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SEPARATING POINTS OF f3N 
BY MINIMAL FLOWS 

NEIL HINDMAN, JIMMIE LAWSON AND AMHA LISAN 

ABSTRACT. We consider minimal left ideals L of the universal semigroup compact-
ification (3S of a topological semigroup S. We show that the enveloping semigroup of L 
is homeomorphically isomorphic to [5S if and only if given q ^ r in (5S, there is some p 
in the smallest ideal of (3S with qp ^ rp. We derive several conditions, some involving 
minimal flows, which are equivalent to the ability to separate q and r in this fashion, 
and then specialize to the case that S = N, and the compactification is /3N. Included is 
the statement that some set A whose characteristic function is uniformly recurrent has 
q G cl(A) and r ^ cl(A). 

Consider a flow with compact phase space X and semigroup (or group) of transfor­
mations S. One measure of the complexity of the flow is the complexity of the algebraic 
and topological structure of the enveloping semigroup of the flow. For example, if all 
transformations in the flow consist of contractions toward one fixed point of X, then the 
constant mapping to that point is the only additional transformation in the enveloping 
semigroup which was not already in S. At the other extreme is the case that the en­
veloping semigroup is the universal semigroup compactification of S (the enveloping 
semigroup is always a semigroup compactification of S). Even in the simple case that S 
is (N, +), the natural numbers under addition acting as a transformation and its powers, 
the universal compactification (/3N, +) already exhibits an extremely complex structure, 
both topologically and algebraically. 

The major problem that we investigate in this work is the extent to which the full 
complexity of the enveloping semigroup can be exhibited in a minimal flow. In particular, 
we consider the question of whether f3N can be the enveloping semigroup of a minimal 
flow. We are unable to answer this question, but we do present some interesting alternate 
formulations involving the cancellative structure of the semigroup /3M (or more generally 
the universal semigroup compactification). Indeed the answer is affirmative if and only 
if given q ^ r, there exists p in the smallest ideal of /3N such that q + p ^ r + p. 
More generally, we feel that the investigation of the enveloping semigroup structure of a 
minimal flow is a natural and worthy one, and one that additionally suggests interesting 
corresponding problems of a purely semigroup theoretic nature. 
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1. Preliminaries. Let S be a semigroup equipped with a Hausdorff topology. For 
s,t £ S with product st, we write 

pt(s) = st = \s(t); 

the functions pt and \s on S are called right and /e/f translations respectively. The mul­
tiplication is said to be right continuous and the semigroup S is said to be right topo­
logical if all right translations are continuous (in which case multiplication is continu­
ous in the left variable); in this case an important role is played by the subsemigroup 
A(5) := {s E S : Xs is continuous}. The semigroup S is semitopological if for all left 
and right translations are continuous and topological if the multiplication function itself 
is continuous. 

Let S be a semitopological semigroup. A compact right topological semigroup T, to­
gether with a continuous homomorphism <p: S —> T, is called a semigroup compactifica-
tion if (f(S) is dense in T and the action of S on T, 

(s, t)\-+s.t= (p(s)t: SxT^T 

is continuous (Ruppert [12] calls these dynamical compactifications). The semigroup 
compactification is universal if all others are homomorphic images, where the homomor­
phism makes the appropriate diagram commute. It is shown in [12] or [13] that universal 
semigroup compactifications exist and are unique up to topological isomorphism. 

If S is a discrete semigroup, then one obtains the universal semigroup compactification 
of S by taking the Stone-Cech compactification J3S endowed (uniquely) with a semigroup 
multiplication extending that of S and such that (3S is a right topological semigroup and 
Xs is continuous for each s G S (see e.g. [11]). In this case /35 may be identified with the 
set of ultrafilters on S, and S then embeds as a subsemigroup of (3S by identifying each 
point with the principal ultrafilter it determines. The special case that S is the additive 
semigroup (N, +) and the compactification is (/3N, +) has been extensively studied and is 
of particular interest. In the literature, one standardly sees a left-right switch in the type 
of continuity considered here, but the study of the enveloping semigroup makes the right 
topological semigroups natural for our considerations. 

An S-flow is a triple (S, X, ir) such that X is a compact Hausdorff space, called the phase 
space, and TT: S x X —•+ X is a continuous action of S on X; we write ir(s, x) = s. x = ^(JC). 

A particular important type of flow is the case of a semigroup compactification (T, (/?), 
with the standard action (s, t)\—> s. t of S on T. 

The notion of the enveloping semigroup e(S,X) of a flow was introduced by R. Ellis 
([4], or see [5]). It is the closure of the semigroup of mappings {7^ : s G S} in the com­
pact product space Xx of all functions from X into X, and is a compact right topological 
subsemigroup (where Xx is endowed with the semigroup operation of composition) in 
the relative topology. Furthermore, the mapping s 1—> 1^'. S —> e(S,X) is a semigroup 
compactification of S. 

Let xp-.S —» (3S be the universal semigroup compactification of a topological semi­
group S. In general one does not expect the universal semigroup compactification of S to 
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be the Stone-Cech compactification. However, as we have seen, this is true in the case 
where S is discrete, which is the case of most interest to us, so we denote the univer­
sal semigroup compactification of S by f3S. Let (S, X, n) be a flow. Then the mapping 
(f(s) := 71s from S to e(S, X) is a semigroup compactification, and thus there exists a 
unique continuous semigroup homomorphism O: f3S —> e(S,X) such that O o ijj = ip; 
the mapping O is called the canonical homomorphism. Since the image of S in e(S, X) 
is dense, the mapping O is surjective. The function (s,x) i—• .S.JC := 0 0 ) 0 ) is then 
a right continuous action of f3S on X, called the extended action. Conversely if one is 
given the extended action, then the canonical homomorphism O may be recovered by 
O(s): X —• X where 0(5) is defined by 0 0 ) 0 ) = s.x. Thus the extended action and the 
canonical homomorphism of (3S onto e(5, X) uniquely determine each other. 

LEMMA 1.1. The canonical homomorphism O: (3 S —> e(5,X) is a topological iso­
morphism if and only if the extended action is effective, i.e., given s ^ t G f3S, there 
exists x G X swc/i £/za£ .s.x ^ f. x. 

PROOF. Suppose O is a topological isomorphism. Then 0 0 ) 7̂  0(Y) for s ^ t. Thus 
there exists x G X such that 0 0 ) 0 ) 7̂  0 (00) . *•£•> s. JC 7̂  ^^- Conversely, suppose that 
the extended action is effective. From the preceding remarks O is a continuous surjective 
homomorphism and is closed by compactness considerations. Thus we need only show 
that O is injective. But the argument just given may be reversed to obtain this. • 

REMARK. The enveloping semigroup gives some measure of the complexity of the 
action of S on X. In particular, if the canonical homomorphism is actually an isomor­
phism, then the enveloping semigroup reflects the full complexity of the universal semi­
group compactification. The lemma states that this is equivalent to the extended action 
being effective. The major problem of interest in this paper is whether this can happen 
for minimal flows. 

2. Enveloping semigroups of left ideals. A non-empty subset L of a semigroup S 
is called a left ideal if SL Ç L. Right ideals are defined dually; a set that is both a left ideal 
and right ideal is called an ideal. The left ideal L is a minimal left ideal if it is minimal 
in the set of left ideals. By elementary semigroup theory, L is a minimal left ideal if and 
only if L = Lx = Sx for each x e L. 

If (T, a) is a semigroup compactification of a topological semigroup S, then any closed 
left ideal of T determines an S-flow (s, y) \—> a(s)y: S x L —> L. 

REMARK 2.1. In the case that L is a closed left ideal in the universal semigroup 
compactification (3S ofS, the extended action of (3S on L for the flow (5, L) is just multi­
plication in (3S, i.e., s.v = sv for s G f3S and v G L. This may be verified directly from 
the right continuity of the extended action, the right continuity of multiplication in (3S, 
and the density of the image of S in (3S. 

The next proposition follows directly from Lemma 1.1. 
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COROLLARY 2.2. Let S be a topological semigroup, and let Lbe a closed left ideal 
of the universal compactification (3S. If there exists a point p of L at which right can­
cellation holds, then the canonical homomorphism O: (3 S —>. e(S,L) is a topological 
isomorphism. u 

It is known that there are many points p G /3N, the universal semigroup compact­
ification of (N,+), at which right cancellation holds [8]. In fact there are points in the 
closure of the smallest ideal in f3M at which right cancellation holds. Then the left ideal 
/3N +p generated by each such point is a copy of /?N, and by Corollary 2.2 the canonical 
homomorphism onto the enveloping semigroup is a topological isomorphism. As a con­
sequence of recent results of [ 14], there is a whole downward chain of type u\ of such left 
ideals contained in the closure of the smallest ideal. On the other hand, if L is a minimal 
left ideal of an arbitrary semigroup S and L is proper in S, then right cancellation fails at 
every point of L. (Indeed let p G L and s G S\L. Then sp G L. By minimality Lp — L, 
so there exists t G L such that tp = sp, i.e., right cancellation fails at/?.) Compact right 
topological semigroups always have a smallest ideal K, and a left ideal is minimal if and 
only if it is contained in K. 

We recall some of the basic structure theory of compact right topological semigroups 
[3]. As just mentioned, such a semigroup S has a (unique) smallest ideal K which can be 
represented as a disjointunion of minimal left ideals as well as a disjointunion of minimal 
right ideals (such ideals are said to be completely simple in semigroup parlance). For each 
minimal left ideal L with/7 G L, we have L = Sp = Lp, and hence L is a closed principal 
left ideal. The intersection of each minimal left ideal with each minimal right ideal is a 
(nonempty) group, and K is the disjoint union of these groups. 

THEOREM 2.3. Let L be a minimal left ideal and let K be the smallest ideal in a 
compact right topological semigroup T. Let q ^ r G T. The following are equivalent: 

(1) There exists p G L such that qp ^ rp. 
(2) There is an idempotent u = u2 G L with qu ^ ru. 
(3) There is an idempotent e G K such that qe ^ re. 
(4) There exists p G K such that qp ^ rp. 

PROOF. The implications (2) implies (3) implies (4) and (2) implies (1) implies (4) 
are trivial. We thus assume (4) and derive (2). By the preceding comments p G R for some 
minimal right ideal R. Then LDR is a group and hence contains some idempotent u. Since 
R is a minimal right ideal, uR = R. Then/? = ut for some t G R, and up — uut — ut — p. 
If qu — ru, then qp — qup = rup — rp, a contradiction. So qu ^ ru. m 

DEFINITION 2.4. Let T be a semigroup which has a smallest ideal K. The semigroup 
T is right ^-reductive if given q ^ r G T, there exists p G K such that qp ^ rp. Note 
that Theorem 2.3 gives other equivalences to this definition. 

We recall some elementary facts about minimal flows (see, e.g., [11]). The flow (S,X) 
is minimal if the orbit Sp is dense in X for every p G X. This is equivalent to (3S.p = X for 
every p G X for the extended action. Suppose that (T, a) is a semigroup compactification 
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of the topological semigroup S. Then the flow (S, L) for a closed left ideal L of T is a 
minimal flow if and only if L is a minimal left ideal of T. In particular, for each minimal 
left ideal L of the universal semigroup compactification f3S, the flow (S, L) is a minimal 
flow (and is actually a universal minimal flow). 

THEOREM 2.5. Let S be a topological semigroup, and let ((3S,ip) be the universal 
semigroup compactification. The following are equivalent: 

(1) The semigroup (3 S is right K-reductive. 
(2) IfL is a minimal left ideal of (3S, then the canonical homomorphismfor the min­

imal flow (S, L) is an isomorphism, and hence the enveloping semigroup of this 
minimal flow is topologically isomorphic to f3S. 

3. Given q ^ r G (3S, there exists a minimal flow (S, X) and x G X such that 
q.x ^ r.x with respect to the extended action. 

PROOF. ( 1) => (2): By Lemma 1.1 we need only show that the extended action of (3S 
on L is effective. But this follows directly from hypothesis and Theorem 2.3, in light of 
Remark 2.1. 

(2) =̂> (3): Take for the minimal flow (S,L) and apply Lemma 1.1. 
(3) => (1): Let q ^ r G f3S, and let (S,X) be a minimal flow such that q.x ^ r.x for 

some x G X. Let L be a minimal left ideal in (3S. Then L. x is closed and invariant under 
S, and hence must be all of X since the flow is minimal. Thus v.x — x for some v G L. 
Then qv — rv would imply q.x — qv.x — rv.x — r.x, a. contradiction. So qv ^ rv, and 
thus (3S is right ^-reductive. • 

The proof of Theorem 2.5 carries over to prove a corresponding local version, which 
is useful to have on record. 

THEOREM 2.6. Let S be a topological semigroup, and let (f3S, VO be the universal 
semigroup compactification. Let q ^ r G (3S. The following are equivalent: 

(1) There exists p G K, the smallest ideal of (3S, such that qp ^ rp. 
(2) If L is a minimal left ideal of (3S, then q and r have distinct images under the 

canonical homomorphismfor the minimal flow (S, L). 
(3) There exists a minimal flow (S, X) and x G X such that q.x ^ r.x with respect to 

the extended action. m 

3. Separating points of (3S in K. Let S be a topological semigroup with universal 
semigroup compactification (3S. In light of Theorems 2.5 and 2.6, we want to know, given 
^ r G f3S, whether there is some/? G K(f3S), the smallest ideal of f3S, such that qp ^ rp. 

We recall the definition of an almost periodic point (see [7] or [11]). 

DEFINITION 3.1. Let (5, X) be a flow. A point/? G X is an almost periodic point (resp. 
uniformly recurrent point) if given any neighborhood U of/?, there exists a compact (resp. 
finite) subset K of S such that given s G S, there exists k G K with ksp G U. 

REMARK. The uniformly recurrent points are precisely those points that are almost 
periodic for the flow (5, X) when S is endowed with the discrete topology. 

We recall the following result from [11]. 
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THEOREM 3.2. Let (S, X) be a flow, x G l , and L a minimal left ideal in the universal 
semigroup compactification f3S. The following are equivalent: 

(1) The orbit closure Sx contains x and is a minimal S-flow. 
(2) For the extended action of (5S on X, there exists t G K, the smallest ideal in (3S} 

and y G X such that x — t.y. 
(3) x G L. x. 
(4) There exists an idempotent e G L such that e.x — x. 
(5) Sx — L. x. 
(6) The point x is almost periodic. 
(7) The point x is uniformly recurrent. 

PROOF. The equivalence of the first five items is just Theorem 3.5 of [ 11 ] and equiv­
alence (6) is Theorem 4.2 in the same reference. The equivalence of (7) follows by con­
verting to the discrete flow and noting that condition (1) is independent of the topology 
on S. 

We add to the string of equivalences of Theorem 2.6. (Observe that condition (1) of 
Theorem 3.3 and condition (1) of Theorem 2.6 are equivalent by Theorem 2.3.) 

THEOREM 3.3. Let S be a topological semigroup with universal compactification /3S, 
and let q ^ r G (3S. Let Lbe a minimal left ideal of(3S. The following are equivalent: 

(1) There exists p G L such that qp ^ rp. 
(2) There exists a flow (S, X) and an almost periodic (resp. uniformly recurrent) point 

x G X such that q.x ^ r. xfor the extended action. 
(3) Let (S, Y) be any flow for which the canonical homomorphismfrom (3 S onto e(S, Y) 

is an isomorphism. Then there exists an almost periodic (resp. uniformly recur­
rent) point y G Y such that q. y ^ r.y. 

PROOF. (1) => (2): Consider the minimal flow (S,L). Then by hypothesis qp ^ rp. 
Since L is minimal, Lp = L, so p G Lp, and by Theorem 3.2, p is almost periodic and 
uniformly recurrent. 

(2) => (1): Let (S, X) be a flow, and let x be an almost periodic (or uniformly recurrent) 
point in X such that q. x ^ r. x. By Theorem 3.2, x G L. x, so there exists p G L such that 
x — p.x. Then qp.x — q.p.x — q.x ^ r.x — r.p.x — rp.x, so qp ^ rp. 

(1) => (3): Let (5, Y) be a flow for which the canonical homomorphism is an isomor­
phism. By Lemma 1.1, there exists y G Y such that q.p.y = qp.y ^ rp.y — r.p.y, and 
by Theorem 3.2 the point/?, y is almost periodic and recurrent (since condition (2) holds.) 

(3) ^ (1): Consider the flow (S,(3SX) of the universal semigroup compactification 
([3S, ip), where 1 is a discrete point added to /35, and s. 1 = ip(s) for all s G S. The 
multiplication of f3S extends to (3SX by making 1 act as an identity of (3S, and (3Sl remains 
a right topological semigroup. Then for q ^ r G /3S, we have q. 1 = q ^ r — r. 1, so 
by Lemma 1.1, the canonical homomorphism is an isomorphism. By hypothesis, there 
exists an almost periodic point p in f3Sl such that qp ^ rp. By Theorem 3.2, p G Lp. 
Thus there exists u G L such that/? = up. Then qup = qp ^ rp = rup, and so qu ^ ru. m 
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4. The case of (JN. We specialize now to the case that the semigroup under consid­
eration is the positive integers (N, +) under addition with universal semigroup compact-
ification /3N, the space of ultrafllters on N. See [10] for an elementary description of the 
semigroup (/3N,+). 

For our purposes, it will be convenient to identify the semigroup and its compactifi-
cation with a spécifie flow. 

EXAMPLE 4.1. Let X := {0,1 }N be the countable product of the two-point discrete 
space, and define the shift operator T on X by T(x)(n) — x(n + 1) for x G X. If members 
of X are viewed as infinite tuples, then T shifts a tuple one place to the left, discarding 
the first entry. We consider the semigroup of continuous functions { F : n E N } , and let 
E := €({7™ : n € N},X) denote the enveloping semigroup. Define <p: N —> E by (p(n) = 
T1, and also denote by (p its extension, the canonical homomorphism from /3N —-> E. 

The following result is a slight modification of a result of Ruppert [13]. 

THEOREM 4.2. The canonical homomorphism (p: f3N —> E of Example 4.1 is a topo­
logical isomorphism. 

PROOF. We apply Lemma 1.1. Let p and q be distinct ultrafllters in /3N. Since (p 
clearly separates points of N, we may assume without loss of generality that/7 is not a 
principal ultrafilter. Hence there exists an infinite set A Ç N such that A is in the ultrafilter 
p, and its complement is in q. Set B = A + 1, and let x G X be the characteristic function 
XBOÏB. 

For each n G A, ip(n)(x) = T"(x) and 7^(JC)(1) = x(n + 1) = 1 since n + 1 G B 
and x is the characteristic function of B. Since p is in the closure of A, we conclude that 
p.x(\)= (<p(p)(x))(l) = 1. Similarly ifn^A, then tp(n)(x)(l) = 0, and so q.x(l) = 0. 
Thus p.x ^ q. x, and so <p is topological isomorphism by Lemma 1.1. • 

REMARK 4.3. In light of Theorems 3.3 and 4.2, the problem of AT-separating two 
distinct points q and r in f3N reduces to taking their distinct images in the enveloping 
semigroup E of {T1 : n G N} and finding a uniformly recurrent point in X at which they 
do not agree. (The referee observed: Uniformly recurrent points can be characterized 
also as those characteristic functions \A on N which are almost periodic functions. If \A 
is almost periodic then A is usually also called an almost periodic subset of N.) 

We recall from Definition 3.1 with S = N that a point x in X is uniformly recurrent 
with respect to T if and only if given any neighborhood U of x there is some b G N 
such that for every n £N some / G {1,2 ,3 , . . . , b} satisfies 7™+1 (x) G U. We also recall 
that a string x of 0's and 1 's which is a uniformly recurrent point in X can be alternately 
described as one with the property that given any positive integer k, there exists another 
positive integer n(k) such that any substring of x of length n(k) contains within a string 
of length k which agrees with the string of the first ^-entries of x (see e.g. [6]). 

LEMMA 4.4. Given p G /3N, x G X, n G N, then (p(p)(x)(n) = 1 if and only if 
x-{({l})-nep. 
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PROOF. Let/7 G /3N, X G X and n G N be given. Let A = x~l[{\}]. Let i = 
tp(p)(x)(n) and let U = {y G X : j(n) = /} . Then £/ is a neighborhood of (f(p)(x) so that 
V = {f G £ : f{x) G £/} is a neighborhood of ip(p). Pick B G p such that y?[£] Ç V. 

We show that if/ = OthenBH(A-w) = 0and i f /= 1 then B Ç A - « . Let m G 5 be 
given. Then 7™ = y?(m) G V so that 7™(jt) G U and r(jc)(n) = /. That is x(m + n) = i. 
If / = 0 this says m + n ^ A. If / = 1 it says m + n G A. m 

Given A Ç N we denote by \A the characteristic function of A. 

DEFINITION 4.5. Let A ç N. 

(a) 7(A) is the statement that \A is uniformly recurrent on {0,1 }N . 
(b) ip(A) is the statement that there exist a sequence {Bn}

<^=:l of subsets of N and a 
sequence {k(ri)}(£=l in N such that 

(1) (\JneA Bn + n)n QJneH\ABn+n) = ® 
(2) for all n G N, N = \j^\(Bn - t), and 
(3) for all AI G N,5n+i Ç Bn. 

We shall see that the statements ^(A) and 7(A) both serve to characterize our problem. 
We do not know whether they are equivalent. We do have one implication however. 

LEMMA 4.6. Let A Ç N. If\j)(A), then 7(A). 

PROOF. Pick (Bn)
(^l and (kiri))^ as guaranteed by the definition of X/J(A). Let x — 

XA and let U be a neighborhood of x in X. We may presume that we have some d G N 
such that U = {y G X : for each / G {1,2,3, . . . , d}, }</) = JC(0}. We show that for 
all z G N there exists t G {1,2, . . . , fc(d)} with r+t(x) G £/. To this end, let z G N be 
given and let m = z + k(d) + d. Pick some w G Bm. Now w + z G Ijfi^ Bd ~ t so pick 
f G {1,2, . . . , £(</)} with w + z + ; G £</. Suppose Tz+t(x) £ (/and pick/ G {1,2,...,*/} 
such that 7Z+?(JC)(/) 7̂  x(/). Let £ = z +1 +1. Then x(b) ^ JC(/) SO either b G A and 1 ^ A or 
Z? ^ A and / G A. In any event (Bb + Z?) H (#/ + /) = 0. But w e Bm Ç Bb (since b <m)so 
w + b G Bb+b. Also w + £ — / = w + z +1 G Bd Ç 5,so w + b G 5/ + /, a contradiction. • 

LEMMA 4.7. Let A Ç N. //7(A), then 7(A + 1) or7(A + 1) or l((A + 1)U {1}). 

PROOF. Let x = XA- For each J G N let t/d = {y G X : for all / G {1,2, . . . , d}, 
_y(/) = JC(/)}. Now {n G N : 7™(JC) G £/</} is non empty. Thus we may pick 1(d) G N such 
that Tm(x) G C/rf. 

CASE 1. {d G N : 1(d) G A} is infinite. Let B = (A + 1) U {1}. We show that 
1(B). Lety = XB, let a G N, and let Vd = {z G X : for all / G {1,2, . . . , J} , z(i) = 
y(i)). Pick d' > d such that £(d') G A. Pick b G N such that for all « G N some 
t G {1,2,...,/?} satisfies T+Xx) G Ue(d>)+d. We show that for all M G N, some t G 
{1,2,3 , . . . , b + £(</')} has T+'iy) G Vrf. Let « G N be given. Pick / G {1,2, . . . , b} such 
that 7™+/(;t) G Ut(d')+d- Let f = 1 + £(d')- Then t G {1,2, . . . , b + £(d)}. We claim that 
7™+r(y) G yrf. To this end, let/ G {1,2, . . . , d} be given. Assume first; = 1. Then y(j) = 1 
and 7^0)0 ' ) = y(n +1 + 1 ) = x(n + 0 = x{n + / + £(^)) • Now r ^ O t ) G t/fW/)+d and so 
T<n+lXx)(e(d'j) = x(l(d')) = 1. That is r+rCy)(/*) = ?(/'). Now assume./ G {2 ,3 , . . . , d}. 
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Theny(j) = x(j- 1) and Tn+t(y)(j) = yifi + t+j) = x(n + t+j- 1) = x(n + i + l(d')+j- l ) . 

Again r+i(x) G Ut{d>)+d so r+i(x)(e(d')+j- l ) = x(l(d')+j- l ) . Since Tt{d\x) G ^ 

we have x(l(d') +j - l ) = Tl{d'\x){j - I) = x(j - I). Thus J 7 ^ ) = >>(/) as required. 

CASE 2. {d G N : £(d) G A} is finite. Then {d G N : £(d) ^ A} is infinite. So we 

let B = A + 1 and proceed as in Case 1. • 

We are now ready to exhibit our characterizations of when distinct points can be sep­

arated by points in the smallest ideal. (Recall from Lemma 1.1 and Theorem 2.3 that the 

ability to always separate distinct points in f3M by points in the smallest ideal is precisely 

what is needed for the enveloping semigroup of a minimal flow to be a topological and 

algebraic copy of (3N). 

THEOREM 4.8. Let q and r be distinct members of(3M. The following statements are 

equivalent: 

(1) There exists p G K(f3H) such that q + p ^ r +/?. 

(2) There exists A inq\r such that ip(A). 

(3) There exists A inq\r such that 7(A). 

(4) There is a uniformly recurrent point y in {0 ,1} N such that tp{q)(y) ^ (f(r)(y). 

PROOF. TO see that (1) implies (2) pick p G K(f3M) with q + p ^ r + p and pick 

D G (q + p) \ (r + p). (Since q + p and r + p are maximal filters, neither is contained 

in the other.) Let A = {x G N : D - x G p}. Then A G q. Since N \ A = {x G N : 

(N \ D) — x G p} we also have A ^ r. For each n G N, let Cn = (~]{D — x : x e A and 

x < n} H n{(N \ D) - x : x G N \ A and x < n}, and let En = {x G N : Cn - JC G /?}. 

Now each Cn £ p and /? G K((3N) so by [9, Theorem 7.23], given n G N we may 

pick k(n) G N such that N = \Jj=\ En — j - We assume k(n) > n. For each / G N pick 

x(i, n) G { 1 , 2 , . . . , k(n)} such that / +x(/, rc) G £n (so that Cn — i — x(i, n) G /?). For each 

m G N, choose tm G n™=i n£Li(C« — * ~ x(/,n)). (This intersection is in/7 and is thus 

nonempty). 

Let Ho — N and pick an infinite subset H\ of HQ such that for all m,k G 7/j one 

has tm + 1 G Cj if and only if tk + 1 G Cj. Inductively, given infinite / /^_ i , pick an 

infinite subset Hi of //^_i such that for all m,k G //^ and all n, / G { 1 , 2 , . . . , £} one has 

tm + i G C„ if and only if tk + i e Cn. (We are simply applying the pigeon hole principle). 

Having chosen {Hn)™={, pick for each n G N some ra(rc) G //„ with m(n) > n and let 

Bn = {/ G N : / < n and tm{n) + i G C„} U {/ G N : / > n and rm(0 + / G C n }. 

We claim that: (*) for all /, n and t in N with t > max{/, n} one has tm{() + i G Cn if 

and only if / G #„. 

To see this, let /, n and I be given. Assume first / < n. Then H( Ç / /n so ra(rc) and 

m(£) are in/ /„ so 

tm(0 + i £ Cn <=> tm(n) + i G Cn <^=> i £ Bn. 

Now assume / > rc. Then Hi Ç /// and, m(/), w(^) are in /// so 

tm(e) + i ^ Cn <=> tm(i) + i G Cn <=^> i G Bn. 
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Thus (*) is established. 
To see that (\JnSA(Bn + w)) D ([jn€^\A(Bn +/i)) = 0, let w G A, fc G N \ A, and suppose 

we have some z E (Bn + n) H (Bk + k). Let £ = max{/i, k,z — n,z — k}. Now z — n £ Bn 

and z — & G #£ so by (*) we have tm^) + (z — n) G Cn and rm(̂ ) + (z — k) G Q . Since 
n G A, we have Cn Ç £> - w. So /m(0 + z G D . Also & G N \ A and so Ck Ç (N \ D) - A: 
and hence t^m)i + z G N \ D, a contradiction. 

To see that N = \J^\(Bn - t) for all n G N, let n and i be in N and let £ = k(n) + i. 
Now n < fc(w) < £ < m(£) and i < £ < m(£) so fm(0 G C„ - i - x(i,n). That is, 
tm{i) + * + *0\ n) G C„. Also m(£) > £ >i + x(i, n) and m(£) > I > k{n) > n so by (*), 
/ + x(i, n) eBn. Thus i e Bn - x(i, n) Ç (J^T/ Bn - t. 

Finally, given « G N and / G #n+i, let £ = max{n + 1, /} . Invoking (*) twice and the 
obvious fact that Cn+\ Ç Cn, we conclude that / G Bn. 

That (2) implies (3) follows from Lemma 4.6. 
To see that (3) implies (4), pick A in q \ r such that 7(A). Pick by Lemma 4.7 B Ç N 

such that B— 1 = A and 1(B). Let y = \B- Then y is uniformly recurrent. Since B— 1 G g 
and # — 1 ^ r we have by Lemma 4.4 that (p(q)(y)(l) = 1 and (/?(r)(y)(l) = 0 so that 

That (4) implies (1) follows from Remark 4.3. • 
We close this section with a question. Observe that by Lemma 4.6 we know that for 

each A Ç N, 0(A) implies 7(A). By Theorem 4.8 we know that if ultrafilters q and r can 
be separated by a set satisfying 7(A), then they can be separated by a set satisfying -0(A). 
But we don't know the answer to the following. 

QUESTION 4.8. Does there exist A Ç N satisfying 7(A) but not satisfying 0(A)? 

5. Some sufficient conditions. We investigate here some algebraic conditions 
which guarantee that we can separate at least certain pairs in (3N by points in K(*/3N). 

In [2] it was shown that there are many idempotents e and/ in K((3N) such that e+f 
is not an idempotent. It was asked there whether there were any idempotents e and/ in 
K(f3N) such that e +f is an idempotent and e +f ^ e and e+f ^f. We establish now an 
alternate formulation of this question. 

LEMMA 5.1. The following statements are equivalent. 
(1) Whenever e andf are idempotents in K(/3N), if e+f is an idempotent then e+f — e 

or e+f = / . 
(2) Whenever e and g are distinct idempotents in the same minimal right ideal of/3N 

andf is any idempotent in /3N + g withf ^ g one has e+f^g. 

PROOF. TO see that (1) implies (2), let e and g be distinct idempotents in the same 
minimal right ideal R and le t / be an idempotent in (3N + g with/ ^ g. Suppose that 
e +f = g. Then e +f is an idempotent and e+f ^ e and e +f ^ / , a contradiction. 

To see that (2) implies ( 1 ), let e and/ be distinct idempotents in K((5H) and let g — e+f. 
Assume g is an idempotent and g ^ e. Then g G e + (3N, which is a minimal right ideal. 
(See [3] for this and any other unfamiliar points about the structure of K((3N).) Thus g 
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and e are distinct idempotents in the same minimal right ideal of /3N. Also e + / = g so 

g G /3N + / , a minimal left ideal, s o / G /3N + g. Since e+f — g one must h a v e / = g, 

i.e.e+f=f. m 
We are prepared to make a conjecture which is (on its face) significantly weaker than 

the statement of Lemma 5.1. (There are, after all, 2C idempotents in f3N + g if g G K((3H) 

[1].) 

CONJECTURE 5.2. Whenever e and g are distinct idempotents in the same minimal 

right ideal of /3N there is some idempotent/ in /3N + g such that e+f =£ g. 

One would expect that points in K(/3N) would be at least as hard to separate as any. 

We see that the validity of the conjecture would at least allow us to do that. 

THEOREM 5.3. Assume the validity of Conjecture 5.2. If q and r are distinct points 

K(f3N), then there is somep G K((3N) such that q+p ^ r + p. 

PROOF. A S points of K(f3N), q and r each lie in some minimal right ideals of /3N. 

If these minimal right ideals are distinct (hence disjoint) one has that, for all p G /3N, 

q+ p i1 r+p. Consequently we may assume q and r lie in the same minimal right 

ideal R. Let L = f3N + q, the minimal left ideal in which q lies. Now R H L is a group 

(see [3]). Let g be the identity of R D L. Then g is a right identity for L. If r G L we have 

r + g — r ^ q — q + g. Thus we may assume r fi L. Let l! = /3N + r and let e be the 

identity of l! Pi R. By the assumed validity of Conjecture 5.2, pick an idempotent/ in L 

such that e+f ^ g. 

We claim that either q+g ^ r+g oxq+f ^ r + / . Suppose instead we have q+g = r+g 

and q+f — r + / . Now q+f — q — q + g since g G L = /3N + / = /3N + g. Also 

q + g = q+f 

= r+f 

= (r + e)+f (reL' = (3H+e) 

= r + (<?+/) 

= r + ( * + ( e + / ) ) ( e + / G / ? = g + /3N) 

= (r + g ) + (<?+/) 

= (? + g) + (g + / ) 

= q+(g + {e+jj) 

= q + (e + / ) . 

Since q + g = q + (e+f) and g, g, and e + / are all in the group R D L, we conclude that 

g — e + / , a contradiction. • 

In attempting to establish Conjecture 5.2 in the fashion of [21, we came up with a 

condition in the style of statements (2) and (3) of Theorem 4.8 which is sufficient to 

separate points q and r in f3N. The kinds of sets involved are easy to describe as long 

as one is comfortable with the ternary representation of numbers. By way of contrast, 
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it can be very difficult to check whether a given set A satisfies 7(A), i.e. whether the 
characteristic function of A is uniformly recurrent in {0,1}N. 

DEFINITION 5.4. Given x G N, let F(x) be the finite non empty subset of N U {0} 
and let gx be the function from F(x) to {1,2} such that x — J2neF(x) gx(n) • 3n. Let m(x) — 
maxF(x). For A Ç N U {0}, let 

B(A) = { i G N : m(x) G A and gx(m(x)) = 1} U {x G N : m(x) £ A and gx(m(x)) = l). 

Thus for example, J5(N U {0}) is the set of all x in N whose leftmost nonzero ternary 
digit is 1. 

We work with the semigroup S — {e,f, efje, efejef, efefjefe} from [2]. The oper­
ation on S is determined by the fact that all listed elements are distinct and that e2 = 
efefe = e and/2 = fefef = f. 

DEFINITION 5.5. Given A Ç N U {0}, we define ipA : N —> S as follows. 
(1) If ne A, (fA(3n) = emdifA(2'3n)=f. 
(2) lfn<ÊA,(pA(?n)=fmd<pA(2.3n) = e. 
(3) For* G N, ipA(x) = UneF(x) (fA(gx(n)'3n^j where the product is taken in increasing 

order of indices. 
(4) Denote also by ipA, the continuous extension of tpA to /3N. 
Thus, for example, if F(x) = {1,6,10} then <pA(x) = <pA(gx(l) • 3) • (fA(gx(6) • 36) • 

<pA(gx(10) • 310). If A = N U {0} and, in ternary, if x = 20112101000, then (pA(x) = 
eefeef — efef. (We need to reverse the order as we do because of our choice of right 
continuity for /?N). 

LEMMA 5.6. Let A Ç N U {0}. Letx,y G N. If there is some n e M such thatx < 3n 

and3n\y, then (fA(x + y) = <pA(x) • (fA(y). 

PROOF. One has F(x+y) = F(x)UF(y) and gx+y = gxUgy, and max F(x) < minF(y) 
so this is immediate. • 

DEFINITION 5.7. T = f\Zi 01^(^3"). 

LEMMA 5.8. Let A Ç NU {0}, let q e f3H and let p G T. Then ipA(q + p) = 

V>A(q) ' <PA(P). 

PROOF. Let 5 = {x G N : ipA(x) = ipA(q+p)}, C = {x G N : ipA(x) = 9?A (<?)}, 
D — {x G N : (fA(x) = (fA(p)}. Since S is discrete we have B G q + p, C G q, 
and D G p. Let H = {x G N : 5 - x G /?}. Then / / G <?. Pick x G C H / / and 
pick AZ G N such that * < 3n. Then N3" G /?, so pick y G N 3 " f l D n ( f i - JC). By 
Lemma 5.6, (fA(y + x) — (pA(x) • ipA(y). Since J + X Ç 5 , I G C , andyGDwe thus have 
(fA(q +p) = (fA(y + x) = <pA(x) • ipA(y) = ipA(q) • <pA(p). • 

LEMMA 5.9. Let A Ç N U {0}. 7 7 ^ ^[A'CSN) n T\ = S. 

PROOF. By [2, Lemma 2.5] #(/3N)nr = K(T). By Lemma 5.8 the restriction of (pA to 
T is a homomorphism which is easily seen to be onto S. Consequently ipA [K(T)] — K(S). 
One can then easily verify that K(S) = S. m 
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THEOREM 5.10. Let q and r be distinct members of/3N. If there is some A Ç NU{0} 

such that B(A) G q \ r, then there existsp G K((5N) such that q +p ^ r + p. 

PROOF. PickA such that B(A) G q\r. We show first that tpA[B(A)] Ç {e,fe,efe,fefe}. 

Indeed, given x G B(A) one has (pAlgxOn(x)) • 3m(x)) = e so that if F(x) = {m(x)}, 

<pA(x) = <? and otherwise ^ ( x ) = ^n w G FU) \{mw}^(^W • 3")) • é? G {e,fe,efe,fefe}. 

Similarly ipA[N \ B(A)] Ç {f, ef ,fef, efef}. Thus we have ipA(q) G {e,fe,efe,fefe} and 

¥>AW G {f,ef,fef,efef}. In particular <^(<?) ^ ^ W -

A quick look at the multiplication table for S shows that if a, b G S and a ^ b then 

either ae ^ Z?e or af ^ /?/. Essentially without loss of generality we assume tpA(q)e ^ 

^pA(r)e. Pick by Lemma 5.9 some p G (/3N)nrsuchthat tpA(p) = e. Then by Lemma 5.8, 

^PA(q+p) = <fA(q)e ^ ^ 0 > = <fA(r + p) 

so q +p ^ r + p. m 

Observe that l(B(A)) cannot hold for any A Ç N U {0}, since B{A) and N \ B(A) will 

always contain arbitrarily long blocks of integers. In fact we see that the sets B(A) do not 

come close to distinguishing among all pairs of distinct idempotents. 

THEOREM 5.11. Let q G /3N \ N. There exists r ^ q in (3N \ N such that {B(A) : 

A Ç N U {0} andB(A) G q) = {B(A) : A Ç N U {0} andB(A) G r}. 

PROOF. Let C = {3" : n G N} U {2 • 3n : n G N} and let D = {3n + 1 : n G 

N } U { 2 - 3 " + l : n G N } . Then {C} U (fl(A) : A Ç N U {0} and B(A) G <?} and 

{D} U {#(A) : A Ç N U {0} and 5(A) G <?} both have the finite intersection property. 

To see this let A\,A2,... ,At be given with each B{At) in g. Pick x G f|/=i ^(^/)> w i m 

x > 3. If ^(m(jc)) = 1, then m(jt) G f t i ^ so that { 3 m W , 3 m W + 1} Ç f|-=1 B(At). If 

gx(m(x)) = 2, then m(x) ^ \Ji==l ^/ s o ( 2 ' 3 m U ) > 2 ' 3 m W + 1} £ f)U\ B(Ai)-
Essentially without loss of generality assume C ^ q and pick r G /?N \ N with {C} U 

{£(A) : A Ç N U {0} and 5(A) e q} Ç r. Also note that for A Ç N U {0} we always 

have N \ B(A) = B{H\ A). Thus if B(A) G r then B(N \A) £ q which in turn implies 

B(A) eq. m 
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