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A B S T R A C T . W e examine effects of density waves on the local galactic acj-dynamo. Oscilla-

tions of the magnetic field and the dynamo parameters due to the density wave perturbation 

irreversibly couple with the dynamo action to enhance the growth of the magnetic fields. 

1. Introduction 

The standard galactic dynamo, the αω-dynamo, works as a combined effect of the turbu-

lence, the α-action, and the shear of the differential rotation, the uz-action ( see for reviews 

e.g. Parker 1979; Zeldovich et al. 1983; Ruzumaikin et al. 1988). If the spiral structure in 

the disk is taken into account, these actions are likely to be affected by the density wave 

perturbation to change the dynamo efficiency. In this paper we will examine the effect of 

the density wave on the galactic dynamo using a simple model and show that the density 

wave could enhance the efficiently of the galactic αω-dynamo. 

2. Mode l Equations: A Simplified α a/-Dynamo 

The essence of the generation mechanism of magnetic fields by au;-dynamo in the galactic 

disk can be seen in the local dynamo equation with thin disk approximation. Using dimen-

sionless time and space variables normalized as t -+ tlh?r\ and ζ —• z/hy where h is the 

disk thickness and η is the diffusion coefficient of fields, the local αω-dynamo is described 

by the following equations (see e.g. Zeldovich et al. 1983; Ruzumaikin et al. 1988) : 

Here R a and R « , are dimensionless parameters characterizing the efficiencies of a- and 

ω- effects, and defined as R a = α0Η/η and R ^ = G/i 2/ 7?* respectively; the α-parameter 

characterizing the mean helicity of the turbulence is assumed as a(z) = αο#ι(ζ)> where 

oii(z) represents the normalized z-distribution of the α-parameter; G is the shear parameter 

defined as G = r(dQ/dr)y and Ω is the angular velocity of the galactic rotation. 

dt
 a dz + dz2 ' dt 

RujBT + 
d 2 B e 

dz2 ' (1) 
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These equations essentially describe the amplification of magnetic fields through the 

following chain of a- and ω-actions : the radial field component Br is generated from the 

azimut h al component B$ through α-action arising from the helical turbulence as represented 

by the term —Rad(aiB$)/dz ; then B$ is generated from Br through ω-action arising from 

the shear of the galactic differential rotation as represented by the term Κω Br. Repeating 

the chain of a- and ω-actions, fields can be amplified. 

T o make the problem as simple as possible we restrict our consideration to the lowest even 

symmetric mode with respect to the galactic plane, which has simplest field configuration 

and the highest growth rate. Discarding the field structure in z-direction we consider the 

following simplified equations, instead of equations ( 1 ) and ( 2 ) , 

"~7Γ" — &αΒθ - j —ΤΓ = Ru,Br ~ - ( 2 ) 

at Td at Td 

T h e lowest even symmetric mode confined within a disk of thickness h with no dynamo 

actions just decays with a time scale of ~ Ah2/π2η, so that the dimensionless diffusion 

time is « 4/7Γ 2 (see e.g. Zeldovich et al 1983). These equations may be regarded as 

equations ( 1 ) averaged over the disk in ^-direction, in which details of the averaging and the 

2-dependence of the physical quantities are absorbed effectively in the parameters Ra and 

Rv. Although these equations are too simple to derive detailed z-structure of the dynamo 

modes, they still correctly describe the chain of dynamo actions in the αω-dynamo. T h e 

term RaBe represents the generation rate of Br by α-action, and ΆωΒτ represents the 

generation rate of B$ by ω-action. T h e terms —Βτ/τ^ and —Be/rd represent the loss of 

fields by diffusion in z-direction. 

For the time evolution of fields as exp(ut), equations ( 2 ) yield ω = — 7Γ 2 /4 ± | Z ) | , where 

D is the dynamo number defined as D = RaRu>, and is assumed to be 4/7Γ 2 . This gives 

the critical dynamo number as |-D co| = ( π " 2 / 4 ) 2 ; the dynamo instability occurs to increase 

the fields for \D\ larger than |Z> C | . 

For brevity we omit the tilde over the physical quantities in the followings. 

2. αω- Dynamo Modified by Density Waves 

Since the density waves strongly affect the gas and magnetic fields (Roberts and Yuan 1971; 

Tosa 1973), they can modify the dynamo action through the changes of the fields and the 

dynamo parameters. According to the standard density wave theory, in the spiral arm the 

interstellar gas is strongly compressed and star formation is induced, while in the inter-arm 

region the gas is decompressed and the star formation is suppressed( e.g. Roberts 1969). 

If the star formation excites the turbulence of the gas in the spiral arms, the a-action will 

be enhanced in the spiral arms. 

Another important consequence of the density wave perturbation is the change of the 

shear of the differential rotation. The shear parameter changes as the gas is compressed or 

decompressed by the density wave. In a disk with Q(r) oc r 7 - 1 , if the gas is compressed by 

a factor / , i.e. / = p/p, where ρ is the averaged density in the unperturbed disk, keeping 

the angular momentum unchanged, the shear parameter changes as 
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where G represents the shear parameter in the unperturbed disk. Equation ( 3 ) indicates 

that the shear increases as the gas is decompressed, and vice versa. 

Thus the density wave affects the αω-dynamo in such a way that in the spiral arm the 

α-action is enhanced but the ω-action is reduced, while in the inter-arm regions the a-action 

is reduced but the ω-action is increased. 

In order to illuminate the essential effect of the density wave, we simplify the density 

wave in the following way. A s the fields are convected with the gas in galactic rotation, 

they are subjected to the density wave oscillation. Following the galactic rotation we divide 

a period of the density wave oscillation into two parts, compressed phase in the spiral arm 

and the decompressed phase in the inter-arm and assume that in each period the dynamo 

parameters are constant. 

T o simplify the problem further, we assume that Br is essentially generated in the spiral 

arm through α-action, while Be is generated in the inter-arm regions through ω-action; thus 

in the spiral arm the dynamo parameters are Ra = faRa, Rw = 0 , and ρ = p s = fp, where 

the bar indicates unperturbed quantities in the disk without density waves and / , fa, and 

fu are assumed to be constant; in the inter-arm, Ra = 0 , Rw = fujRw, and ρ — Pi = ρ If. 

W i t h these assumptions and simplifications, equations ( 4 ) and (5) can be easily integrated. 

A t the interface between the inter-arm and arm, we impose the following boundary 

conditions. Since the compression or decompression of the gas by the density wave is 

essentially in radial direction, BT is continuous across the boundary between arm and inter-

arm regions, and only B$ changes as the gas density changes. W e assume that Bq changes 

or jumps across the boundary in proportion to the variation of the density. Thus at the 

interface from the inter-arm to the arm or from the arm to the inter-arm, the densities are 

related as pi = f~2ps, and hence B$s in the arm is related to that in the inter-arm Bei as 

Βθ s = f2Bei. 
Starting from a given value of the fields and the phase of density wave oscillation, the 

simplified dynamo equations ( 3 ) are integrated and the solutions in the spiral arm and the 

inter-arm are connected by the relevant jump conditions. If we compare the field strength 

after one cycle of the density wave oscillation, the increase of the field strength can be 

calculated; the ratio of the final field strength to the initial one gives the amplification 

factor of the field generation. If the field strength is greater than that at the beginning of 

the cycle, the field grows, and vice versa. 

2. Periodic Solution and the Critical Dynamo Number 

T h e steady state, which provides a critical condition for the field amplification, is obtained 

by the periodic condition for the field variation where, after one cycle of the density wave os-

cillation, the field returns to the value at the beginning of the cycle. The periodic condition 

yields the critical dynamo number as: 

w ^ u ^ 0 - ^ - ; ^ , ( 4 ) 
where rs and T{ are durations of the spiral and inter-arm phases, respectively; τ is the 

period of one density wave oscillation and τ = rs + T{. T h e critical dynamo number Dc is 

defined by the parameters in the unperturbed disk, and provides a critical state of the filed 
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amplification in the presence of the density waves. Equation (4) indicates that the critical 

dynamo number is reduced by the factor 1 / ( / 2 / α Λ > ) by the presence of the density wave 

perturbation. 

The increase of the shear in the inter-arm due to the decompression of gas can be 

calculated from equation (3) . For a flat rotation curve ( 7 = 0 ) , decompression of gas 

by a factor 1/2, i.e. / = 2 , for example, increases the shear by a factor 3/2 and hence 

increases the ω-parameter by the same factor. The increase of the α-action in the spiral 

arm is expected but is difficult to estimate quantitatively because our present knowledge on 

the generation of turbulence in the spiral arm is too poor to allow us to make quantitative 

estimation of a-action or fa. Thus we just assume that fa > 1. 

To compare the critical dynamo number with that of a uniform disk >Dc0y derived from 

the simplified dynamo equations (2) , consider a limit of τ —• 0. If we take fa = 1, / ω = 1, 

and ra = η = r / 2 , the present dynamo just generates fields through alternative actions 

of a- and ω- effects without density wave perturbation. In the limit of τ —• 0, the critical 

dynamo number becomes Dc —• 4 / r | , which is 4 times that of a dynamo described by 

equations (2) . This factor 4 comes form the fact that in the present model the a- and en-

actions work alternatively; while one action is working the other one is sleeping. Taking 

account of the factor 4 we have 

^ = ^ — (5) 
Dc0 PU. K ) 

Thus even moderate variation of gas density and dynamo parameters due to density waves 

significantly reduce the critical dynamo number; hence magnetic fields can be amplified with 

the help of density wave even in a disk which has lower dynamo number than the critical 

value required for the field amplification in the absence of the density wave. 
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