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ON ONE-SIDED BOUNDEDNESS OF
NORMED PARTIAL SUMS

R.A. MALLER

This paper gives a very general sufficient condition for the

existence of constants B(n), C(n) for which either

limsup S /B(n) = 1 almost surely or liminf S /C(n) = -1 almost
n n-*+a> n

surely, where S = X + X + ... + X and X. are independent

and identically distributed random variables. The theorem is

closely connected with results of Klass and Teicher on the one-

sided boundedness of 5 , with the relative stability of S ,

and with a generalised law of the iterated logarithm due to

Kesten. For non negative X. the sufficient condition is shown
If

to be necessary, and the results are partially generalised to the

case when X. form a stationary m-dependent sequence. Some
If

connections with a generalised type of regular variation and with

domains of partial attraction are also noted.

1. Results

Let X., X be independent and identically distributed random
Is

variables with distribution F , and let 5 = X + X + ... + X .

n i. d n

Suppose P(\x\ 2 x) > 0 for x > 0 . The f i r s t resu l t of th i s paper i s

the following sufficient condition for one-sided boundedness of S ,
normed in an appropriate manner.
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3 7 4 R . A . M a i l e r

THEOREM 1 . If

liminf xP(|*| > x) / udF(u)
X++0 0

= 0

there are nondeareasing sequences B(n), C{n) , such that either

limsup 5 /B(n) = 1 almost surely, or liminf 5 /C(n) = -1 almost surely,

or both.

This theorem is closely connected with the results of Klass [7], [#],

and Klass and Teicher [9] on one-sided boundedness of 5 , and it is also

connected with the relative stability of S . S is relatively stable if

there i s a sequence b -*• +°° for which 5 /b -^-+ 1 or S Ib -̂ -»- -1 .

n n n n n

It was shown by Rogozin [22] and Ma I Ier [7 3] that the relative stability of

S is equivalent ton

lira xP( | ; r | > x ) / j udF(u) = 0 ,

which gives us the immediate corollary to Theorem 1 that, if S is

relatively stable, there are nondecreasing sequences B(n), C{n) , such

that either limsup S /B(n) = 1 almost surely, or liminf 5 /C(n) = -1

almost surely, or both. This also shows the connection of Theorem 1 with

the results of Klass and Teicher, since in each of their theorems, 5 is
n

relatively stable. However, their extra restrictions, which include some

kind of moment assumption, allow them to conclude something about the form

of 5(n) ; in fact, that B(n) may be computed from quantities involving

only the distribution F in a simple way. Due to the generality of

Theorem 1, we cannot give any such representation for our norming sequence.

Theorem 1 is also closely connected with the result of Kesten [6],

that if F is in the domain of partial attraction of the normal

distribution, equivalently

l i m i n f x2P{ \x\ > x ) / \ u2dF{u) = 0 ,
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there are sequences a , y(n) , for which

-» < liminf (s^-

almost surely. This i s a very general form of the law of i tera ted

logarithm, and i t s converse i s known to be true by resu l t s of Heyde [5] and

Rogozin [20]. I t was extended by Mailer [76], who showed that y(n) may

be chosen so that the almost sure l imit points of [S -a J/y(n) are

precisely the interval [-1, l ] . The methods of [6] and [76] are of great

use in our proof of Theorem 1. We note the similar i ty of the conditions

l iminf xP(\x\ > x) /
X->~F>° J : udF(u) = 0

and

fl i m i n f x P ( \ x \ > x)/\ udF(u) = 0
' -x

This is a reflection of the duality between the convergence to normality of

S and its relative stability, as noticed by Raikov (see Gnedenko and

K o l m o g o r o v [ 3 , p . 1I43] a n d H a l l [ 4 ] ) .

We mention that the converse of Theorem 1 is not true, since of course

any symmetric distribution in the domain of partial attraction of the

normal distribution satisfies limsup 5 /B(n) = 1 almost surely for some

,x
B(n) by Kesten's result; but udF(u) = 0 for such a distribution.

' -x

Even if we restrict attention to nonsymmetric distributions outside the

domain of partial attraction of the normal distribution, there is no

possibility of a converse to Theorem 1, as is shown by the example on page

167 of Klass [7], together with his Theorem 1.2. (The fact that the

distribution of Klass's random variable does not belong to the domain of

partial attraction of the normal distribution follows from Theorem 1 of

[7 5].)

Since the preparation of this paper a manuscript of a paper to appear

by Pruitt [79] has been circulated. Theorem 5.2 of Pruitt's paper gives a

result and a converse which includes our result of Theorem 1. The methods
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and proofs of the two papers are quite different, and although Pruitt gives

much more detail on the almost sure boundedness problem, he does not relate

i t to the concept of relative stability and i ts generalisations, nor does

he consider any case other than independent and identically distributed

random variables (cf. our Theorems 2 and 3). Thus our approach to Theorem

1 may be of independent interest.

For positive random variables, we can give a good summary.

THEOREM 2. Suppose P(X > 0) = 1 . Then the following are

equivalent:

(i) liminf xP(X > x)/ udF(u) = 0 ;
J0

(ii) liminf P ( H x\)/P(X 2 x) 5 X"1 for X > 1 ;

(•a;X rx

(Hi) liminf [X-F(u)]du/\ [±-F(u)]du = 1 for X 2 1 ;

(•iu,) there are sequences n. •*• +°° ^ £> •+• +°° j / o r which

n- n. '

fy.) there is a sequence B(n) -*•+<» /or which

limsup 5 /B{n) = 1 almost surely.

Conditions (i,* , ('ii/' , (iii) , are purely analytical equivalences and

are proved by some of the methods of the theory of regular variation. A

curious consequence of (ii) holding is that F belongs to some domain of

partial attraction ([/5], Theorem 2). It is interesting to compare Theorem

2 with Theorem 2 of Rogozin [2/], which pertains to the fluctuation

properties of a relatively stable 5 . Then it will be seen that there

are gaps in Theorem 2 concerned with properties of the characteristic

function (or Laplace transform) which it would be useful to fill (in this

context see also C/4]). The equivalence of (i) and (iv) in Theorem 2 is

proved in Theorem 3 of [13]. Note that (ii) holds if P(X 2 a;) is

regularly varying with index less than or equal to -1 .
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As an application of Theorem 2 and Kesten's generalised law of the

iterated logarithm i t is easy to show that there are sequences o , >(n) ,

for which

-°° < liminf [s -a )/y(n) < limsup (5 -a )/y(n) < +°°

almost surely if and only if there is a sequence B{n) for which

n 2

limsup Y, X./B(n) = 1 almost surely, where the X. are not necessarily

positive. This is an example of the "duality" principle of Raikov

mentioned earlier.

(*) = f
Jo

Let v(x) = udF(u) ; in the case X > 0 almost surely, it is easy
Jo

to deduce from (iv) of Theorem 2 that liminf v(xA)/v(x) = 1 for A > 1 .

However, the converse to this is not true as may be shown by a minor

modification of an example in [75], where an F is given for which

r̂ X rx
liminf u dF{u)/\ u dF(u) = 1 for A > 1 ,

but 1 - F(x) + F(-x) is slowly varying. (Simply take the same tail for a

positive distribution.) It can be shown that

[X 2liminf u dF(u)/x\)(x) = 0
J

if and only if

liminf v(xA)/v(x) = 1 for A > 1 ,

so

liminf | u^dFiu)/xv(x) = 0
x-*-e=°

is necessary but not sufficient for (iv) of Theorem 2. (See Theorem 2 of

A paper of Miller [77] contains sufficient conditions for the
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existence of C(n) with liminf S /C{n) = 1 almost surely. In fact ,

Mi I l e r ' s C{n) may be taken as nv{n) (he considers only the case X > 0

and EX = •¥*>). Mi l le r ' s d is t r ibut ions satisfy x [ l -F (x ) ] / udF(u) •* 0 ,
•"O

so they are relatively stable, and in particular (i) of Theorem 2 holds.

Thus they admit a sequence B(n) for which limsup S /B{n) = 1 almost

surely, and this proves that B(n) is not asymptotically equivalent to

nv(rc) ; if it were, we would have 5 /nv(n) -*• 1 almost surely, and, by

the result of Chow and Robbins [7], EX < +<» .

Consider the following proof, in essence due to Chow and Robbins [7],

that (iv) implies (v) in Theorem 2: assume that the sequence in (iv)

increases rapidly enough for S /b ->• 1 almost surely, and let
i i

B{j) = b whenever M. < j 5 n. . Then S /B[n.) -*• 1 almost surely,
7Z • Is —±. % Yl • Is

so limsup S /B(n) - 1 almost surely, while if j > n and i is such

that

\-± K * ~ \ ' Sc/BU) ~ ™ SJ/B^i] ~ Sn./bn. ^ X

almost surely, by the monotonicity of 5 when X 2 0 almost surely,

showing that limsup 5 /B(n) - 1 almost surely. Hence limsup S /B(n) = .1
n->-Hx>

 n n

almost surely.

This argument does not require the independence (or even the identity

of distributions) of the X. , and it suggests that versions of Theorems 1
Is

and 2 may be true under some form of dependence among the X. . We say
Is

that X. forms a stationary sequence if the distribution of
Is

[X±, X , . . . , X^} i s t h e same as t h a t of {x .+±, X . + 2 > . . . , X. ) for

n - 1 and j - 1 , and t h a t t h e X. a r e m-dependent i f t h e r e i s an
3

integer m t 0 such that X. and X. are independent whenever
*• < 7

K-j'l •* m • With this definition, an independent sequence is O-dependent.

We prove:
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THEOREM 3. Sicppose X. is a stationary m-dependent sequence with

marginal distribution F for which

xP(
tx

\x\ > x)/\
'-x

Then there are sequences b

udF(u) •*• 0 as x •* +«> .

, B(n) -*• +°° _, for which either

5 Ib -£->• 1 and limsup S /B(n) = 1 almost surely, or S /b -2-*- _i and

liminf S /B{n) = -1 almost surely. The alternatives depend on the

ex

ultimate sign of udF(u) , which is constant, and we have
'-x

b ~ nn
! n

udF(u)
n

and b is regularly varying with index 1 .

Theorem 3 par t i a l ly generalises the resul t s of [22], [7] and [S] to

the m-dependent case.

2. Proofs of theorems

Proof of Theorem 1. We use the notations

H(x) = P( \X\ > x) ,

(x) = [ udF(u) ,
' -X

and

V(x) u dF(u) - u.
'-x '-x

udF{u)

where x > 0 . When the condition of the theorem holds there is a sequence

xk + +» for which x^i (x^J /v (xfe) •* 0 , so |v(x^) | > 0 for large k , X

not being bounded above. By taking a subsequence, assume that vfx.) > 0 ;

( this wil l lead to limsup S /B(n) = 1 , whereas assuming that vfx.l < 0
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leads to liminf 5 /C(n) = -1 1 .
n '

We consider two cases. F i r s t , assume xJi[xA /v[xA > a > 0 , and put

5, = x, H[x, J /V(x, J -»• 0 . By taking a subsequence if necessary, assume

£, 5 fe~ . We have K(X, ) /x, v(x, ) 5 a" C, . Define a sequence of integers

r>, as the integer part of log Ax, £~ /v(a:^.) f « where log stands for

the logarithm to base 2 . Since v(x,) /x, •+ 0 , r . -»• +» . Let X.

denote Z. truncated a t ±x. , and l e t 5 = }C + xi + . .. + X .v k n 1 2 n

By Chebychev1 s inequal i ty , i f !/ > 0 ,

- 2

(1)

<• 2

We apply these inequalities with y replaced by

!2 kv[xv)/V 2 *V(x7) , 6 > 0 .

Note that

r-7/8

so an immediate consequence of ( l ) i s t h a t 5 / 2 v (x , ) -2-»- 1 . We have

which implies that the truncation may be disregarded to deduce that
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rk v
S /2 v(xj,J - ^ 1 . Define a sequence B(n) + +°° by

2 K

B(n) = 2 v[x,) whenever 2 ~ < n 2 2 ;

then we have 5 ^ /B{2 ^J - ^ 1 , so limsup Sn/B(n) > 1 almost surely.

2 fe

By a modification of Levy's inequality (Lemma 1 below), if 6 > 0 ,

-S(2 fe

k

if k i s large enough, since, as we showed above, B [2 )/2 v{xA ->• +»

An easy consequence of ( l ) i s that

converges when 6 > 0 , so we see that

converges when 6 > 0 .

By the Borel-Cantelli Lemma, this means

limsup max \S\-j\>[xJ \/B[2 ~) = 0

almost surely, and so

https://doi.org/10.1017/S0004972700006237 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006237


382 R.A. Ma I I e r

max SJB[2 ) £ max p><7 v(x, ) \/B [2 1 + max jv(x,)/Bf2 )
v, 3 „ I 3 k ) K

= o( l ) + 1 almost surely as k •+ +°° .

Write S . = 5 : + X. , and note that
3 3 3

L P< max
k l r

15j-£2 *

^ 1 > o l = E
J I / fe U J

M > 0 for some j £ 2

f o r s o m e i s 2

so max
&

0 almost surely as &-»•+«>. This means

max S JB{2 k) 5 max S:/B(2 k) + max

5 1 + o(l) almost surely.

If w i l choose k = fe(»j) so that 2 < n 5 2 ; then

r,
B[z K) , and

r,
limsup S /Bin) S limsup sup S./S(2 ) 5 1 almost surely,

71 " n rk-l Pk °

and we conclude that limsup S /B(n) = 1 almost surely.

We come now to the second case, when xrH[xA /v(xA -*• 0 . F i s then

in the domain of pa r t i a l a t t rac t ion of the normal d is t r ibut ion , and the

methods we use are a modification of those in [76] , which in turn is based

on Kssten's work [6] . We put C, = xHj(xJ /v{xA , and assume that

https://doi.org/10.1017/S0004972700006237 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006237


O n - s i d e d b o u n d e d n e s s of normed partial sums 383

C,k 2 fe"8 . Let rk be the integer part of l o g j ^ 3 / x^/v[x^ \ , and

again r , •* +°° . By the Berry-Esseen theorem (Feller [2, p . 5^2]), if,

V > 1 ,

(2) sup
_co<x<+oo I I 2

-2 v[x) < xV 2rv(x,)\-Hx)

where

•(*) = and

Exactly as in [76] we can show that

I I t and
r

are finite. Suppose firstly that

= 2

c o n t a i n s a subsequence •*+<*>. By t a k i n g a subsequence throughout t h e

proof we can then assume that y, /log fc -»• +°° . Since £ L and

]T 2 #(a:jj are finite, we are in the situation of Case 1, with the

inequality (2), with r = r^ , playing the same role as inequalities (l).

We thus find that limsup S /B(n) = 1 for the same B(n) as before.

Alternatively we have yk bounded, in which case (2) implies

I £ sup
|P{X* N Z kv{xA < x + 0(1 )}-*(*)

because, when r 5 r, ,

=0(1) .

Thus, putting a; = aV2 log k , we see that
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k>l rk-ZLog2k<rilrk <• 2r

i s f i n i t e when a > 1 , where we now define B(n) + +°° by

B2(n) = 2 . 2 kv[xk) log fe when 2 k~X < n 5 2 k .

By Chebychev's inequality

> aB{?))

- 2 v> v-
- a _

as in [ /6 ] , and hence

s \ , o^(2)} < +00 when a > 1 ,

because when 2%, < r £ r , ,

21, r.

2 fe) £ 2 N K J / V 2.2 "7 (xJ log fe ^ 0 .

Thus we have

> aB{?\ } < •*» i f a > 1 .
I 1^ ^

rk_1<rsrk

The same is also t rue with f̂. replaced by -X. , as a symmetric argument

shows, and thus by symmetrising and ignoring the truncation,

J PJ 5 s > 2aB(^) \ < -t™ . By Lemma 2 of 161, t h i s means
r>l U Z >

limsup 5 lB(n) 5 k almost surely, so by Theorem 7 of [ 6 ] , 5s/B(n) -&-*• 0 ,

and hence , as in F e l l e r [ 2 , p . 232] , ( s ^ - n v f s j ) / B ( n ) - ^ * 0 .

2> 21

If n is large choose fe = k(n) so that 2 < n 5 2 ; then

https://doi.org/10.1017/S0004972700006237 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006237


O n e - s i d e d b o u n d e d n e s s o f no rmed p a r t i a l sums 385

J* T* "P T* "V

nB~X\v[B(n)) | 5 2 fc|v(s(2 k))\/B{2 k) < 2 fev(x,)/B(2 k)

2k\\ udF(u) lB{2k)
r

+ 2 P(|*| > xfe) = o{l) as n •*+«>,

so we deduce that 5 /B(n) -E-+ 0 . We can now follow exactly the proof of

[16] to obtain' limsup S /B(n) = 1 almost surely, and in fact that the

limit points of 5 /B{n) are precisely the interval [-1, l] . This

concludes the proof of Theorem 1.

Proof of Theorem 2. The equivalence of (i) and (ii) is a simple

consequence of Theorem 2 of [12], while the equivalence of (i) and (iv) was

shown in Theorem 3 of [13]. It is easy to see that (iv) implies (iii),

while if (i) does not hold,

x[l-F{x)]/\
>0

[1-F{u)]du 2: 6 > 0

for x large, so for such x and X > 1 ,

tx\rXk rx tx\ ru
[l-F{u)]du/\ [1-F(u)]du = exp [l-F(u)]du/\ [l-F(y)]dy

>0 >0 'x JO

i exp 6f x\ _1u du
= \

o

so (Hi) does not hold. The fact that (i) implies (v) follows from Theorem

1, so it remains to show only that (v) implies (i) . Suppose (v) holds and

(i) does not, so (ii) also fails to hold. From Theorem 1 of [15] we then

see that F is not in the domain of partial attraction of the normal

distribution, equivalently, by Levy [10, p. 113], x^>(X > x)/V(x) > a > 0,

where now

[X 2 O I2
V{x) = udF(u) - udP(u)\ .

>0 \j_0 J

Since ^n-
x
n > w e have limsup X /B(n) 5 1 almost surely, so by the
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Borel-Cantell i Lemma, Y. F[x > 2B(«)) converges, and hence

nP[x > 2B(n)) •* 0 . If limsup nB~X{n)v(2S(n)) > 0 , where

[x _1
v(x) = udF(u) , then (i) holds, so assume nB (n)v[2B(n)) •+ 0 . This

'0
means n~ B{n) •*•+<»'. Let X. denote X. truncated at 2B{i) , and l e t

Sn = x\ + X2 + . . . + / * . Since X P[X > 2B{n)) < -H» , S -5n]/B(n) •+ 0

almost surely. We also have

Y.B~2(n) Var X^ = ^ B~2(n)v{2B(n)) 5 ka'1 £ P{X > 2B{n)) < -H»

so by , for example, Lofeve [ I I , p . 252] , \sn-ESn\/B{n) •* 0 almost s u r e l y .

n 2. i n f2B(i)

ES = T EX. = V udP(u) 5 nv[2B(w)J =

But

n i=l " i=l 0̂

so Sn/B(n) •* 0 almost surely and 5 /B{n) •* 0 almost surely. This

contradiction completes the proof of Theorem 2.

rx
Proof of Theorem 3. Let A(x) = [l-F(u)-F{-u)]du . Since

rx
(x) -

J0

arP( |A"| > x)/v(x) •* 0 , xP{ \x\ > x)/A{x) -*• 0 , and since A is continuous,

A is either positive or negative for large x , as in [73]. Suppose the

former; then, as in ['3]5 A is slowly varying. Define a nondecreasing

sequence b •*••¥*> by b = sup{a; > 0 : x~ A(x) > n~ } .
Yl rt

As in [2?] , we can show that nPfl^l > xb ) -*• 0 and nfc~ K(xi ) -»• 0

for x > 0 , that the sum of n independent copies of X i s re la t ive ly

s t ab le , and also from [ 2 / ] , tha t b i s regularly varying with index 1 .

Let n be the integer part of n/(m+l) , and l e t

V1

\lt) = £ *<»*)*+*•for
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Now S (t) i s the sum of n - 1 independent and identical ly dis t r ibuted
m

random variables and hence is re la t ive ly stable with norming sequence

b ; c lear ly then, S (t)/b -*-»• 1 . Since b i s regular ly varying
m mm

with index 1 , S {t)/bn -^+ l/(m+l) , which means

m
SJby, = l S (t)/b + O(l) = 1 +

in p r o b a b i l i t y . Clear ly a l so b ~ n\){b ) .

The remainder of Theorem 3 we prove as fol lows. Since S /b -*-+ 1

and ttP(|x| > eb J •*• 0 for £ > 0 , we can choose a subsequence n. -*• +°°

for which £ P ( | S -b \ > zb ) and £ n . P ( | * | > eb ) converge for
i % i %

every e > 0 . Define B{n) by S(n) = b i f rc. , < n 5 n . , so we
n. 1.-1 %

immediately have limsup S /Bin) > 1 almost surely. Now by a version of

Levy's inequality (Lemma 2 below), since (5 -b )/b -*-*• 0 ,

p{ max [S .-b .) > cB[n.)} S p{s -b > cb } + rm.P \\x\ > aiT^b
rl . .. tj—rt • If Is ir i>

The convergence of the series with terms on the right hand side implies the

convergence of the series with terms on the left hand side, so by the

Borel-Cantelli Lemma,

limsup max [s .-b .) /s(n.) S 0 almost surely.

Given n > nn , choose i = i{n) so tha t n. , < n S n. . Then since1 ^ - l t

Bin) = s ( n . ) * b n > b n ,

limsup S /B(n) < limsup [s -h^/B{n.) + limsup b /B{n.)
n n n n n v n n %

5 limsup max [s .-b .) /s(n.) + 1 £ 1 almost surely
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showing that limsup S /B(n) = 1 almost surely.

3. Two lemmas

LEMMA 1. For each, k suppose A. are independent random variables

with finite variance Var A. . Then if m{k) is any sequence of integers

and S. = X* + XZ + ... + X1. , for every real x ,
il -*- *- 3

EX31. > x-\z T Var X^\ \

Proof of Lemma 1. We omit t h i s proof since i t is similar to that of

the ordinary LeVy inequality {of. also Petrov [/&]).

LEMMA 2. Let X. be a stationary m-dependent sequence for which

[s -a )/B(n) - ^ 0 for constants a , B{n) , B{n) > 0 . Then for every

e > 0 3 e < 1/6 , there are constants n (e), k (e) , n > k , for which

n > nn implies for every real x ,

(i) max |a -a,-a , | 5 eB(n) ,

(ii) (1-E)P{ max (s
k-<*k) Z. xB(n)}

5 p{s -a > (x-3e)B(n)} + rmp\\x.\ > an^l
Yl Tt, I 1-

Proof. (i) i s given in Lemma 2 of [161, and i t means t h a t

i f n > n and M is large enough, because (5 -a )/B(n) -&-*• 0 . By

m-dependence and s ta t ionar i ty ,
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n
(1-e) £ p{S,-a, > xB(n), max (5 .-a .) £ xB(n)}

0 0~^

- t p{Si,-<h. >aS(«), max [S.-c.) £
i •* f\ IS. -i - ~ I -I

k=kQ k,

2 P{S -a > (x-2e)B(n)} + nP{S £ -zB(n)}

> (x-3e)B{n)} + nP{\SJ 2 zB(n)}

> (x-3e)B(n)}
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