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THE HAUSDORFF DIMENSION DISTRIBUTION OF
FINITE MEASURES IN EUCLIDEAN SPACE

COLLEEN D. CUTLER

1. Introduction. Let E be a Borel set of RY. The a-outer Hausdorff
measure of F has been defined to be

HYE) = lim HY(E)
-0

where
H§(E) = inf Z (d(B))"
UB,2E
d(B,)=8

and each B, is a closed ball. d(B;) denotes the diameter of B,.

It is easily seen that the same value H%(E) is obtained if we consider
coverings of E by open balls or by balls which may be either open or
closed.

By dim(E) we will mean the usual Hausdorff-Besicovitch dimension of
E, where

dim(E) = sup{a|H*(E) = oo} = inf{a|H*(E) = 0}.

The following (see [7] ) are well known elementary properties of dim(E):
()0 = dim(E) = N.
(2) if E is countable then dim(E) = 0 while if A(E) > 0 then
dim(E) = N (where A denotes N-dimensional Lebesgue measure, a
notation to be maintained throughout this paper).

(ee]
3) dim( Lz)l En) = sup dim(E,).

These properties will be used freely without comment in the following.

Let p be a probability measure on RY. In this paper we introduce the
notion of the dimension distribution fi of u. fi is a probability measure on
[0, N] and the quantity fi(E) can be interpreted as the proportion of mass
of p supported strictly on sets with dimension lying in E. Associated with
p and fi is a real-valued random variable & (which we will call the
dimension concentration map determined by p) and a family {y(-, a) },
0 = a = N, of probability measures on R to be referred to as the
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dimension derivative family of u. This family is used to obtain an integral
representation of p with respect to its dimension distribution (called the
dimension disintegration formula) which leads to an intuitive and elegant
proof of a dimension decomposition theorem first presented and proved in
another manner by Rogers and Taylor, [8]. These results of course extend
to finite Borel measures by using the appropriate normalizations.

We also develop a characterization of dimension derivative families
which turns out to be extremely useful in constructing measures p having a
desired dimension distribution. While it is easy to construct measures
having an atomic dimension distribution (for example, an absolutely
continuous measure will always have an atomic dimension distribution
with all mass concentrated at the point N) the problem of building
measures with diffuse dimension distributions is much more difficult. It
was partially addressed by Rogers and Taylor in [8] who, without the
actual concept of dimension distribution, constructed a specific measure
which they demonstrated to have a “diffuse dimension spectrum’; that is,
it had no mass concentrated on any set of any particular dimension. Their
construction is lengthy and nontrivial and in this paper we prove a much
stronger result via the simpler techniques of dimension derivatives, namely
that to each probability distribution y on [0, N] there corresponds a
probability measure u on R" satisfying fi = y. Furthermore the measure
p is constructed explicitly as an integral with respect to y. Extensions of
results due to Billingsley [1, 2, 3] are employed in the proof.

In the final section of the paper the same techniques of Billingsley are
used to develop an alternative characterization of the dimension
concentration map &; this leads to a more tractable definition of g which
we expect will prove useful in the statistical estimation of fi for
high-dimensional spatially-distributed data. We connect these results with
work of Gacs [5] who defined a numerical quantity called the Hausdorff
dimension of a probability measure and examined its relationship to
Renyi dimension and entropy. We see that in fact Gacs’ number is
precisely the mean of the dimension distribution.

By Z(R") and #( [0, N]) we will mean the Borel sets of RV and [0, N]
respectively.

2. Dimension distributions and derivative families. Let p be a finite Borel
measure on RY. For each a € [0, N] define the set function W, On
BR") by

po(B) = sup (B N D)
dim(D)=a

where D is always assumed to be a Borel set. Clearly
po(B) = pp(B) = W(B)
whenever a = B and if dim(B) = «a then p (B) = w(B).
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LEMMA 2.1. i, is a measure supported on a set D, satisfying dim(D,) = a
and can be expressed as

#o(B) = (B N D,).

Proof. Countable subadditivity of p, is obvious. To verify finite
superadditivity let B; and B, be disjoint Borel sets and let ¢ > 0. Then
there exist D; and D, with dim(D,) = «, dim(D,) = a, such that

wB; N D)) = py(B) — €/2 and
WBy N Dy) Z py(By) — €/2.
Letting D* = D, U D, then dim(D*) = « and we have

p(By U By) = sup  u((B; U B;) N D)
dim(D)=a
= sup B, N D)+ B, N D)
dim(D)=«

v

W(B, N D*) + u(B, N D*)
nu‘a(B]) + ""a(Bz) - €
Thus we conclude p, is a measure and since

o = .
s (RY) sup_ (D)
dim(D)=a

v

there exists a sequence {D,},~, of sets with dim(D,) = « such that

#(RY) = lim w(D,).

.Without loss of generality we can choose D, & D, . Let

oo
D, = U D,

« n=1
Then
dim(D,) = a and pRY) = WD, = py(Dy).
Thus D, supports p, and we obtain
#(B) = (B N\ D) = WB N D).

The quantity p,(B) represents the amount of p-mass of B which is
concentrated on sets of dimension not exceeding a. The set D, will be
called an a-support of p and is obviously not unique.

A family {D,}, 0 = a = N, will be called an a-support chain of p if, for
each &, D, is an a-support of p and D, & Dg whenever a = B.

LEMMA 2.2. An a-support chain of p always exists.

Proof. For each rational g € [0, N]let E, be a g-support of u. Note then
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that E_ supports p, for all « = ¢. Let

E; = q,Léq E,

where ¢’ is rational and define

D,= 0 E:

@ q=a
It follows that {D,}, 0 = a = N, is an a-support chain of p.
If {D,}, is an a-support chain of u we will let
-

o

—_— + =
= Bga DB and Da Bga DB

The chain will be said to be right-continuous if

D. = D' for each a.

o a

Right-continuous versions exist as it is easily seen that {D;}_ is always a
right-continuous a-support chain.

LEMMA 2.3. ,ua(RN ) is an increasing right-continuous function of a.
Proof. Let {D,}, be an a-support chain of p. Then

: Ny _ 15 _ +y N

lim p (R") = lim w(D) = p(Dy) = o (R7).

a%ao a—)”‘O

Thus pa(RN ) is the distribution function of a finite measure f defined on
the Borel sets of [0, N] via the relation

([0, a]) = p(RY).
Note the total mass of ji is
A0, N1) = py(RY) = p(RY).

We will refer to ji as the dimension measure of p and to the normalized
quantity
A A N
p = p/m(RT)
as the dimension distribution of p.

Remark. Lemma 2.3 also holds true when R is replaced by an arbitrary
Borel set B, enabling us to define jig, the dimension measure of p at B,
by

fip( 10, a]) = py(B).
We will see that the measures [iy also arise naturally in yet another way.

For the remainder of this section we will for convenience assume that p
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is a probability measure. Let {D,}, be some a-support chain of p and
let

D = pI\D,.
Note the family {D°}, partitions Dy,. Define the map
a:Dy — [0, N]
by
a(x) = inf{alx € D,}.
It is easily seen that
{xla(x) = a} = D}
while
{xla(x) = a} = Dg.

As w(Dy) = 1 it follows that a is p-a.e. defined on R" and thus may be
regarded as a random variable from the probability space R, ZR"), )
into [0, N].

Part (i1) of the following theorem shows that, up to a set of u-measure
zero, the definition of & does not depend on the choice of a-support chain
for p. Thus & is p-a.e. uniquely defined and will be called the dimension
concentration map determined by p. This enables us to associate a
dimensional number a(x) with each point x. In Section 5 we develop an
alternate characterization of a(x) which clarifies the meaning of this
dimensional number in terms of the behaviour of p in neighbourhoods
of x.

THEOREM 2.1. (i) The random variable & has distribution fi on [0, N]. That
is, b = pa "
(i) If {D,}, and {E }, are two a-support chains of p with
ap(x) = inf{alx € D,} and
ag(x) = inf{alx € E,}

then &, = &y p-a.e. Equivalently,

“(osu (D‘;AEQ)) = 0.

a=N
Proof. (i) This is trivial as
pa ([0, a]) = p( {xla(x) = a})
= wDy) = [0, a]).

(ii) To prove (ii) we first note that {E, N D,}, is also an a-support
chain of u. Hence
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aand bp(x) = a}) = WE; N D))
= ([0, a])
w( {xlag(x) = a}).

I\

W {XI&E(X)

I

Thus, for each «,

W {xlag(x) = a and ap(x) > a}) = 0.

{xlap(x) > ag(x)} = T {xlag(x) = g and ap(x) > q},

where ¢ is rational, it then follows from symmetry that
w( {xlap(x) # ag(x)}) = 0.
Noting that
U_ (DAAED) = {xlap(x) # &x(x) )

0=a=N
the proof is complete.

We now wish to develop the notion of the dimension derivative family
of u. For convenience let x denote the identity map on R"Y. Thus,
considered as a random vector on (RY, ZR"), W), X has distribution p.
Let i denote the joint distribution of (X, &) on the product space
RY X [0, N]. That is,

WMG) = W {x| (x, a(x)) € G}) for each G € BR" X [0, N]).
For product sets B X E with B € #(R") and E € %([0, N]) we note
that

WMB X E) = uB N a YE)).
In particular,
B X [0,a]) = p(B N & ([0, a]))
= WB N DJ) = p(B) = fig([0, a])
where fiy is defined as in the remark following Lemma 2.3. Thus
B X E) = py(E)

and so the measures fi occur naturally as the partial second marginals of
. Clearly p and § are, respectively, the first and second marginals of E.
The conditional distributions of X given @ = a consist of a family of
probability measures on RY which we will call the dimension derivative
famtly of p. Of less interest are the conditlonal distributions of a given
X = x; since X uniquely determines a these are simply point masses
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which we will refer to as the dimension concentration family of p. These
definitions are included in Theorem 2.2.

Given a point x, by 8§, we will mean the unit mass (or Dirac measure)
at x. That is,

1 € B
8.(B) = {0 & B

This notation will be maintained throughout the paper.

THEOREM 2.2. Let p. be a probability measure on the Borel sets of RV.
(i) There exists a family {Y(-, @) },0 = a = N, of probability measures on
BRN) such that

B X E) = /;4»(39 @)fi(der)

for each B € BR"), E € #([0, N]).

The family {Y(-, @) }, 0 = a = N, is unique up to an a-set of ji-measure
zero and will be called the dimension derivative family of p.

(ii) There exists a family {n(-, x) }, x € R, of probability measures on
([0, N]) such that

m3xm=ﬁm&mwm

for each B € BR"), E € #([0, N]).
The family {n(-, x) }, x € R, is unique up to an x-set of p-measure zero
and will be called the dimension concentration family of p. Furthermore

n(, x) = 83 () p-ae.

Proof. It is well known that a.e.-unique regular conditional distributions
exist for random vectors defined on Euclidean space. (See, for example,
[6], (CD,)) and (CD,), p. 30.) Thus we set

Y, @) = fiCla = a)
the conditional distribution of X given & = «, and
(-, x) = BClx = x)
the conditional distribution of & given X = x. Noting that
MBXD=MBn&%m)=L%mwww)
we conclude from uniqueness that :

n(, X) = 8y () p-ae.

The following theorem lists the basic properties of dimension derivative
families. Note that part (iii), the dimension disintegration formula,
provides a representation of p as an integral with respect to its dimension
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measure pi. This representation will be used in obtaining the dimen-
sion decomposition theorem of Section 3.

THEOREM 2.3. Let {Y(-, ) }, 0 = a = N, be the dimension derivative
Sfamily of a probability measure p on R". Let {D,}, 0 = a = N, denote any
a-support chain of .

(1) For every B € BRY ),

WB, ) l(dim(B),N] =0 ﬁ—a.e.,

where (B, *) | 4im(p) ] denotes the restriction of the function (B, -) to the
interval (dim(B), N].
(i1) For each a

IP(Da, ') I[O,a] = l ﬁ-a.e.
and in fact the stronger result
A({al(D), @) # 1}) = 0
holds. That is, for fi-almost all a, Y(-, ) is supported on Dg.

(1) (Dimension Disintegration Formula): For each 0 = a = N we

have

Bal) = o Y05 PiB)

and in particular

HO) = o YO BEB).
Proof. (i) Noting that
B X [0, dim(B)]) = p(B N Dgys)
= W(B) = B X [0, N])

we obtain

Joimey 9B @ider = [ 4B aica
and thus
(B, ) |(dim(B),N] =0 ﬁ'a-&
(i) From (i) it follows that for every rational ¢
WD, ) I(q‘N] = 0 p-a.e.
Letting
A = {al(D,, a) = 0 for all ¢ < a},

then
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([0, N\A) = 0
and for each a« € A we have
YD, , a) = lim ¢(Dq, a) = 0.
g—a
Thus (D, , a) = 0 for fi-almost all a.

To show ‘I’(D; , a) = 1 for gi-almost all a choose &, € [0, N] arbitrarily.
Then

fi( [0, B1) = WRY X [0, B]) = Dy X [0, B])

= WD, X [0, B]) whenever B = q
= u([0, B1).
Hence
A0, B1) = Dy, X 10 B1) = J o WD, )i(de)

for every 8 = a; from which we conclude
WDy ) 0.0 = 1 fae.
Letting
A* = {alz[/(Dq, a) = 1 for all ¢ > «a}
where ¢ is rational, it follows that
([0, N\4*) = 0.
Furthermore for each a« € A4* we have

WDy, @) = lim YD, a) = 1.

g—a
Thus (D, , a) = 1 for ji-almost all « and hence
0 -

supports Y(-, ) for fi-almost all a.
(iii) For each a € [0, N] and B € @(R") we have

B(B) = BB X [0, a]) = [ WB. BYidp).

Since py = p we obtain

WB) = J , WB, Biid).

The following is a useful characterization of dimension derivative
families which provides a method of constructing a measure having a
desired dimension distribution. This technique will be exploited in the
proof of the existence theorem of Section 4.
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THEOREM 2.4. A family {Y(-, a) }, 0 = a = N, of probability measures
defined over the Borel sets of RY is the dimension derivative family of some
probability measure on RN if and only if the following conditions hold:

1. (B, *) is a Borel measurable function of a for each B € BR").

2. There exists a probability measure y on the Borel sets of [0, N| such
that

(D) ¥B, *) ldims)n) = 0 v-ae.

for each B € BR")
(ii) for each a € [0, N there exists a set D, satisfying dim(D,) = a such
that

UD,, °) |[o,a] = 1 y-ae.
If these conditions are met then {Y(:, @) }, 0 = a = N, is the dimension

derivative family of the probability measure p defined by

MB) = ], WB, 0Y(da)

and furthermore i = y.

Proof. Necessity of these conditions is immediate by applying Theorem
23 withy = fi and {D,}, 0 = a = N, any a-support chain of p.

To show sufficiency let {y(-, @)}, 0 = a = N, be a family of prob-
ability measures satisfying the conditions of the theorem. Let y and {D,},
0 = a = N, be as in condition 2. Define p by

WB) = Joy) B, ayy(de).

Clearly p is a probability measure. Now for each B € #(R") and
a € [0, N] we must have, by the definition of p and conditions 2 (i)
and 2 (ii):

MB O D) = J o B O Dy, ByY(dB)

= Jo.og VB N Do ByY(dB) =}, , ¥B, B)v(dB).

But if dim(B) = a condition 2 (i) also implies

MB) = ), B, BV(B).

Hence w(B) = w(B N D,) whenever dim(B) = « which clearly implies
D, is in fact an a-support of . Thus we obtain for each B € #B(R")
and a € [0, N]:

BB X [0, a]) = w(B N D,)
by definition of
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= Jou V(B BV

while

M0, o) = BRY X [0, a]) = J WRY, Byy(dB) = ¥([0, a])

0,a]
and so fi = y. Hence

BB X [0, a]) = J,  WB, Biidp)

and by uniqueness we conclude {{(-, a) }, 0 = a = N, is the dimension
derivative family of p.

Remark. If we additionally assume the family {D,},0 = a = N, in 2 (ii)
is nested it is tempting to try to replace 2 (i) by

2 (1)) YDy ) @y = 0 v-ace.

In fact it is easy to construct counterexamples showing that 2 (i)’ is not
sufficient.

Note that if {(, @) }; 0 = a = N, and v satisfy the conditions of
Theorem 2.4 and » is some probability measure on [0, N] such that » < vy
then the conditions of the theorem are also met with » in place of y. Hence
{$(, @)}, 0 = a = N, is also the dimension derivative family of the
measure p* defined by

BB = Jo ) WB, ap(da).

Thus, while a given measure p determines its dimension derivative family
pi-a.e. uniquely, any particular dimension derivative family gives rise to an
equivalence class of measures sharing that derivative family but possessing
distinct dimension distributions.

3. The dimension decomposition of measures. In the previous section we
restricted p to be a probability measure only for the convenience of using
the joint and conditional distributions of certain random variables. It is
clear that the dimension concentration map & is p-a.e. uniquely defined
even when w(RV) # 1. The measure i is simply defined via the relation

B X E) = B N & Y(E)).

As a result we have the following linearity lemma (the proof is elementary
and therefore omitted).

LEMMA 3.1. (i) Let p be a finite Borel measure on R" and let ¢ > 0. Then
W and cp determine the same dimension concentration map p-a.e. Further-
more cp. = cli and as a consequence

(&) = chy for each B € BRY).
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(ii) Let p, py, py, - . . be finite Borel measures on RY such that
b= 2,
n
Then
F- 2T,
and as a consequence
ﬁB = ; (ﬁn)B-

We now note that Theorem 2.2 holds true for any finite Borel measure p.
This can be seen by first applying Theorem 2.2 to the normalized measure
» = p/c (where ¢ = p(R")) and then noting that & = ¢ and fi = ¢» (from
Lemma 3.1). Thus to each finite Borel measure p we can associate a
dimension derivative family {J(-, @)}, 0 = a = N, satisfying (i) of
Theorem 2.2 and (i), (ii), (iii) of Theorem 2.3. If w(RY) # 1 it is perhaps
more aesthetic to consider i (and p in the dimension dlsmtegra-
tion formula) as an integral with respect to the dimension distribution p
rather than the nonnormalized quantity ji. This is easily accomplished by
modifying the total mass of the dimension derivative family, setting

4’*('? a) = C\l/(, a)
where ¢ = p(RY). We will continue to present Ji as an integral with respect
to @i, however, as the linearity properties of fi simplify proofs and
discussions.

We now note that if p is a measure such that b= 8, then this is
equivalent to saying that p can be supported on a set of dimension « but
has no mass on any set of smaller dimension; in the terminology of Rogers
and Taylor p is of exact dimension a. Any measure with an atomic
dimension distribution is simply a sum of such exact dimensional
measures. In the following theorem we formalize the fact that any measure
without a diffuse singular component necessarily has an atomic dimension
distribution. The Cantor measure v defined over [0, 1] is an easy example
of a diffuse singular measure with an atomic dimension distribution; in
fact

v = 8%.
log3

THEOREM 3.1. Let p be a finite Borel measure on RY having no diffuse
singular component. Then

=N, (RN )80 + ”‘ac(RN)SN

where p, and p,. are respectively the atomic and absolutely continuous
components of p.
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Proof. Since p, is atomic it can be supported on a countable set and
thus

‘ﬁ,a = My (RN )80

If w,(E) > 0 then A(E) > 0 and hence p,. has no mass on any set of
dimension less than N. Therefore

ﬁ‘a(' = nu'ac(RN)sN'
Applying (ii) of Lemma 3.1 we conclude
b= p,RY)8) + p, (R¥)Sy.

We now present our version of Rogers and Taylor’s dimension
decomposition theorem for measures.

THEOREM 3.2. Let p be a finite Borel measure on RY. Then there exists a
unique countable set A C [0, N| and unique finite measures u*, a € A, and
pé such that p is of exact dimension a, p? has a diffuse dimension measure,
and

p= 2+l

a€A
Furthermore A is precisely the set of atoms of ji and
pC) = M{ad(, @)
where {{(-, @) }, 0 = a = N, is the dimension derivative family of p.
Proof. Let
pC) = M}, @)
for each atom a of fi. As fi( {a} ) > 0 it follows from (i) of Theorem 2.3
that Y(B, a) = 0 whenever dim(B) < a while (i1) of Theorem 2.3 im-
plies ¥(-, @) is supported on D?x (where D, is any a-support of p). Hence

Y(-, @) = 8, and so p® is of exact dimension a. Let A denote the set of
atoms of ji. By the dimension disintegration formula we have

BO)Y = o Y0 BiiAB)

[ vt wicapy + [ 46 Bricas)

EA p{a(, a) + ANN Y, B)i(dp)

= 2 0+ AM\A U, B)idp).

aE€A
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Setting

w'o) = fmw Y, Biicdp)
we thus have

p= 2 p"+

a€A

To show ji is diffuse first note that

A = i({a})3,.
Applying Lemma 3.1 we obtain

p= 2+

ac€A

= 2 i{a)s, + i<

a€A

As the atomic component of i must be

2 ji{a)3,

a€A
it follows that ,ﬁd is diffuse. Thus we have the desired decomposition. We
need only verify uniqueness. Suppose

p= 2 Y+

ac€A

is another such decomposition for p. Then for each B € BR") we have

fig = 2 Y(BS, + 35 = 2 p(B), + fig
a€A’ a€A
Taking B = R" and equating atomic and diffuse components we
immediately obtain A’ = 4. Then noting that we must have y*(B) = p%(B)
for each B we conclude y* = p* for each a € 4.

Remark. A version of Theorem 3.2 can be extended to finite signed
measures (Rogers and Taylor originally stated the decomposition theorem
for this case). If » is a finite signed Borel measure on R" let |»| denote the
total variation of ». It can be shown that there exists a family {J(-, @) },
0 = « = N, of finite signed measures on R" such that

WB) = J, ., WB. @) 15 (deo)

where [9| denotes the dimension measure of |v| and {W|(-, @)},
0 = a = N, is the dimension derivative family of |»|. We will call
{Y(, @) }, 0 = a = N, the dimension derivative family of ». Applying this
result and Theorem 3.2 we can obtain a unique decomposition
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y= > ¥+ 4

a€A

where |v% has exact dimension «, Ivdl has a diffuse dimension measure, and
A is the set of atoms of |»|. Furthermore the dimension decomposition of
lv| is related to that of » by
d
bl = 2 b+ 1

a€EA

(that is, |»|* = |»* and ¢ = 19 ).

4. The existence theorem. The main goal of this section is to prove that
every probability distribution y on [0, N] is the dimension distribution of
some measure on R". This will clearly be accomplished if we exhibit the
existence of a complete dimension derivative family, where we define a
collection {Y(:, @) }, 0 = a = N, of probability measures on R to be
a complete dimension derivative family if, for every probability distri-
bution y on [0, N], {y(-, a)}, is the dimension derivative family of
some measure p satisfying fi = y. This implies for every choice of y, the
measure

BO) = o VO @V(d)

satisfies o = .
The following result describes the structure of such a family. It is not
known whether condition 3 is necessary.

THEOREM 4.1. 4 collection {Y(-, a) }, 0 = a = N, of probability measures
on RY will be a complete dimension derivative family if the following
conditions hold:

1. y(B, ) is a Borel measurable function of « for each B € BRY).

2. 0C, @) = 8, for each a.

3. There exists a chain {D,}, 0 = a = N, of Borel sets satisfying
dim(D,) = « and D, S Dy whenever a < B such that D, supports y(-, a)
for each a.

Furthermore conditions 1 and 2 are also necessary.

Proof. Sufficiency is immediate by noting that the conditions of
Theorem 2.4 are met for any probability distribution y on [0, N].
Condition 1 is obviously necessary. To show the necessity of 2 fix
a € [0, N] and take v = §,. If {§(-, B) }4 is complete then the measure

BO) = fon YO BBLAB) = YA, @)
satisfies fi = 8, and hence (-, a) = 8, as claimed.

Thus we wish to construct a family of measures satisfying the conditions
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of Theorem 4.1. In order to do this we need to establish Theorems 4.2 and
4.3 which are a generalization to N dimensions of the one-dimensional
results given by Billingsley in Theorem 14.1 of [3]. We note that while it is
possible to arrive at Theorems 4.2 and 4.3 by reformulating the problem in
terms of a finite state space stochastic process and applying Theorems 2.2
and 2.4 of Billingsley [2] (see also [1]) it is simpler and more coherent to
develop the results directly using the methods of Billingsley in [3].

If » = 2 is a fixed positive integer then by an r-adic interval in [0, 1] we
will mean an interval I, of the form

I, =1,(x,...,x,)

n

h h
= {x o 1> xjr—j =x< > xjrﬁj + r*"}
J=1 Jj=1
where n is a positive integer and the possible values of x; are 0, 1, ...,
r — 1. Equivalently x € I, if and only if the first n terms of the
terminating (if one exists) base r expansion of x coincide with
Xiyeor X

n*

An r-adic cube C in the unit cube [0, 1]V will be a product of N r-adic
intervals of equal length, so there will exist n such that
C=1 x...xIV
If w is a diffuse probability measure on the Borel sets of [0, 1]V we define
the set function L; on the subsets of [0, 11V by

Li(E) = lim L (E)
where

Lys(E) = inf 3 (w(Cp))"
VG 2E
WC)=8
and each C, is an r-adic cube.
By a p — & covering of E we will mean a countable covering of E by
Borel sets {S, }, satisfying u(S,) = 6 for each k. Since p is diffuse it
follows that u — & coverings of E by r-adic cubes exist for each § > 0.

If « = 1 then
LyE) = lim inf 3 (C,) = p*(E)
820" UG 2E
MCH=8
where

pHE) = inf 3 p(Cy)
C,2E

ot

is the outer measure of p constructed using the algebra of finite unions of
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r-adic cubes. (Equality of L:L and p* follows from the fact that any r-adic
cube is the finite disjoint union of smaller cubes each having p-mass not
exceeding 8.) As a consequence L}‘ is finite. In a proof analogous to that
for Hausdorff a-outer measures it can be shown that for each set E there
exists a unique value &y where 0 = a5 = 1 such that Li(E) = oo if
a < agand LY(E) = 0 if a > a. We define

“dim,, (E) = a,.
If E is a Borel set then
L(E) = p*(E) = WE)
and so w(£) > 0 implies
dim, (E) = 1.
It is also easily established that
dim, (LnJ E,) = sup dim, (E,).

(The one-dimensional analogue of this notion is developed in [3]; a
somewhat different presentation in terms of stochastic processes is given
in [2].)
In order that the ratio of logarithms used below in Theorem 4.2 is
always defined we adopt the following conventions.
If0<a<land 0 < b < 1, then

loga__logl_logl_o

log 0 logh log0
log 0 log a log 0

logb logl log 1
log0 logl 1
log0 logl '

THEOREM 4.2. Let E C [0, I]N. Let p. and v be any two diffuse probability
measures on the Borel sets of [0, l]N. For each x € [0, l]N let C,(x)
denote that unique r-adic cube of volume r~ "™ which contains x.

I

EC {xllim inf 108 MG (X)) - n}
reo log p(C,(x) )

then
dim, (E) = n dim, (E).

Proof. 1t can be shown that Billingsley’s proof for the one-dimensional
case serves equally well in N dimensions. We present here a modified
proof which is somewhat more compact.
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If n = O the theorem is trivially true. Thus let n > 0. It is sufficient to
show

1
dim, (E) = {a whenever a > dim, (E) and £ > —.
n
If x € E then there exists N(x) such that n = N(x) implies
1
log #(C,(x)) = ¢ log WG, ().

Hence for n = N(x) we have

WC,(x))F = WC,(x))

and so
(Cy(x) P = W(C,(x))™
Therefore
oo
E= U E,
where

m

E, = 0 {x € EC,(x)* = C,(x))").
Since

dim, (F) = sup dim, (E,,)

it is sufficient to prove
dim, (E,) = éa.

Let 8 > 0 and let {C, }, be a p — & covering of E,, by r-adic cubes.
Without loss of generality we can assume C, meets E,, for each k and
hence C, = C,(x) for some n and some x € E,. If n = m then
let ¢} = C,. If n < m then C, is the finite disjoint union of no more
than ™V subcubes of volume r~ ™. We will let {Cy,}; denote the collec-
tion of those subcubes which also meet E,,. (Hence each Cyy = C,(x) for
some x € E,.) Then the collection {D,}, consisting of all C; and Cy; is a
p — & covering of E,, and

(D) ** = (WD) )* for each i.
Thus {D,}, is also a » — &8'/¢ covering of E,, and
2 @D = 2 WD) )"
= 3 (W) + = WCy) )
= N ; (MC))™
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Hence
LE%iKE,) = r"™VL«(E,).
Letting 8 — 0" we conclude
L¥(E,) = r"NLA(E,).
But
a > dim, (E) = dim, (E,,)
so Ly(E,) = 0 and hence Lf"(Em) = 0. Thus
dim, (E,)) = éa.
THEOREM 4.3. If p and v are diffuse probability measures on [0, 11V and

EC (x lim 108 7(C()) ,,}
n—co log p(C, (x))

then dim, (E) = 7 dim, (E).

Proof. The result follows by applying Theorem 4.2 then interchanging »
and p and applying Theorem 4.2 again with 1/7 in place of 7.

In order to apply Theorem 4.2 and 4.3 for our purpose we need to note
the relationship between dim, (E) and dim(E). In fact

dim, (E) = dim(E) IN,

simply a change of scale due to the fact that Ly is calculated in terms of
the Lebesgue measures of the members of the coverings while H® is
calculated in terms of the diameters. It can be shown that using coverings
by r-adic cubes or by balls does not affect the value obtained for the
dimension.

THEOREM 4.4. A complete dimension derivative family exists on RV

Proof. We will construct a family {{(-, «) },0 = a = N, on the unit cube
[0, l]N . To each real number x € [0, 1] associate its terminating (if one
exists) dyadic expansion

[ee)

x = X x(j)

j=1
where x(j) = 0 or 1. Let

n

5,(x) = 2 x(j).

Jj=1

1 .
Foreach0 =p = 2 define the set M(p) in [0, I]N by
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M(p) = {(xl,...,xn) € [0, 1)V lim S, (%) _
n

n—>00

for each k = 1,...,N}.
Let

M*(p) = O§g§p M(p").

1 . . .
The collection {M*(p)}, 0 = p = 2 is a nested increasing family of

sets; we will show shortly that
dim(M*(p)) = Nd(p)

where

p log(i) + (1 —p) log(l—l—;)

d =
(p) log 2

Let
1 N
C, =1, X ... X1,
be a dyadic cube of volume 2~ "V. By definition
k k
I, = I(x,...,x,)
for some choice of x,, ..., x, (which depends on k). We will et
n
sf‘, = sf,(]ﬁ) = 2 X;.
j=1
1
For each 0 = p = = let p” denote the N-dimensional product (Ber-
noulli) measure on [0, I]N whose value over dyadic cubes is given by
PP (C) = Pl x ... x 1Y)
1 ! N _ N
= (A = p)'" . (A = p)' )

B N
25 nN— 2 sf‘,

=y ad-p

It is well-known (and easily proved by applying the strong law of large
numbers) that p? is supported on M(p) and hence also on M*(p). p” is a

| M=

. . | S
diffuse singular measure for 0 < p < 3 while p° = 8y and pl’? =\
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Note that if x € [0, l]N and C,(x) is that unique dyadic cube of volume
27"V which contains x then
log M(C,(x))
log p#(C,(x))

1
nN lo (—)
& 2

N N
X s,(x) logp + (nN - Sn(xk)) log(1 — p)

_ N log 2
TN N :
) ’ 1
Z sn(xk) lOg(l) + 2 1 — Sn(xlx)] lOg( )
k=1 n P k=1 n 1—p
If x € M(p) then
lim Sn(xk) =p

n—o0 n

for each k and so
; 10g A(Cvn(ﬁ)) — N lOg 2
n—o0 p - 1 1
log p”(C,(x)) Np log(—) + N(1 — p) log(l——)
p - P

= 1/d(p).
Thus

M(p) C {5 e [0, 1]N‘ lim 1BAMG(D) l/d(p)}

n—co log pP(C,(x))
and applying Theorem 4.3 we conclude
dimy (M(p)) = d(p) dimy (M(p)).
As p’(M(p)) > 0 we have
dim,s (M(p)) = 1
and thus
dim(M(p)) = N dim, (M(p)) = Nd(p).

It is easily seen that if 0 = p’ = p =

;
)4 log(g) + {1 —=p) log( ! )

d(p) =
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Thus if x € M*(p) (and hence there exists p’ = p such that

hm SII('X/\) — p/

n—o0 n

for all k) we obtain
log MC,(x)) log 2

n—oo log pP(C,(x)) 1) 1
n "logl- ) + (1 — p) log| ——
B [} TR S

= 1/d(p).

Hence

log A
M*(p) C {5 e (0. 1] 1im 28ANGX)) - l/d(p)}
o log pf(C,(x))
and from Theorem 4.2 we conclude
dim(M*(p)) = N dimy (M*(p))

= Nd(p) dimy (M*(p)) = Nd(p).

But also
dim(M*(p)) Z Nd(p)
since M*(p) 2 M(p). Thus
dim(M*(p)) = Nd(p).
Furthermore if p’(4) > 0 then
WA N M(p)) >0
and since

. log M(C,(x))
lim —=2 =27
n—co log p”(C,(x))

AN M(p)C {5 e [0, 1)V = l/d(p)}

we conclude

dim(4) = dim(4 N M(p)) = Nd(p).

Thus p” has no mass on any set of dimension less than Nd(p) yet is
supported on M*(p). Hence p” is of exact dimension Nd(p); that
is, letting d*(p) = Nd(p) we have

pr = Sar(py
1
Noting that 4* maps the interval [O, 5] onto [0, N] in a one-one

strictly increasing continuous fashion we define the probability measures
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(-, a) on [0, 11V for 0 = a = N by
W0 = 0,
Note that @(-, a) = 6, and Y(-, @) is supported on
D, = M*((@) " '(@);
the chain {D,}, 0 = a = N, satisfies 3 of Theorem 4.1. It is also easily
verified that (B, -) is a Borel measurable function of a by noting that
Y(C,, -) is in fact continuous for any dyadic cube C,.

From Theorem 4.1 we conclude {J(:, @) }, 0 = « = N, is a complete
dimension derivative family.

CoroLLARY 4.4.1. (The Existence Theorem). Let y be any probability
distribution on the Borel sets of [0, N]. Then there exists a prob-
ability distribution p. defined over the Borel sets of the unit cube [0, 1Y such
that o = v.

Proof. Let {y(-, @) }, 0 = a = N, be the complete dimension derivative
family provided by Theorem 4.4. Define

B = o Y05 @Y.

5. A characterization of the dimension concentration map. In this section
we develop an alternative form of the dimension concentration map
which clarifies the meaning of the dimensional number a(x) and the
structure of a-supports. We use the following result, a version of Theorem
2.1 in [2].

THEOREM 5.1. Let u and v be two probability measures on [0, l]N such that

v is diffuse. Then
1
dim,,({x lim inf 2EME D)) - 8}) =
n—oo log »(C,(x))

where C,(x) is the r-adic cube of volume r~"™" containing x.

Proof. Let
E— {x lim inf 28 MG (D) 6}.
n—oo log ¥(C,(x))

Let & > 8 and n; any positive integer. Let % be the collection of r-adic
cubes {C, }, for which C;, = C,(x) for some n = ny and such that

1

og m(Cy) <5
log »(C,)

As x € E implies
inf 108 ME, (X)) _
nzny log »(C,(x))
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it follows that € is a covering of E. Furthermore as % consists of r-adic
cubes we can choose a subcollection €’ of % consisting of disjoint cubes
such that ¢’ covers E. We obtain

2nC)Y < ZC) = my C) = 1.
1% ¢

It follows that, setting € = sup{»(C) |C = C, for some n = ny}
LE;"O(E) =1
and as n, was arbitrary we conclude
LYE) = 1.
Hence
dim, (E) = ¢
Since this holds for each 8’ > § we have
dim, (E) = 6.

THEOREM 5.2. Let p. be a probability measure on the Borel sets of [0, l]N
and let a denote the dimension concentration map determined by p. Then
log w(C,(x))

a(x) = N lim inf ———2"27 y-ae.
alx) oo log MC,(x))

Proof. Let
M, = {x N lim inf 28 HED)) a}.
n—oo log M(C,(x))

We will show that {M_ }, 0 = a = N, is a right-continuous a-support
chain of u. From the definition of & and (ii) of Theorem 2.1 the result will
then follow.

Clearly {M,}, is a nested chain and M, = M_ . From Theorem 5.1 we
also have

dimy (M,) = a/N

and hence
dim(M)) = a.

Thus we need only show that M, supports u,. If p, = 0, the zero measure,
there is nothing to prove. Therefore assume

po( 10, 11V) > 0
and let

MB={x

N lim inf 22 MG X)) /3}.
oo log A(C, (X))
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MP 110, 1N\ M, as B — o
we will show that
([0, 1M\M) = 0

by proving ua(MB) = 0 for B > a and hence M, will be a support of

P
Let D, be any a-support of p. If ua(MB) > 0 for some 8 > « then

u(MP) = uMP D > 0.
Thus

dim, (M* N D) = 1.
But

lim inf 108 MEa(x))
im inf —————=
n—oo  log A(C,(x))

and so Theorem 4.2 implies

dim(M# N D)) = N dimy, (M* N D)) = B dim, M* N D) = B

MP A D, C {x = B/N}

which contradicts the fact that
dim(M? N D)) = a.

Thus we must have
o (MP) = 0 for every B > a.

Remark. In [5] Gacs considered the function
1
f(x) = lim inf 2B A
n—co  log |C,(x) |

where C,(x) is a dyadic cube and |C,(x)| = N2 " is the sum of edges of
C,(x). Given a probability measure p he defined a numerical quantity
(which we will denote by d(un) ) called the Hausdorff dimension of u; he
demonstrated that

A = Jor f()udx)

and for this reason called f(x) the dimension density of p. In fact it is easy
to see that f(x) = a(x) and since i = pa~' we obtain

d) = o by =, aieo

which is simply the mean of fi. We prefer the term dimension
concentration map rather than density as in this context the latter term
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conveys the erroneous impression that & is the Radon-Nikodym derivative
of [ with respect to Lebesgue measure.
Note that we can now express

N tim inf EHG) 2 )

w0, a] ) = IJ-( {x n—oo log A(C,(x)) B

which is somewhat more tractable than the original supremum definition.
In [4] Cutler has discussed the measurability of the map p — [i considered
as a function on the space of measures under the topology of weak
convergence; some applications to measure-valued stochastic processes
are given.
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