ 1,

�t−1
i > ρ2i+1�t−(1−κ)

i+1 > ρ3�t−1
i+1.

Therefore, we have that for any j > 0,

ρ−j�t−1
2i > ρ2j�t−(1−κ)

2(i+j)−1.

Summing over j, we get (3.5).
Similarly, from (3.2) we get that �ti ≥ ρ3i. For any C > 0, there is an M > 0 such that
the function exp(−Cxκ ) ln (x) is decreasing in x on [M, ∞). We can get (3.6) from the
inequality

∑
i>1 exp(−Cρ3iκ ) ln (ρ3i) < ∞.

5. Leading order: for all i ≥ 1,

(
S1−α

i �t2i

)d
�t2iT

−(1+β)
i < 1. (3.7)

This is a consequence of αβ > d and of the choice of δ; see (2.7). In view of (3.1), we

have that Si < T
1+δ
α

i . Therefore, we bound the left-hand side of (3.7) (strictly) by

T
(( 1−α

α
+1))d+1)(1+δ)−(1+β)

i = T
d−αβ+(d+α)δ

α

i ≤ 1.

6. Also, when A is large, we have the following inequalities for (Si), for all k ≥ 1:

10
∑
i<k

S1−α
i < S1−α

k , 10
∑
i>k

S−α
i < S−α

k . (3.8)

Before going into the major bounds in the proof of Theorem 2.1, we briefly explain the roles
of the conditions (3.2)–(3.8) in the major steps. The conditions (3.2) and (3.6) are used directly
in the proof of Theorem 2.1; see Subsection 3.3 below. In general, (3.2) allows us to look at
different time intervals corresponding to different time scales and obtain estimates according to
these scales, while (3.6) allows us to get a finite sum from these estimates and to apply a Borel–
Cantelli type of argument; see Lemma 3.1 below. The conditions (3.8) enable us to estimate
the probability of connecting two time–space points, which is used throughout Sections 4 and
5. In particular, (3.8) has nothing to do with temporal workload, and it controls spatial growth
for admissible paths for W(t, 0). The condition (3.7) is the cornerstone for controlling the
growth of the maximal numbers of jobs (see (3.9) and (3.10) below), and it plays a central
role in Proposition 5.1. This condition implies that when jobs of spatial size larger than Sj

are not involved, the density of jobs of temporal size Tj along any admissible path is at most

T−(1+δ)
j , for some δ > 0. The condition (3.5), on the other hand, ensures that jobs of size larger

than Sj do not affect the leading order T−(1+δ)
j for the density of jobs of temporal size Tj

along any admissible paths; see Proposition 5.2. It is with (3.5) that we bound a family of
tailored exponential moments (see Corollary 5.1 below) and derive from them the probabilistic
estimates in Proposition 3.2.
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3.1. Growth estimates

The job sizes are discrete for ˜̃Pθ,A, so we can estimate the load of an admissible path from
the contributions of different job sizes. For any fixed admissible path γ0,t, we denote by nj(γ0,t)
the number of jobs of temporal size Tj that γ0,t intersects (in the sense of (1.5)), and denote by
mi(γo,t) the number of jobs of spatial size Si that γ0,t intersects:

nj(γ0,t) := number of jobs of temporal size Tj intersected by γ0,t, (3.9)

mi(γ0,t) := number of jobs of spatial size Si intersected by γ0,t. (3.10)

The load of an admissible path can be written as

U(γ0,t) =
∑

j

nj(γ0,t)Tj.

Taking the supremum over all admissible paths with initial point γ0,t(0) = 0, we get three types
of maximal quantities, which are all superadditive in time t:

sup U(γ0,t), sup nj(γ0,t), and sup mj(γ0,t).

The technical propositions involve bounding the growth of these quantities.
The main ingredient towards Theorem 2.1 is the following proposition on the maximal load

up to time t, sup U(γ0,t). It says that sup U(γ0,t) grows at most linearly in time t with high
probability. In view of (3.4), the probabilistic estimate is related to different time scales on
different time intervals. On each time interval larger than the time scale �t2i, the probability
that sup U(γ0,t) grows faster than c · t is exponentially small in the time scale �t2i, up to a term
which is proportional to the ratio of t and the next time scale �t2(i+1); on the time interval close
to the time scale �t2i, we can modify the event slightly.

Proposition 3.1. Recall κ < min{ 1
8 , δ

4(1+δ) }. Suppose the assumptions of Theorem 2.1 hold,
and two sequence of numbers (Si) (Tj) satisfy the conditions (3.2)–(3.8), for �t2i−1 = Sα

i ,
�t2i = T1+δ

i , and li, ri defined by (3.3), for all i ∈N. Then there are positive constants c, C, C′,
and λd such that if λ < λd, then for all i ≥ 1,

P
(
sup U(γ0,t) > c · t

)

<

⎧⎨
⎩

exp(−C�t2i
κ ) + C′�t2i+2

−1t if l2i�t2i ≤ t < r2i�t2i,

exp(−C�t2i
−1 · t) + C′�t2i+2

−1t if r2i�t2i ≤ t < l2i+2�t2i+2,
(3.11)

where the supremum is taken over all admissible paths with initial point γ0,t(0) = 0.

Before proceeding, we remark that we can get an upper bound for C′, but because of our
choices of ri, li and the time scales �ti, (3.11) converges to 0 fast enough regardless of the
value of C′. In fact, we use (3.11) to prove a Borel–Cantelli type of lemma; see Lemma 3.1
below.

Notice that the time scales have been standardized, in the sense that the scale �t2i = T1+δ
i is

a typical time of seeing one arrival of Ti along the maximal path. A more precise statement is
given in Proposition 3.2. Let At,j(c′) be the event that the maximal number for jobs of temporal
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size Tj does not exceed c′T−(1+δ)
j · t by time t, for any admissible path on [0, t] with initial

point (0, 0):

At,j(c′) :=

⎧⎪⎨
⎪⎩ sup

γ0,t(0)=0,
γ0,t admissible

nj(γ0,t) ≤ c′T−(1+δ)
j t

⎫⎪⎬
⎪⎭. (3.12)

Let Bi(t) be the event that no jobs of spatial size Sj, j ≥ i + 2, occur along any admissible path
on [0, t] with initial point (0, 0):

Bi(t) :=

⎧⎪⎨
⎪⎩ sup

γ0,t(0)=0,
γ0,t admissible

mj(γ0,t) = 0, for all j ≥ i + 2

⎫⎪⎬
⎪⎭. (3.13)

For every t in a fixed time interval [l2i�t2i, l2i+2�t2i+2], we consider events described by
cases in Proposition 3.2 below, and estimate their probabilities, which are in general small. We
then upper-bound the probability of the event that At,j(c′) occurs for all j. A small modification
is required when t is close to �t2i. In this case, the ratio �t2i

−1t is like a constant, and we
consider the event Ac

t,i(c
′�t2κ

2i ), which also has a small probability when Bi(t) occurs; see (3.17)

below. In general, we can choose c = c′ ∑∞
j=1 T−(δ−2κ)

j < ∞, and prove Proposition 3.1 from
(3.18) in Proposition 3.1. So we omit the proof of Proposition 3.1.

Proposition 3.2. Under the assumptions of Proposition 3.1, there are positive constants c′, C,
C′, and λd < 1 such that if λ < λd, then for any t ∈ [l2i�t2i, l2i+2�t2i+2) we have the following
estimates on maximal numbers of jobs:

1. Bi(t) occurs with a high probability:

P
(
Bi(t)

c)≤ C′�t2i+2
−1t ≤ C′l2i+2. (3.14)

2. If j > i, then

P
(

Ac
t,j(0) and Bi(t)

)
< C′�t2j

−1t. (3.15)

3. If j ≤ i, then

P
(

Ac
t,j(c

′) and Bi(t)
)

< exp
(
−Cκ i−j+2�t2j

−1t
)

. (3.16)

4. In the case when i = j, and when t < r2i�t2i,

P
(

Ac
t,i(c

′�t2i
2κ ) and Bi(t)

)
< exp(−C�tκ2i). (3.17)

Furthermore, we bound the event that At,j(c′�t2j
2κ ) occurs for all j as follows:

1 − P
(

At,j(c′�t2j
2κ ) for all j

)

<

⎧⎨
⎩

exp(−C�t2i
κ ) + C′�t2i+2

−1 · t if l2i�t2i ≤ t < r2i�t2i,

exp(−C�t2i
−1 · t) + C′�t2i+2

−1 · t if r2i�t2i ≤ t < l2i+2�t2i+2.
(3.18)

The proof of Proposition 3.2 is postponed to Section 6. To aid the proof, we introduce some
tools in Section 4 and use them to estimate exponential moments of the maximal numbers
in Section 5. By the Markov inequalities, we derive the estimates in Proposition 3.2 from
exponential moments.
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3.2. A Borel–Cantelli type of lemma

The next lemma shows that we can get stability from a Borel–Cantelli type of estimate (see
(3.19)), and therefore, showing Theorem 2.1 is reduced to showing Proposition 3.1. The proof
is elementary; it comes from extensions of admissible paths and monotonicity of W̃(t, 0) in t.
A similar argument can be found in the proof of [4, Proposition 14].

Lemma 3.1. Suppose there exist positive constants a > 0, b < 1
1+a and a diverging sequence

of times (un) such that un ≤ un+1 ≤ (1 + a)un, and∑
n

P
(
sup U(γ0,un) > b · un

)
< ∞, (3.19)

where the supremum is over all admissible paths with initial point (0, 0). Then {W̃(t, 0)}t≥0 is
tight.

Proof. First, for s′ < s, we can always extend an admissible path γ0,s′ on [0, s′] to a new
one γ0,s on [0, s] by letting γ0,s(u) = γ0,s′ (u), 0 ≤ u ≤ s′, and γ0,s′ (s

′) otherwise. Therefore,
U(γ0,s) ≥ U(γ0,s′). By (3.19), we get that for any ε > 0 there exists an nε such that

P
(
U(γ0,un) > b · un, for some n ≥ nε, and

some admissible path γ0,un with γ0,un(0) = 0
)
< ε.

Then, by extending admissible paths, we have

P
(
U(γ0,s) > b(1 + a) · s, for some s ≥ unε , and

some admissible path γ0,s with γ0,s(0) = 0
)
< ε.

Since V
(
γ0,s

)= U(γ0,s) − s and b(1 + a) − 1 < 0, we get

P
(
V(γ0,s) > 0, for some s ≥ unε , and

some admissible path γ0,s with γ0,s(0) = 0
)
< ε. (3.20)

We also get a similar statement from (3.19) and extending admissible paths,

P
(
U(γ0,unε

) > b · unε , for some admissible path γ0,unε
with γ0,unε

(0) = 0
)
< ε,

which implies that
P
(
W̃(unε , 0) > (b + 1)unε

)
< ε. (3.21)

Now we prove tightness of
(
W̃(t, 0)

)
. If t > unε , then by (3.20)–(3.21) and the definition of

W̃(t, 0), we obtain that there is an Nε = (b + 1)unε > 0 such that

P
(
W̃(t, 0) > Nε

)≤ P
(
W̃(unε , 0) > Nε

)+ P
(
V(γ0,s) > Nε, for some s ≥ unε ,

and some admissible path γ0,s with γ0,ts (0) = 0
)

< 2ε;

If t ≤ unε , then from the fact that W̃(t, 0) is increasing in t, we get that

P
(
W̃(t, 0) > Nε

)≤ P
(
W̃(unε , 0) > Nε

)
< ε.

We conclude that (W̃(t, 0))t≥0 and (W(t, 0))t≥0 are tight. �
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3.3. Proof of Theorem 2.1 given Proposition 3.2

Now we prove Theorem 2.1 by assuming Proposition 3.2, and therefore Proposition 3.1.

Proof of Theorem 2.1. In view of Lemma 3.1, we only need to find a sequence (un) and to
verify (3.19) for some b < 1. Let a > 0; we define a sequence of (un) inductively:⎧⎨

⎩
u1 = l1 · �t1,

un+1 = min{(1 + a)un, lk · �tk, : lk · �tk > un, for some k}.
(3.22)

It is immediate that ui+1 = (1 + a)ui, if ui+1 �= lk · �tk for any k.
From Proposition 3.1, there exist positive constants c, C, C′ such that, for any k,∑

lk·�tk≤ui<rk·�tk

P
(
sup U(γ0,ti) > c · ui

)

<
∑

lk·�tk≤ui<rk·�tk

(
exp(−C�tk

κ ) + C′�tk+1
−1ui

)
.

By summing according to the constant exp(−C�tkκ ), and other terms linear in ui, we can
rewrite the previous sum as

exp(−C�tk
κ ) · |{ui : lk · �tk ≤ ui < rk · �tk}| + C′�tk+1

−1
∑

lk·�tk≤ui<rk·�tk

ui.

Since (ui) grows geometrically in i on the interval [lk · �tk, rk · �tk], ui+1 = (1 + a)ui, we find
that the sum is bounded by

exp(−C�tk
κ )

(
log (rk) − log (lk)

log (1 + a)
+ 1

)
+ C′ rk · �tk

�tk+1

1

a
,

which, by (3.2) and (3.3), is bounded by

2

log (1 + a)
exp(−C�tk

κ ) log(�k�tk) + exp(−C�tk
κ ) + C′�−(k+1). (3.23)

Similarly, for any k, ∑
rk·�tk≤ui<lk+1·�tk+1

P
(
sup U(γ0,ti) > c · ui

)

<
∑

rk·�tk≤ui<lk+1·�tk+1

(
exp(−C�tk

−1 · ui) + C′�tk+1
−1ui

)
.

Since ui+1 = ui(1 + a) when ui+1 �= lk · �tk for any k, the sequence(
exp(−C�tk

−1 · ui)
)

rk·�tk≤ui<lk+1·�tk+1

is bounded by a geometric sequence with its first term as exp(−Crk) and a ratio at most
exp(−Ca · rk) ≤ exp(−Ca). Therefore, we bound the sum by

exp(−Crk) · 1

1 − exp(−Ca))
+ C′�tk+1

−1
∑

rk·�tk≤ui<lk+1·�tk+1

ui

< exp(−Crk) · 1

1 − exp(−Ca)
+ C′ lk+1

a
. (3.24)
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Summing over k and by (3.6), we get∑
n

P
(
sup U(γ0,un) > c · un

)
< ∞.

By rescaling the arrival rate of the system by a factor r = min{ 1
2 , λ1

c(1+a) }, and choosing

u′
n = r−1 · un, we get the estimate (3.19) with b = r · c≤ λ1

1+a . Hence, the system is stable. �
Thus our proof is reduced to proving Proposition 3.2.

4. Connectivity and spatial growth

In this section, we consider the growth of the range of the admissible paths, Rt (see (4.3)
below). For this question the temporal sizes Tj play no role; the results involve only (Sn). For
convenience, we always assume that A is large enough so that (3.8) is valid for (Sn). As the job

arrivals follow independent Poisson processes, for the law ˜̃Pθ,A in Theorem 2.1, the arrival rate
λn for jobs with a (positive) spatial size Sn is

λn = c1λS−(d+α)
n , (4.1)

for some c1 > 0; for convenience, we assume c1 = 1 for the rest of paper. A major ingredient is
to estimate the probability that two time–space points (0, 0) and (t, x) in R+ ×Zd are connected
via admissible paths involving only jobs of spatial sizes Sj, for j ≤ n. For t < Sα

n , we show that
the probability decays geometrically in the spatial l∞ distance,

|(t, x)| ≡|x| ,
under the scale Sn; see Equation (4.7) below. The estimate (4.7) is an analogue of (1.12). We
then explain the similarity between these two inequalities. The value of this result is that it cuts
down the number of admissible paths that we must consider.

Before we make our statements more precise, we introduce some definitions and assump-
tions. As in Subsection 1.2, we use graphical constructions for the job arrivals. We define
n-admissible paths and a pair of n-connected time–space points by restricting to jobs of spatial
sizes at most Sn:

1. An n-admissible path is an admissible path γ (n) : [u, t] →Zd that starts from time–space
point (u, x) and ends at (t, y), with the further restriction that only jobs of spatial sizes
Sj, j ≤ n, intersect it, in the sense of (1.5); that is, if γ (n)(s) �= γ (n)(s − ), then there is a
job of spatial size Sj with j ≤ n arriving at (s, x) with

γ (n)(s), γ (n)(s − ) ∈ B(x, Sj) := {y : |y − x| ≤ Sj},
for some j ≤ n.
We also write γ

(n)
u,t or γ

(n)
u,t;x,y when we want to emphasize that γ (n) is on the interval

[u, t], or that it has endpoints (u, x) and (t, y).

2. Two time–space points (t1, x1) and (t2, x2) are n-connected if there is an n-admissible
path with starting and ending points (t1, x), (t2, y) such that

|x − x1| , |y − x2| ≤ Sn

2
. (4.2)
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These definitions are intended to facilitate a discretization of the model at the scale Sn. We note
that for a pair of n-connected points (t1, x1) and (t2, x2), there may not exist any n-admissible
path γ (n) ‘connecting’ them in the sense that γ (n)(t1) = x1 and γ (n)(t2) = x2. We also define
the domain of influence Rt as a collection of points in time–space which are connected (or
n-connected) to (0, 0) by admissible (or n-admissible) paths:

Rt := {
(x, s) : ∃ an admissible path γ0,t, with γ0,t(0) = 0,

and γ0,t(s) = x for some s ≤ t
}

, (4.3)

R(n)
t :=

{
(x, s) : ∃ an n-admissible path γ

(n)
0,t , with γ

(n)
0,t (0) = 0,

and γ
(n)
0,t (s) = x for some s ≤ t

}
, (4.4)

R̃(n)
t := {(s, x) : (s,x) and (0, 0) are n-connected for some s ≤ t} . (4.5)

It is obvious that Rt =⋃
n R(n)

t ⊂⋃
n R̃(n)

t .
Since the model is translation-invariant, we need only consider the probabilities for two

time–space points (0, 0) and (t, x),

pn(t, x) := P((t,x) and (0, 0) are n-connected) . (4.6)

In the case when d = 1, we use (1.12) and large-deviation estimates to show that pn(t, x)
decays geometrically in x under the scale Sn when t ≤ Sα

n . In fact, in any dimension d ≥ 1, it
follows from Proposition 4.1 that this remains true.

Proposition 4.1. Recall that (Sn) satisfies (3.8) when A is large enough. There are positive
constants depending on λ, qn(λ) < 1, such that for any t ≤ Sα

n and positive integer i, when
(i − 1

2 )Sn < |x| < (i + 1
2 )Sn,

pn(t, x) ≤ qn(λ)i−1. (4.7)

Moreover, we can choose the upper bounds qn(λ) so that they satisfy the following properties:

• For all n > 0,

qn+1(λ) = c1λ + (Cd · qn(λ))
5Sn+1

8Sn , (4.8)

for some positive constants c1, Cd depending only on the dimension d.

• There exist λd > 0 and cd < ∞ depending only on d such that for λ < λd,

qn(λ) < cdλ (4.9)

for all n > 0.

Before proving Proposition 4.1, we explain its content. It is immediate that pn(x, t) is
increasing in t. Therefore, showing (4.7) amounts to showing that the probability of connecting
a time–space point (Sα

n , x), with jobs of spatial sizes up to scale Sn, decays geometrically in
their spatial distance |x| under the scale Sn. This is not too surprising because Sα

n is the scale of
seeing a job of spatial size Sn containing a particular spatial point, and it is much larger than
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Sα
n−1, which is the scale for the arrival of a job of strictly smaller spatial size containing a par-

ticular site. We expect the speed of the spatial growth for Rt to be of scale at most Sn−1
Sα

n−1
= S1−α

n−1

when jobs of size at most Sn−1 are allowed, while connecting two points of distance Sn by a
job of spatial size Sn gives us a speed of scale at least S1−α

n , which is much larger. As a conse-
quence, we expect the speed of the spatial growth for Rt to be of scale S1−α

n and the geometric
decay in i from large-deviation estimates. The harder part of Proposition 4.1 is to show that
qn(λ) < cdλ uniformly in n, when λ is small. Recall that when A is large, we have that Sn grows
fast enough in n from (3.8): for all n ∈N,∑

j≤n

10S1−α
j < S1−α

n+1 ,

which implies that the ratio 5Sn+1
8Sn

≥ 3 when n is large. In fact, it provides a recursive formula
(depending on the dimension d) for an upper bound on qn in terms of λ and Sn, Sn+1. In view
of (4.8) and (3.8), we get (4.9) when λ is small enough, and we also see that the condition (3.8)
is not optimal.

For time t > Sα
n , we show a corollary of Proposition 4.1; see Corollary 4.1 below. The

inequality (4.10) can be derived using a similar argument to the second step in the proof of
Proposition 4.1 below. We give a proof at the end of this section.

Corollary 4.1. Recall that (Sn) satisfies (3.8) when A is large enough. Let λd be from
Proposition 4.1. Then there exist positive constants c′

d, λd,0 < λd, depending on d, such that
c′

dλd,0 < 1 and, when λ < λd,0,

pn(x, t) ≤ (
c′

dλ
)(S−(1−α)

n
|x|
t −1

)
(4.10)

for all positive t > Sα
n .

To prove Proposition 4.1, we use two steps involving similar ideas. The first step is induction
on i, which measures the spatial distance between (0, 0) and (Sα

n , x) under the scale Sn. We
divide the lattice Zd into cubes with side length Sn. In order for an n-admissible path γ (n)

to connect (0, 0) and a point (Sα
n , x), the n-admissible path must pass through a sequence of

neighboring cubes of length at least i. Therefore, there are at most Ci
d (for example, Cd = 3d)

different sequences of cubes, and for each fixed sequence, we bound the probability that there is
an n-admissible path connecting them. We use a stopping-time argument to reduce the problem
to the case when i = 2; see (4.11) below. With union bounds, we obtain that the probability
decays geometrically in i (see (4.7)) from (4.11) below. The second step is to prove (4.11) and
to obtain a recursive formula for qn(λ); see (4.8). We use induction on n this time. We again
divide Zd into cubes with side length Sn and consider a sequence of cubes connected by an
n-admissible path. In both steps, the stopping times (which are the first times at which the next
cubes are connected) are bounded by Sα

n , but the total time is different in each step: in the first
step, it is Sα

n ; in the second step, it is Sα
n+1. This results in different constants due to different

counting, and different bounds for the probability of a fixed n-connecting sequence of cubes;
see (4.18) and (4.28) below.

Proof of Proposition 4.1. Let n be fixed. We can always extend an n-admissible path γ (n)

on [0, t] to an n-admissible path γ̂ (n) on [0, s + t], for some s > 0, by letting γ̂ (n) be constant
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after time t:

γ̂ (n)(u) =
⎧⎨
⎩

γ (n)(u) if u < t,

γ (n)(t) if u ≥ t.

Hence, as claimed above, pn(t, x) is increasing in t, and we only need to estimate pn
(
Sα

n , x
)
.

We divide this into two steps.

Step 1. We first assume the following statement (see (4.11) below) but defer its proof to the
second step. There is a λd > 0 such that for any λ < λd, we have a constant An(λ) <

1
4·9d , depending on λ, such that

pn(t, x) ≤ An(λ) (4.11)

for all |x| ∈ [ 3
2 Sn,

5
2 Sn] and t ≤ Sα

n .
Now we take a point y ∈Zd with |y| ≥ 2kSn for some k ∈N, and we estimate pn(t, y)
when t ≤ Sα

n . By considering centers of cubes of scale Sn, we see that if (t, y) and
(0, 0) are n-connected, then there exist at least k + 1 time–space points {(ti, xi) : i =
0, 1, . . . , k}, including (t0, x0) = (0, 0) and (tk, xk) = (t, y), such that

ti+1 > ti, xi ∈ (SnZ)d for i = 0, . . . , k − 1, (4.12)

|xi+1 − xi| = 2Sn ∈
[

3

2
Sn,

5

2
Sn

]
, (4.13)

and
(ti, xi) and (ti+1, xi+1) are n-connected. (4.14)

By (4.12)–(4.13), there are at most 5dk such sequences of centers of cubes, (xi)
k−1
i=1 ,

and these sequences are deterministic. For each deterministic sequence (xi)k
i=0, we

inductively define an increasing sequence of (bounded) stopping times ui, such
that the increments are bounded by Sα

n and (ui, xi), (ui+1, xi+1) are n-connected if
ui+1 − ui < Sα

n :

u0 := 0, (4.15)

ui+1 := inf{ui < t ≤ ui + Sα
n : (ui, xi) and (t, xi+1) are n-connected}, (4.16)

for i = 0, . . . , k − 1. The inequality (4.11) indicates that each difference ui+1 − ui

stochastically dominates a random variable Sα
n Bi,

ui+1 − ui ≥ Sα
n Bi, (4.17)

where Bi is a Bernoulli random variable with P(Bi = 1) = 1 − An and P(Bi = 0) = An.
Then we use the strong Markov property of Poisson arrivals and properties of binomial
random variables to get

P
(

there exists an increasing sequence (ui)
k−1
i=0 such that

(ui, x′
i) and (ui+1, x′

i+1) are n-connected
)

≤ P

(
k−1∑
i=0

(ui+1 − ui) < Sα
n

)
≤ P

(
k−1∑
i=0

Bi < 1

)
≤ Ak

n. (4.18)
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Therefore, for |y| ≥ 2kSn and t ≤ Sα
n , we bound pn(t, y) by

pn(t, y) ≤ 3dkAk
n ≤ q2k

n . (4.19)

In particular, qn(λ) := (
5dAn(λ)

) 1
2 < 1

2 .

Step 2. In fact, (4.11) is not surprising, since there is a positive probability 1 − An such
that there are no jobs of sizes Sj, j ≤ n, with centers arriving in the time–space set
En := {(t, x) : Sn < |x| < 3Sn, t < Sα

n }. The harder part is to show that there is a λd > 0
independent of n, such that An(λ) can be bounded uniformly in n when λ < λd. We
use induction in n and obtain a recursive formula for bounds of An in terms of λ; see
(4.29) below.

(a) The case when n = 1 is obvious. Since the number of jobs of size S1 with centers
arriving in the time–space set E1 is a Poisson random variable, we get by (4.1)

P(no job arrivals in E1) = exp(−λS−(d+α)
1 |E1|).

Therefore, (4.11) holds for n = 1, and there are constants �d such that if λ < �d,
then

A1(λ) = 1 − exp(−λS−(d+α)
1 |E1|) ≤ 6dλ, (4.20)

which converges to 0 as λ goes to 0.

(b) Assume that there is a positive λd ≤ �d such that for all n ≤ k, (4.11) holds. We
also assume (3.8). We use an argument similar to that of Step 1.
Let |x| ∈ [ 3

2 Sk+1,
5
2 Sk+1]. We get analogues of (4.12), (4.13), and (4.14). Notice

that if (x, t) and (0, 0) are (k + 1)-connected, then either there is a job of spa-
tial size Sk+1 with center in the time–space set Ek+1, or there are at least
L + 1 = |x| (2Sk)−1 + 1 time–space points (ti, xi) in Ek+1, i = 0, . . . , L, that are
k-connected. In particular, for i = 0, . . . , L − 1,

ti+1 > ti, xi ∈(SkZ)d , (4.21)

|xi+1 − xi| = 2Sk, (4.22)

and the event

Gi(s) = {(ti, xi) and (s, xi+1) are k-connected} (4.23)

occurs for every s = ti+1.
The probability of the first event is bounded by

P(a job of size Sk+1 arrives in Ek+1)

=1 − exp(−λS−(d+α)
k+1 |Ek+1| ) ≤ 6dλ. (4.24)

For the second event, we use arguments similar to those of Step 1. On the one
hand, from (4.21) and (4.22), we have at most 5dL deterministic sequences (xj).
On the other hand, for each consecutive pair xi, xi+1, we consider the probability
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that (4.23) happens for some s = ti+1 ≤ ti + Sα
k . By the induction hypothesis, the

probability is bounded above by

P
(
Gi(s) occurs for some s ≤ ti + Sα

k

)≤ Ak(λ).

Therefore, we define a sequence of L + 1 stopping times (u′
i)L

i=0 recursively:
u′

0 = 0,

u′
i := inf{u′

i−1 < s ≤ Sα
k+1 : (ti, xi) and (s, xi+1) are k-connected}, (4.25)

for i = 1, . . . , L. We get that each difference u′
i − u′

i−1 stochastically dominates a
random variable Sα

k B′
i,

u′
i − u′

i−1 ≥ Sα
k B′

i, (4.26)

where Bi is a Bernoulli random variable with

P(B′
i = 0) = Ak(λ). (4.27)

Hence, for each deterministic sequence (xj)
L+1
j=0 , we get from the Markov property

that

P
(

exists an increasing sequence (ti)
L+1
i=0 such that Gi(ti) occurs for all i

)

≤P

(
L∑

i=1

(u′
i − u′

i−1) ≤ Sα
k+1

)
≤ P

(
L−1∑
i=1

B′
i ≤ Lα

)
≤ (6Ak(λ))

L
2 , (4.28)

where the last inequality is from applying the Markov inequality to a binomial
random variable B(N, p): when a > 0, we have

P(B(N, 1 − p) ≤ K) = P(B(N, p) ≥ N − K)

≤E[eaB(N,p)]e−a(N−K) ≤ exp
(
(ea − 1)Np − a(N − K)

)
.

When N is large (such that Nα < N
2 ), for any K ≤ Nα , we bound the last term by

taking a = − ln (2p):

exp N
(

(ea − 1)p − a

2

)
≤ exp N

(
ln (2p)

2
+ (

1

2
− p)

)
≤(6p)

N
2 .

By (4.24) and (4.28), we have (from the union bound) that

pk+1(t, x) ≤ 6dλ + 5dL(6Ak(λ))
L
2 =: Ak+1(λ). (4.29)

Choosing qk(λ) = A
1
2
k (λ) for all k, we get (4.8). Combining this with (4.20), we

also see from (4.29) that there are positive constants λd ≤ �d and cd depending
only on d such that Ak+1(λ) ≤ cdλ < 1 when λ < λd. Therefore, (4.9) follows from
induction. �

We use an argument similar to the second step above to prove Corollary 4.1.

Proof of Corollary 4.1. Without loss of generality, we can assume that x and t are of
the form |x| = 2kmSn, t = mSα

n , for some positive integers k, m. We first notice that the term
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S−(1−α)
n

|x|
t in the exponent of (4.10) is of order k, so we are aiming to obtain probability bounds

which are geometric in k. Notice also that if (t, x) and (0, 0) are n-connected, then there exist at
least 2m consecutive time–space points that are n-connected, and every two consecutive points
are kSn apart. Therefore, we consider the collection of 2m (deterministic) points

Em = {(xi)
2m
i=0 : x0 = 0, xi ∈(SnZ)d , |xi − xi−1| = kSn, for all i}.

Notice that there is a constant Cd depending only on d such that the cardinality of Em is
bounded by

|Em| ≤
(

Cdkd−1

4

)m

. (4.30)

For each sequence of (xi)2m
i=0 ∈ Em, we define a sequence of stopping times inductively: u0 = 0,

and
ui := inf{s ≥ ui : (ui, xi) (s, xi) and (ui−1, xi−1) are n-connected}.

By Proposition 4.1, ui+1 − ui is dominated by the random variable Sα
n Bi, where Bi is a Bernoulli

random variable with
1 − p = P(Bi = 0) = qn(λ)k−1,

and
qn(λ) < cdλ < 1

when λ < λd, for some λd depending only on d.
Therefore, we use the union bound, the Markov property, and (4.30) to conclude that there

exist some constants c′
d and λd,0 < min{λd,

1
cd

′ }, depending on the dimension d, such that when

λ < λd,0,

pn(t, x) ≤
∑

(xi)∈Em

P
(
∃(ui)

2m
i=0 : ui−1 < ui < t, (ui, xi) and (ui−1, xi−1) are n-connected for all i

)

≤
∑

(xi)∈Em

P(B(2m, p) ≤ m)

≤|Em| · P
(

B(2m, qn(λ)k−1) ≥ m
)

≤
(

Cdkd−1qn(λ)(k−1)
)m ≤ (c′

dλ)k−1, (4.31)

where in the last line we use the classical result for a binomial variable B(2n, q) with parameters
q and n,

P(B(2n, q) ≥ n) ≤
2n∑

k=n

(
2n

k

)
qk ≤ 22nqn.

It is then standard to derive (4.10) from (4.31) by removing the assumption that |x| = 2kmSn

and t = mSα
n for positive integers k and m. �

5. Exponential moments of the maximal numbers

The main object of this section is to estimate the exponential moments of the maximal
numbers of jobs with temporal size Tj along n-admissible paths. The exponential moments
help us in bounding the probabilities of events Ac

t,j; see (3.12). Let

X(n)
s,t;x,j = sup nj(γ

(n)
s,t ), (5.1)
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where the supremum is taken over all n-admissible paths γ
(n)
s,t with initial point (s, x). Since we

are mostly interested in the case when j is fixed, and s = 0, we focus on X(n)
t = X(n)

0,t;x,j. Recall
that when A is large enough, (Tn, Sn) satisfy the properties (3.2)–(3.8). As in (4.1), we continue
to assume c1 = 1.

We use induction on n. There are two types of estimates for X(n)
t = X(n)

0,t;x,j, which are expo-
nential moments tailored to different job sizes. The first estimate (see Proposition 5.1) is the
base case. It says that the maximal number of jobs with temporal size Tj grows linearly with

scale T−(1+δ)
j , when only jobs of spatial size at most Sj are in the system. The second estimate

(see Proposition 5.2) is the inductive step. It implies that the growth of the maximal number
is not affected much by jobs of spatial size larger than Sj+1, when Sj+1 is large enough; see
(5.5) below. We remark that as spatially large jobs are involved, the parameter of exponential
moments actually decreases. The proof of Proposition 5.1 is at the end of Subsection 5.2, and
the proof of Proposition 5.2 is at the end of Subsection 5.2. Recall from (4.9) in Corollary 4.1
that λd,0 is a constant depending only on d.

Proposition 5.1. (Leading order.) Recall that δ > 0. Assume that Tj and (Sn)n≤j satisfy (3.7)
and (3.8). Then there exist positive constants λd,1 < λd,0, C′

d,1, depending only on d, such that
for any λ < λd,1, for any t > 0,

E
[
eX(j)

t

]
≤ ebt, (5.2)

where b= C′
d,1T−(1+δ)

j .

We fix a constant K = d
ακ

> max ( d
α
, 3), and put gn := K−n for all n ≥ 0. The second propo-

sition says that we can estimate exponential moments of X(n+1)
t given an estimate for X(n)

t , at a
cost of reducing the exponents by a factor of K−1 and increasing the factor from bn to bn+1 by
a small amount; see (5.5) below.

Proposition 5.2. (Influence from large jumps.) Recall that g1 = K−1 < α
d . Assume that for any

t > 0, X(n)
t satisfies

E
[
eaX(n)

t

]
≤ eabnt (5.3)

for some bn > 0 and some a ∈ (0, 1]. Then, when λ < λd,0, there exists some positive constant
CK, depending on d, such that

E
[
eag1X(n+1)

t

]
≤ eag1bn+1t, (5.4)

where bn+1 is a constant satisfying

bn+1 − bn = CK · a−1K · S−(α−dK−1)
n+1 . (5.5)

Remark 5.1. Recall that in (3.9) and (5.1), a job with sizes (R, τ ) = (Sk+j, Tj), for some k ≤ n,

is counted in nj(γ
(n)
s,t ) if its arrival (x, t′) satisfies (1.5),

γ
(n)
s,t (t′ − ), γ

(n)
s,t (t′) ∈ B(x, Sk+j).

It is possible that the change in γ
(n)
s,t at time t′,∣∣∣γ (n)

s,t (t′ − ) − γ
(n)
s,t (t′)

∣∣∣ ,
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is small compared to Sk+j, or there is no spatial change,

γ
(n)
s,t (t′ − ) = γ

(n)
s,t (t′).

The conclusion of Proposition 5.2 covers these two cases.

Using induction and (2.3) for a concrete example of (Sn, Tn), we get the following corollary
from Propositions 5.1–5.2. This corollary says that a small exponential moment of X(j+n)

t grows
linearly in t under the scale T−(1+δ)

j . Since the sequence (bn+j) is increasing, we get an upper
bound bj

′ from (5.2), (5.5), and (3.5).

Corollary 5.1. Recall that κ < min
(

1
8 , δ

4(1+δ)

)
and K = d

ακ
∈ (3, ρ). Under the assumptions

of Proposition 5.1, if we have (Sn+j)n≥1 with (3.5) and (3.8), then there are constants b′
j =

(C′
d,1 + CK)T−(1+δ)

j and λd,1 > 0 such that for any t > 0, and gn = (
κ
d

)n · αn < αn,

E
[
egnX(j+n)

t

]
≤ egnb′

jt, (5.6)

when λ < λd,1.

Proof. The proof is elementary. From Propositions 5.1 and 5.2, there exists an increasing
sequence (bj,n)n≥1 such that (5.6) holds for any t > 0 if we replace b′

j by bj,n for any n ≥ 1. In
particular, this sequence (bj,n)n≥1 satisfies (5.5) for all n ≥ 0 when bj,0 = b, where b is from
(5.2). We only need to verify that

b′
j = lim

n→∞ bj,n <
(
C′

d,1 + CK
)
T−(1+δ)

j . (5.7)

We sum the differences and get

b′
j − bj,0 <

∑
n>j

CK�2(n+1)S−α(1−κ)
n+1 ,

which is bounded by CKT−(1+δ)
j from (3.5). Therefore, (5.7) follows from (5.2). �

5.1. Small jumps and leading order

We now prove Proposition 5.1 using the tools introduced in Section 4. The proof of
Proposition 5.1 works for any dimension d ≥ 1. The argument can also be extended to dealing
with (α, β) in Region V. For a fixed j, we drop the subscript j and choose the increment of time
T = T1+δ

j . The choice of T = T1+δ
j is only used in Subsection 5.1; in Subsection 5.2, we use

T = Sα
n+1.

Before giving the detailed proof, we summarize the steps. We use an elementary inequality,
which can be seen as a generalization of a union bound. If we have a (deterministic) countable
collection I of positive random variables Zi, then the exponential moment of the maximum is
bounded above by the sum of the exponential moments,

E

[
sup
i∈I

eZi

]
≤

∑
i∈I

E
[
eZi 1{Zi �=0}

]+ P( sup
i∈I

Zi = 0) ≤
∑
i∈I

E
[
eZi

]
. (5.8)

In our case, we want to encode j-admissible paths by collections of time–space boxes with
a number of centers, which are chosen according to some rules; see (5.13), (5.14), (5.15),
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and (5.18) below. The way to choose centers and boxes is similar to that in the proof of the
classical Vitali covering lemma or in a greedy lattice animal argument. Then, to apply (5.8),
we take Zi as the total number of jobs with temporal size Tj inside the collection of time–space
boxes, and take I as the set of all sequences of chosen centers. On the one hand, we bound
the exponential moment of Zi by using Poisson random variables and an upper bound on the
probability of connecting two time–space points from Corollary 4.1. The exponential moment
decays geometrically in the number of centers mk at a rate which is linear in λ; see (5.17)
below. On the other hand, we count the number of different ways of obtaining these collections
of time–space boxes, which is exponential in the number of centers. The exponential rate for
the number of different ways depends only on the dimension d, not on λ. Therefore, we can
estimate the exponential moment by applying (5.8) when λ is sufficiently small; see (5.22)
below. In particular, the argument and the bounds are independent of the index j.

Proof of Proposition 5.1. We fix time to be t = L · T , for some large integer L. Notice that
X(j)

t is superadditive: we have

E
[
eX(j)

r+s

]
≥E

[
eX(j)

r
]
E
[
eX(j)

s
]

for any r, s ≥ 0. If we can show that (5.2) holds for a large time t = L · T , then (5.2) also

holds for any positive time. We estimate E
[
eX(j)

t

]
by considering sequences of (deterministic)

time–space boxes which cover j-admissible paths.
First, we partition the time–space set [0, t] ×Zd into boxes of the form (s, x) + Uj, where

Uj = [0, T] × [−S1−α
j T, S1−α

j T]d, and (s, x) ∈(T·N) ×
(

2S1−α
j T ·Z

)d
. (5.9)

Each box has a time–space volume
∣∣Uj

∣∣= (2S1−α
j )d · Td+1, and the number of jobs with

temporal size Tj and ‘centers’ of arrivals in the box is a Poisson random variable with mean

λ2dc2T−(1+β)
j

(
S1−α

j T
)d · T,

where c2 is the normalizing constant from Theorem 2.1. By the condition (3.7), the mean is
strictly smaller than

λ2dc2 = bj·T < 1, (5.10)

where bj = λ2dc2T−(1+δ)
j < T−(1+δ)

j when λ is strictly smaller than 1
2dc2

.

We then have encodings of paths: given a generic j-admissible path γ (j) on the time interval
Ik = [kT, (k + 1)T], first we cover γ (j) by a collection of boxes of the form (5.9); then we
extract a subcollection of disjoint boxes; and lastly we cover the original collection of boxes
by enlarging boxes in the subcollection. More precisely, we do the following. Since the spatial
sizes of jobs in a j-admissible path are at most Sj, we can find an integer mk ≥ 1 and a sequence
of mk (stopping) times si,k ∈ Ik, such that the distances between two consecutive points on γ (j)

at these times are between 4S1−α
j T and 5S1−α

j T:

s0,k = k · T, (5.11)
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si,k = min
(

(k + 1) · T, inf
{

si−1,k ≤ u ≤ (k + 1)T:

4S1−α
j T ≤

∣∣∣γ (j)(u) − γ (j)(si−1,k)
∣∣∣≤ 5S1−α

j T
})

, (5.12)

for i = 1, 2, . . . , mk. For each time si,k, k = 1, 2, . . . , mk, we can choose a center xi,k ∈(
2S1−α

j T ·Z
)d

such that the center is S1−α
j T-close to γ (j)(si,k),

∣∣∣xi,k − γ (j)(si,k)
∣∣∣≤ S1−α

j T . (5.13)

If there is more than one point in
(

2S1−α
j T ·Z

)d
satisfying (5.13), we can choose according to

certain rules since there are only finitely many such points. With these centers xk = (xi,k)mk
i=1,

and (5.12)–(5.13), we obtain a covering Uxk of the admissible path γ (j) on the time interval Ik

by taking unions of collections of boxes with side lengths 10Sj,

Uxk :=
mk⋃
i=1

(
(kT, xi,k) + [0, T] × [−5S1−α

j T, 5S1−α
j T]d

)
⊃ γ (j)(Ik). (5.14)

Therefore, on the time interval Ik, γ (j) corresponds to an encoding, which consists of mk centers

xk = (xi,k)mk
i=1 in

(
2S1−α

j T ·Z
)d

.

For every encoding xk = (xi,k)mk
i=1 on Ik, we denote by Mxk the number of arrivals of jobs

with temporal size Tj inside Uxk ,

Mxk = ∣∣{(y, t) ∈ Uxk : (t, Tj, B) ∈ �y for some B ⊂ [−Sj, Sj]d
}∣∣,

and denote by Exk the event depending on xk = (xi,k)mk
i=1,

Exk = {the covering Uxk contains a j-admissible path γ (j) with (5.13)}.

We consider E
[
eMxk · 1Exk

]
. By (5.10) and (5.14), Mxk is a Poisson random variable with

parameter at most
Cdmkbj·T,

for some constant Cd depending on the dimension. From (5.12), (5.13), and the fact that(
xi,k

)⊂
(

2S1−α
j T ·Z

)d
, we have that the distance

∣∣xi,k − xi−1,k
∣∣ between two consecutive

centers is one of the numbers
4S1−α

j T or 6S1−α
j T, (5.15)

for all i < mk, and it can be
r · S1−α

j T, (5.16)

where r = 0, 1, 2, 3, when i = mk. Although these mk centers may not be distinct, there is a

sequence of mk − 1 points in Ik ×
(

2S1−α
j T ·Z

)d
such that every two consecutive points are
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j-connected with spatial distance at least 4S1−α
j T . Therefore, from Corollary 4.1 and (5.15) we

deduce that the probability P(Ek) is bounded above as follows: for all λ < λd,0,

P(Ek) ≤ (c′
dλ)6(mk−1)

,

where c′
d, λd,0 are from Corollary 4.1. By the Cauchy–Schwartz inequality, we have

E
[
eMxk · 1Exk

]
≤ exp

(
1

2
(e2 − 1)CdmkbjT

)
(c′

dλ)3(mk−1). (5.17)

By choosing x0,k to be the last point in xk−1 = (
xi,k−1

)mk−1
i=0 , for k = 1, . . . , L,

x0,0 = 0, and x0,k = xmk−1,k−1, (5.18)

we get from (5.15), (5.16), and (5.18) that the number of encodings (xk)L−1
k=0 on the time interval

[0, t] =⋃L−1
k=0 Ik is at most

L−1∏
k=0

(
hd

mk
)
, (5.19)

for some hd ≥ 2 depending on the dimension d. Now we apply (5.17) and (5.19) to (5.8). From

the independence of
(

eMxk · 1Exk

)
k
, we get

E
[
eX(j)

t

]
≤E

⎡
⎣ sup

(xk)L−1
k=0

L−1∏
k=0

(
eMxk · 1Exk

)⎤⎦

≤
∑

(xk)L−1
k=0

L−1∏
k=0

E
[
eMxk · 1Exk

]

≤1 +
∑

(mk)∈ZL+

exp

(
1

2
(e2 − 1)CdbjT ·

L−1∑
k=0

mk

)
·

(
hd(c′

dλ)3
)∑L−1

k=0 (mk−1)
(hd)

L. (5.20)

From (5.10), we have that exp
(

1
2 (e2 − 1)Cdbj · T

)
is bounded uniformly in j. Therefore, from

(4.9), there exists some λd,1 ≤ λd,0, depending on d, such that

hdc′
dλd,1 exp

(
1

2
(e2 − 1)Cdbj · T

)
<

1

2
. (5.21)

As a consequence, when L is large, we use the identity that for q < 1,

∑
(mk)∈ZL+

q
∑L−1

k=0 (mk−1) =
L−1∏
k=0

( ∞∑
i=0

qi

)
=

(
1

1 − q

)L
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to bound (5.20) by (
3hd exp

(
1

2
(e2 − 1)Cdbj · T

))L

. (5.22)

Noticing that bj · T = λ2d, we find a constant C′
d,1 = b · T > 0 depending only on d, and bound

(5.22) by
exp(C′

d,1 · L) = exp(b · t).

�

5.2. Influence of large jumps

The proof of Proposition 5.2 is similar to that of Proposition 5.1, which also relies on
Corollary 4.1. We divide the proof into a few steps. Throughout this subsection, we use the
time scale T = Sα

n+1.
We first introduce a new system by adding to the original system some artificial jobs without

any temporal workload at fixed time–space points. We consider the maximal number Y (n+1)
t in

the new system,
Y (n+1)

t = sup nj(γ
(n+1)
0,t ), (5.23)

where the supremum is taken over all (n + 1)-admissible paths γ
(n+1)
0,t with initial point (0, 0)

in the new system. Equation (5.23) is the same as (5.1) except that Y (n+1)
t is for the new system.

Because of the additional artificial jobs, the maximal number Y (n+1)
t stochastically dominates

X(n+1)
t in the original system, and waiting times between jobs of size strictly greater than Sn

are bounded by Sα
n+1, which gives a natural discretization of the new system in the time scale

T . Then we estimate the exponential moment of Y (n+1)
t ,

E
[
eg1Y(n+1)

t

]
,

via an integral formula for a large time t = T · L, where L is a large integer. This formula
corresponds to a decomposition of Y (n+1)

t according to the occurrences of jobs of spatial size
Sn+1 and artificial jobs. We bound the terms in the formula by (4.10) from Proposition 4.1. By
applying a superadditivity argument to X(n+1)

t , we get (5.4) for any small time t.
More precisely, we obtain the following two lemmas. The first lemma says that we can

estimate E
[
eg1X(n+1)

t

]
by adding artificial jobs of radius Sn+1

4 at fixed time–space points (s, x),

for s ∈ T ·N, x ∈ Sn+1Z
d. The maximal number of the new system has an estimate in terms of

a function wn(s, x). In the second lemma, we use Corollary 4.1 to show that wn(s, x) decays
geometrically in x in the scale Sn+1.

For convenience, we say two time–space points (u, x) and (v, y) are n-connected via some
Sn+1 neighbors if there exists an n-admissible path with initial point (u, x′) and final point
(v, y′) such that ∣∣x′ − x

∣∣ , ∣∣y′ − y
∣∣≤ Sn+1. (5.24)

We should notice that a pair of n-connected points is also n-connected via some Sn+1 neighbors,
but not vice versa. The difference is the condition on endpoints; see (4.2) and (5.24). Recall
that λn+1 = λS−(d+α)

n+1 .

Lemma 5.1. (A time–space integral.) Let Y (n+1)
t be the maximal number when there are addi-

tional artificial jobs with radius Sn+1
4 , temporal size 0, and centers at time–space points (s,x),
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where (s,x) are time–space points in Sα
n+1N× Sn+1Z

d. Then for a large time t = T · L = Sα
n+1L,

L ∈N, the maximal number satisfies

E
[
eg1X(n+1)

t

]
≤E

[
eg1Y(n+1)

t

]
≤

∑
N∈N

∑
(x′i)∈(Zd)

N+L

(λn+1t)Ne−λn+1t·

∫
· · ·

∫
0=t0<···<tN<t

dt1dt2 · · · dtN

N+L−1∏
i=0

wn(t′i+1 − t′i, x′
i+1 − x′

i), (5.25)

where x0 = 0 ∈Zd,

wn(s, x) =E

[
e

g1 max|y|≤ 1
2 Sn+1

X(n)
0,s;y ·

1{(s,x) and (0, 0) are n-connected via some Sn+1 neighbors}

]
eg1, (5.26)

and (t′i)N+L
i=0 is the increasing sequence which is the union of (ti:i ≤ N) and multiples of T

up to t.

Proof. As the artificial jobs of radius Sn+1
4 are at fixed time–space points, every (n + 1)-

admissible path in the original system is also an (n + 1)-admissible path in the new system.
Therefore, Y (n+1)

t ≥ X(n+1)
t stochastically. To verify that the integral is an upper bound of

E
[
egn+1Y(n+1)

T

]
, we use the independence of the arrivals of jobs with different sizes Sn+1 and Sk,

k ≤ n.

Recall that t = Sα
n+1L is a large fixed time. For every realization of arrival processes of jobs

with size Sn+1, we denote by Cn+1 the (random) collection of all finite sequences of consecutive
arrivals of (centers of) artificial jobs or jobs of spatial size Sn+1 within the time interval [0, t]:

Cn+1 =
∞⋃

N=0

{(�t, �x) = (t′i, x′
i)

N+L
i=1 ⊂ (R+ ×Zd) : t′i < t′i+1, t′N+L = Sα

n+1L, t0 = 0, x0 = 0,

no artificial jobs or jobs of spatial size Sn+1 with center x′
i+1 arrive

during (t′i, t′i+1); a job of spatial size Sn+1 or an artificial job

with center x′
i arrives at t′i}. (5.27)

Since every (n + 1)-admissible path γ (n+1) can be decomposed into a collection of n-
admissible paths connected by a collection of jobs with spatial size Sn+1 and artificial jobs,
each γ (n+1) corresponds to a finite sequence of (random) time–space points (�t, �x) = (t′i, x′

i)
N+L
i=1

in Cn+1, such that (t′i, x′
i)

N+L
i=1 encodes consecutive arrivals of artificial jobs or jobs with spa-

tial size Sn+1 that intersect γ (n+1). For convenience, we take the closest center of an artificial
job if γ (n+1) does not intersect any artificial jobs at a time iSα

n+1, for i = 1, . . . , L. The artifi-
cial jobs ‘intersecting’ γ (n+1) are labeled by their centers (iSα

n+1, x̂i), for i = 1, 2, . . . , L; the
jobs of size Sn+1 intersecting γ (n+1) are labeled by a sequence of time–space points (ti, xi),
i = 1, 2, . . . , N. The union (t′i, xi

′)N+L
i=1 of (iSα

n+1, x̂i)L
i=1 and (ti, xi)N

i=1 belongs to Cn+1.
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We obtain upper bounds on eg1Y(n+1)
t by considering different (n + 1)-admissible paths

characterized by elements (t′i, xi
′)N+L

i=1 in Cn+1. Therefore, we get an upper bound on eg1Y(n+1)
t ,

eg1Y(n+1)
t ≤

∑
(�x,�t)∈Cn+1

N+L−1∏
i=0

(
e

g1·max|y|≤Sn+1 X(n)

t
′
i,t

′
i+1;y+x

′
i

· 1{(t′i, x′
i) and (t′i+1, x′

i+1) are n-connected via some Sn+1 neighbors}eg1

)
, (5.28)

where t0 = 0, x0 = 0, and the term eg1 is due to the fact that a job of size Sn+1 may contribute
a job of temporal size Tj. It is not yet clear that the right-hand side of (5.28) is finite. We take
the expectation and get an upper bound which is the right-hand side of (5.25). In the proof of
Proposition 5.2, we show that the integral is finite.

In fact, as job arrivals follow independent Poisson processes, we have

E
[
eg1Y(n+1)

t |Cn+1

]
≤

∑
(x,t)∈Cn+1

N+L−1∏
i=0

wn(t′i+1 − t′i, x′
i+1 − x′

i),

where t0 = 0, x0 = 0, and wn is defined by (5.26). Also, for each fixed integer N, each fixed
sequence of Zd-points x = (x′

i)
N+L
i=0 , and each fixed sequence of increasing times (t′i)N+L

i=0 ((t′i)N+L
i=0

is also the union of (ti)N
i=1 and {jSα

n+1:0 ≤ j ≤ L}), the density of obtaining N non-artificial jobs

at time–space points (t′i, x′
i)

N+L
i=1 is

N!P(Nt = N) dt1dt2 · · · dtN = (λn+1t)Ne−λn+1t1{0=t0<t1<···<tN<t} dt1dt2 · · · dtN,

where Nt is a Poisson random variable with rate λn+1t. As a consequence, the expectation of
(5.28) is bounded by

E
[
eg1Y(n+1)

t

]
≤

∑
N

∑
(xi)∈(Zd)

N+L

N!P(Nt = N)·

∫
· · ·

∫
0=t0<···<tN<t

dt1dt2 · · · dtN

N+L−1∏
i=0

wn(t′i+1 − t′i, x′
i+1 − x′

i)

≤
∑

N

∑
(xi)∈(Zd)

N+L

(λn+1t)Ne−λn+1t·

∫
· · ·

∫
0=t0<···<tN<t

dt1dt2 · · · dtN

N+L−1∏
i=0

wn(t′i+1 − t′i, x′
i+1 − x′

i). (5.29)

�
Thanks to the additional artificial jobs, we see that t′i+1 − t′i is at most Sα

n+1. We esti-
mate wn(s, x) by considering x in scales of Sn+1, and see that wn(s, x) decays geometrically
in x under this scale. This is the content of the second lemma, and it is a consequence of
Corollary 4.1.
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Lemma 5.2. Recall that K > 3. Let wn(s, x) be defined by Equation (5.26). Assuming the X(n)
t

satisfy (5.3), we have the following estimates for wn(s, x): for any s ≤ Sα
n+1,

wn(s, x) ≤

⎧⎪⎨
⎪⎩

CS
d
K
n+1eg1(1+bns) if |x| ≤ 3Sn+1,

CS
d
K
n+1ri−1

n (λ)eg1(1+bns) if (2i − 1)Sn+1 < |x| ≤ (2i + 1)Sn+1 for some i ≥ 2,
(5.30)

where C is a constant depending on d, and rn(λ) is a constant depending on Sn, Sn+1, and
λ. Furthermore, there is a constant Cd,2, depending on d, such that rn(λ) < Cd,2λ when (Sn)
satisfies (3.8) and λ < λd,0, where λd,0 is from Corollary 4.1.

Proof. We divide the proof into two cases.

1. When |x| ≤ Sn+1, assuming (5.3), we have for any z > 0, s > 0 that

P
(

gn(X(n)
s − bns) ≥ z

)
≤ exp(−z).

By the union bound and stochastic dominance, we get

P

(
gn max|y|≤Sn+1

(X(n)
0,s;y − bns) ≥ d ln (1 + 2Sn+1) + z

)
≤ exp(−z),

and gn max|x|≤ 1
2 Sn+1

(X(n)
x,s − bns) is stochastically dominated by d ln (1 + 2Sn+1) + Z,

where Z is an exponential random variable with rate 1. Therefore,

wn(s, 0) =E

[
eg1 max|y|≤Sn+1 X(n)

0,s;y

]
eg1 ≤ (1 + 2Sn+1)

d
K

1

1 − 1
K

eg1(1+bns). (5.31)

Clearly, wn(s, x) ≤ wn(s, 0), since the indicator function always takes the value 1 when
x = 0.

2. When (2i − 1)Sn+1 < |x| ≤ (2i + 1)Sn+1 for some i ≥ 2, we first get an upper bound
similar to (5.31). For any s > 0,

E

[
e2g1 max|y|≤Sn+1 X(n)

0,s;y

]
≤ (1 + 2Sn+1)

2d
K

1

1 − 2
K

e2g1bns.

Then by the Cauchy–Schwarz inequality, we have

wn(s, x) ≤
(
E

[
e2g1 max|x|≤Sn+1 X(n)

s,x

]) 1
2 ·

(P((s,x) and (0, 0) are n-connected via some Sn+1 neighbors))
1
2 eg1

≤(1 + 2Sn+1)
d
K

(
1

1 − 2
K

) 1
2

eg1(1+bns)p̃n(s, x), (5.32)

where p̃n(s, x) = P((s,x) and (0, 0) are n − connected via some Sn+1 neighbors)
1
2 .
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As s ≤ Sα
n+1, we get an upper bound for p̃n(s, x) by the corollary of Proposition 4.1. More

precisely, if (s, x) and (0, 0) are n-connected via some Sn+1 neighbors, then there exist
two points y, z in (SnZ)d such that |y| , |x − z| < Sn+1

2 , and (0, y), (t, x) are n-connected.
Since (2i − 1)Sn+1 < |x| ≤ (2i + 1)Sn+1, we get 2(i − 1)Sn+1 < |y − z| ≤ 2(i + 1)Sn+1.
Therefore, by (4.10) in Corollary 4.1, we get that there exists a constant Cd,2 > c′

d,
depending only on d, such that

p̃n(s, x) ≤
∑
x,y

pn(s, x − y) ≤
(

Sn+1

Sn

)d

(cd
′λ)

i
(

Sn+1
Sn

)1−α

≤ rn(λ)i−1 (5.33)

for some rn(λ) < cdλ when S1−α
n+1 > 10

∑
j≤n S1−α

j , and λ < λd,0. By (5.32) and (5.33),
we get (5.30). �

Remark 5.2. It may be possible to get better bounds for wn(s, x). However, geometrical decay
of wn(s, x) in x is sufficient for the proof of Proposition 5.2.

We now prove Proposition 5.2 from Lemmas 5.1 and 5.2 for a large time t. We also obtain
the estimate for any positive time t, using that X(n+1)

t is superadditive.

Proof of Proposition 5.2. By a change of variables yi+1 = x′
i+1 − x′

i = (yi,j)d
j=1 ∈Zd, we

rewrite (5.25) as

∞∑
N=0

∑
(yi)∈(Zd)

(N+L)

(λn+1t)Ne−λn+1t·

∫
· · ·

∫
0=t0<t1<···<tN<t

N+L−1∏
i=0

wn(t′i+1 − t′i, yi+1) dt1dt2 · · · dtN, (5.34)

where (t′i)N+L
i=0 is the increasing sequence, which is also the union of (ti)N

i=1 and {jSα
n+1:0 ≤ j ≤

L}. In view of Lemma 5.2, the product

N+L−1∏
i=0

wn(t′i+1 − t′i, yi+1) ≤ (Ceg1 S
d
K
n+1)N+Leg1bnTrn(λ)

∑
y′i,j, (5.35)

where

y′
i = (y′

i,j)
d
j=1 =

(
max

{
�
∣∣yi,j

∣∣− 3Sn+1

2Sn+1
�, 0

})d

j=1

.

Therefore, for each y′
i, there are at most (6Sn+1 + 1)d and at least (4Sn+1)d different yi corre-

sponding to it. We get an upper bound for terms in (5.34) by summing over yi according to yi
′,

for every fixed N:∑
(y′i)∈NN+L

(λn+1t)Ne−λn+1t·

∫
· · ·

∫
0=t0<t1<···<tN<t

dt1dt2 · · · dtN(6deg1 CS
d+ d

K
n+1 )N+Leg1bntrn(λ)

∑
y′i,j
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= eg1bnt(6deg1 CS
d+ d

K
n+1 )N+L

⎛
⎜⎝ ∑

(y′i)∈NN+L

rn(λ)
∑

y′i,j

⎞
⎟⎠ ·

(
(λn+1t)Ne−λn+1t

∫
· · ·

∫
0=t0<t1<···<tN<t

dt1dt2 · · · dtN

)

= eg1bnt(6deg1 CS
d+ d

K
n+1 )N+L

(
1

1 − rn(λ)

)d(N+L)

P(Nt = N), (5.36)

where Nt is a Poisson random variable with rate λn+1t = λS−(d+α)
n+1 t. Recall that K > 3. By

Lemma 5.2, there exists a constant λd,2 = min{ 1
2cd

, λd,0}, depending only on d, such that for
all λ < λd,2, we have that

rn(λ) < cdλ <
1

2
.

Therefore, we sum over N for (5.36) and get an upper bound for (5.25):

E
[
eg1X(n+1)

t

]
≤

∞∑
N=0

eg1bnt(6deg1 CS
d+ d

K
n+1 )N+L

(
1

1 − rn(λ)

)d(N+L)

P(Nt = N)

≤eg1bntE

[
(12deg1 CS

d+ d
K

n+1 )Nt

]
(12deg1 CS

d+ d
K

n+1 )L

≤eg1bnt exp

(
(12deg1 CS

d+ d
K

n+1 )λn+1t + S−α
n+1 ln (12deg1 CS

d+ d
K

n+1 )t

)
. (5.37)

Here, in the last line, we use the fact that

E
[
ebNt

]
= exp

(
(eb − 1)λn+1t

)
≤

⎧⎨
⎩

exp(3bλn+1t) when b ≤ 1,

exp
(
ebλn+1t

)
when b > 1.

Since

λn+1S
d+ d

K
n+1 = λS

−(α− d
K )

n+1 < λd,2S
−(α− d

K )
n+1

and

ln (12deg1 CS
d+ d

K
n+1 ) < Cd,2S

d
K
n+1

for some Cd,2 depending on d, we bound (5.37) by

exp

(
(g1bn + Cd,2S

−(α− d
K )

n+1 )t

)
. (5.38)

Since X(n+1)
t is superadditive, we have

E
[
eg1X(n+1)

r+s

]
≥E

[
eg1X(n+1)

r
]
E
[
eg1X(n+1)

s
]
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for any r, s ≥ 0. Therefore, we also have, for any t > 0,

E
[
eg1X(n+1)

t

]
≤ exp

((
g1bn + Cd,2S

−(α− d
K )

n+1

)
t

)
,

for some Cd,2 depending on d when K > 3. Lastly, we use a change of variables to replace g1
by a · g1. �

6. Proof of the growth estimate

In this section, we use Corollary 5.1 to prove Proposition 3.2. By conditioning on the occur-
rences of jobs of spatial size Si+j for j ≥ 2, we use the gi+2−kth exponential moments for the
maximal numbers Xt;k of jobs with temporal size Tk to bound the upper tails. Applying the
union bound, we get (3.14)–(3.18).

Proof of Proposition 3.2. For a fixed time t between l2i · �t2i and l2i+2 · �t2i+2, we first
recall the event Bi(t) from (3.13):

Bi(t) = {no job of spatial size Si+j, j ≥ 2, is along

an admissible path starting from (0, 0)}
= {sup mi+j(γ0,t) = 0 for all j ≥ 2}, (6.1)

where the suprema are taken over all admissible paths γ0,t with initial point (0, 0). We estimate
the probability P(Bi(t)c) by looking at time–space boxes Ei+j = [0, t] × [−3Si+j, 3Si+j]d for all
j > 1. If Bi(t)c occurs, then either there is a job of spatial size Si+j inside Ei+j for some j ≥ 2, or
there is a point x in (2Si+2Z)d with |x| = 2Si+2 such that (0, 0) and (t, x) are (i + 1)-connected.
As the arrivals for jobs of different spatial sizes follow independent Poisson processes, the first
event occurs with probability at most∑

j≥2

1 − exp
(∣∣Ei+j

∣∣ λi+j
)≤ λ ·

∑
j≥2

S−α
i+j t,

where λi+j = λP(R = Si+j) ≤ λS−α
i+j , from (4.1). From Proposition 4.1 and Corollary 5.1, the

second event occurs with probability at most(
Si+2

Si+1

)d

qi+1(λ)

(
Si+2
Si+1

)
.

When λ < λd and (Si) satisfies (2.3), we have that for any t ∈ [l2i · �t2i, l2(i+1) · �t2(i+1)],

P(Bc
i (t)) ≤ 2C1S−α

i+2t,

which implies (3.14).
To get (3.15), we use Corollary 5.1 and the fact that the (Xt;j) are integers. For j > i,

P
(

Ac
t,j(0), and Bi(t)

)
= P

(
X(i+2)

t;j ≥ 1
)

= P
(

X(j+2)
t;j ≥ 1

)
≤ ( exp(2g2T−(1+δ)

j t) − 1)(eg2 − 1)−1

≤ 6T−(1+δ)
j t, (6.2)

where, in the last line, we use 2g2T−(1+δ)
i+1 t < l2i+2 < 1

2 and exp(x) − 1 ≤ 3x for 0 ≤ x ≤ 1.
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The arguments for (3.16) and (3.17) are very similar. Notice that on the event Bi(t), we have
its maximal number Xt;j the same as X(i+2)

t;j

Xt;j= sup nj(γt) = X(i+2)
t;j ,

where the supremum is taken over all admissible paths γt with initial point (0, 0). Therefore,
for any y ≥ 0, we get

P(Xt;j ≥ y) ≤P
(

X(i+2)
t;j ≥ y, and Bi(t)

)
+ P

(
Bc

i (t)
)

≤P
(

X(i+2)
t;j ≥ y

)
+ P

(
Bi(t)

c) . (6.3)

By Corollary 5.1, we can apply the Markov inequality and obtain (3.16):

P
(

Ac
t,j(3), and Bi(t)

)
≤ P

(
X(i+2)

t;j > 3T−(1+δ)
j t

)

≤E

[
egi+2−jX

(i+2)
t;j

]
exp(−3gi+2−jT

−(1+δ)
j t)

≤ exp( − gi+2−j2T−(1+δ)
j t).

Following a similar computation, we use (3.2) to get (3.17):

P
(

Ac
t,i(3�t2κ

2i ), and Bi(t)
)

≤ exp
(

g2r2i − 3l2i�t2κ
2i

)
≤ exp

(−2�tκ2i

)
.

Lastly, we use the union bound and (3.14)–(3.17) to get (3.18). We show only the second case,
when t belongs to the interval [r2i�t2i, l2i+2�t2i+2):

1 − P
(

At,j(3�t2κ
2j ) for all j

)

≤P
(
Bi(t)

c)+
∑
j>i

P
(

Bi(t) and Ac
t,j(3�t2κ

2j )
)

+
∑
j≤i

P
(

Bi(t) and Ac
t,j(3�t2κ

2j )
)

≤2C1S−α
i+2t +

∑
j>i

6T−(1+δ)
j t +

∑
j≤i

exp( − gi+2−jT
−(1+δ)
j t).

By the condition (3.2) we get, for some C, C′ > 0,∑
j>i

6T−(1+δ)
j + 2C1S−α

i+2 ≤ C′T−(1+δ)
i+1 ,

∑
j≤i

exp
(
−gi+2−jT

−(1+δ)
j t

)
≤ exp

(
−CT−(1+δ)

i t
)

,

which implies (3.18) for c′ = 3. �
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