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Abstract

The brain is particularly sensitive to folate metabolic disturbances, because methyl groups are critical for brain functions. This study aimed to
investigate the effects of different dietary levels of folic acid (FA) on postnatal cerebellar morphology, including the architecture and
organisation of the various layers. A total of forty male OFA rats (a Sprague-Dawley strain), 5 weeks old, were classified into the following four
dietary groups: FA deficient (0 mg/kg FA); FA supplemented (8 mg/kg FA); FA supra-supplemented (40 mg/kg FA); and control (2 mg/kg FA)
(all 7 10 per group). Rats were fed ad libitum for 30d. The cerebellum was quickly removed and processed for histological and
immunohistochemical analysis. Slides were immunostained for glial fibrillary acidic protein (to label Bergmann glia), calbindin (to label
Purkinje cells) and NeuN (to label post-mitotic neurons). Microscopic analysis revealed two types of defect: partial disappearance of fissures
and/or neuronal ectopia, primarily in supra-supplemented animals (incidence of 80%, P<0-01), but also in deficient and supplemented
groups (incidence of 40%, P<0-05), compared with control animals. The primary fissure was predominantly affected, sometimes
accompanied by defects in the secondary fissure. Our findings show that growing rats fed an FA-modified diet, including both deficient and
supplemented diets, have an increased risk of disturbances in cerebellar corticogenesis. Defects caused by these diets may have functional
consequences in later life. The present study is the first to demonstrate that cerebellar morphological defects can arise from deficient, as well
as high, FA levels in the diet.
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does not show an additional positive effect compared with a
control diet in growing rats®. In mature 18-month-old rats,
dietary FA deficiency negatively affected methionine

Folic acid (FA) is the synthetic oxidised monoglutamyl form of
folate that is widely used in vitamin supplements and food
fortification. Towards the end of the twentieth century, new

potential roles for FA in the prevention of neural tube defects
(NTD) were reported™?. Discussion today primarily focuses on
whether the recommendation for FA supplementation during
early pregnancy should be widened to include the entire
pregnancy, as well as the postnatal period, particularly as
perinatal nutrition appears to influence the incidence of certain
diseases later in life®. The evidence that FA reduces the risk of
NTD has led many governments to recommend that women
take at least 0-4 mg of synthetic FA daily, 2-3 months before
conception and during pregnancy™®. These considerations
suggest that pregnant women and their fetuses are exposed to
high amounts of FA®. Using different animal models, we
previously showed that FA deficiency compromises normal
methionine metabolism, whereas supplementation with either
moderate (8 mg/kg) or supranormal (40 mg/kg) levels of FA

metabolism, whereas excessive supplementation appeared
unnecessary for maintenance of optimal methylation levels or
hippocampal integrity”.

The cerebellum is a major brain structure that contributes to
the control of voluntary movements, posture, balance and
motor learning, as well as cognitive and emotional functions®.
Sagittal sections of the cerebellar vermis show a morphologi-
cally unique, yet apparently simple, structure consisting of folia
separated by fissures of different lengths (Fig. 1). Indeed,
cytological disorganisation of the cerebellum is associated with
clumsiness and abnormal motor behaviour in disorders such as
autism, Asperger’s syndrome, schizophrenia® and dyslexia®.

Folate and vitamin By, are important dietary sources that act
as cofactors that are involved in methylation reactions™".

Deficiency in folate and other methyl donors increases birth

Abbreviations: FA, folic acid; NTD, neural tube defects.
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Fig. 1. Sagittal section of a control rat cerebellum stained with the Kllver—
Barrera technique. (a) The different folia and main fissures that constitute the
cerebellum are shown. The primary fissure is easily recognised by its greater
length, followed by the secondary fissure. The sections of the cerebellar vermis
were examined according to the criteria of Larsell & Jansen®. 4x
Magnification. (b) Cells are ordered in three main layers: the molecular layer is
in contact with the pia mater, the intermediate Purkinje cell monolayer and the
internal granular layer (which is next to the white matter). 20x Magnification.
(c) High-power magnification of the primary fissure. 10x Magnification. (d) High-
power magnification of the secondary fissure. 10x Magnification. (e) High-power
magnification of the deepest part of the cerebellum, showing the ends of fissures
with pia mater. 10x Magnification. C, caudal; pl, posterolateral fissure; ppd,
prepyramidal fissure; precul, preculminate fissure; ps, posterior superior fissure;
pr, primary fissure; sec, secondary fissure; R, rostral; Roman numerals
(in yellow; I1, 11, 1V, V, Vla, VIb, VII, VIII, IX and X) denote corresponding folia;
Black labels, v—-IV: ventricle fourth; Gr, granular layer; Mol, molecular layer;
PM, pia mater; Pu, Purkinje layer; Wm, white matter.

defects and produces persistent cognitive and learning
disabilities through impaired plasticity and hippocampal
atrophy?. In mammals, the brain continues to develop and

establish new connections after birth. Early postnatal develop-
ment in the rat brain corresponds approximately to late
gestation  in humans®®. In rats, cerebellar development
continues up to about postnatal day 30. During this postnatal
period, developing neurons undergo proliferation and pro-
grammed cell death, and radial glial cells guide granule cell
migration. In addition, extensive cellular proliferation occurs in
the external granule cell layer (EGL). Post-mitotic cells in the
EGL migrate to their final destination in the internal granule cell
layer and concomitantly undergo differentiation™®. These
critical late developmental processes are highly complex and
tightly regulated, and are susceptible to external and internal
perturbations. Such perturbations can disrupt cell proliferation
and migration, and impair the correct positioning of specific cell
populations. During the developmental period, several studies
have reported effects of diets lacking in methyl donors on
the state of DNA methylation in the brain, and on brain
1510 1 particular,
deficiency of the folate-metabolising enzyme serine hydro-
xymethyltransferase 1, which regulates folate-dependent de
novo thymidylate biosynthesis, affects hippocampal function at
both the cellular and behavioural levels in adult mice™”.
Epidemiological studies and animal models indicate that
susceptibility to adult-onset chronic disease is influenced by
prenatal and early postnatal nutrition™®, probably through
epigenetic regulation. According to Kim“?, evidence from
animal, human and in vitro studies suggests that the effects of
folate deficiency and supplementation on DNA methylation are
gene- and site-specific, and appear to depend on cell type,

functions such as emotional behaviours

target organ, stage of development and the degree and duration
of folate depletion/repletion.

To the best of our knowledge, no study has yet examined
how FA dietary intake can affect the cerebellum during
postnatal development. Therefore, in the present study, we
examined the effects of different dietary FA levels on the
cytoarchitecture and organisation of the cerebellar folia during
early postnatal development.

Methods
Experimental animals

A total of forty male OFA rats (a Sprague-Dawley strain; 5 weeks
old, weight 85-127g; Animal Service, Universidad CEU San
Pablo, Madrid) were classified into four groups (which differed
in terms of the experimental diet administered). Procedures
involving animals were performed according to European Union
guidelines (2003/65/CE). Animals were individually housed in
metabolic cages and were maintained on a 12-h light-12-h dark
cycle, under controlled temperature and humidity conditions at
the Animal Care Unit at Universidad CEU San Pablo.

Treatment

Rats were fed a pure amino acid diet (Dyets)®, adjusted to
their nutritional and energetic requirements. Each of the diets
differed only in terms of FA content, as follows: FA-deficient
diet (0 mg/kg FA), n 10; FA-supplemented diet (8 mg/kg FA),
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n 10; FA supra-supplemented diet (40 mg/kg FA), n 10; and
control diet (2mg/kg FA), n 10. The control diet is generally
accepted as the basal dietary requirement for rats®". The diet
containing 8 mg/kg FA provides moderate folate supplementa-
tion, at four times the basal dietary requirement, and was
selected to approximate to 1-6mg/d FA in humans, which
corresponds to levels that may be consumed in specific
subpopulations (e.g. a section of the North American popula-
tion was identified with a total FA intake above 1 mg/d)*®.

Nutrient intake values set by different countries for folate vary
substantially. Several countries have reported a range for indivi-
dual nutrient level at the 98th percentile, needed to maintain
normal folate status during preconception and early pregnancy,
of 300750 ug®?. In addition, it was specified that women who
have already had an NTD birth should increase the dose up to
4mg/d®?, which corresponds to an approximate 20-fold increase
compared with the established recommendation for non-
pregnant women (which varies between 200 and 460ug of
dietary folate equivalents per d)®®. Therefore, the diet containing
40 mg/kg FA was aimed at achieving folate supplementation at
twenty times the basal dietary requirement. On the other hand,
we have shown that fortification levels declared by manufacturers
in the Spanish market ranged from 15 to 430 % of the RDA®>.

The experimental diets and animals models used in this
study have been successfully used in previous studies by our
research group“’j’%fﬂ). Rats were fed their respective diets
ad libitum for 30 d.

Tissue collection and staining

Anaesthetised animals were killed by decapitation. The
cerebellum was quickly removed, and the meninges were
detached, except for the pia mater, before histological assess-
ment. The cerebella were immersed for 3d in two successive
4% formaldehyde solutions, cleared in water and maintained in
70% ethanol until processed. Tissues were then embedded in
paraffin wax and cut into sections (5-7 um thick), according to
standard protocols. All studies and evaluations were performed
on sagittal sections through the cerebellar vermis, which is

located in the central zone of the cerebellum. In all, ninety to
100 paraffin sections were sequentially stained following
Kliver—Barrera, Nissl and haematoxylin-eosin techniques for
morphological analysis. The cerebellar vermis sections were
examined according to the consensus criteria established by
Larsell & Jansen®?.

To identify the various cell types, slides were immunostained
for glial fibrillary acidic protein (GFAP) to label Bergmann glia,
calbindin to label Purkinje cells and NeuN to label post-mitotic
neurons. Sections were incubated in 2% hydrogen peroxide in
methanol for 10 min in the dark at room temperature to quench
endogenous peroxidase activity. Non-specific binding was
blocked with a mixture of 0-1 % fetal bovine serum (Gibco) and
0-1% bovine serum albumin (Sigma) in PBS containing 0-4 %
Triton X-100 (PBT) for 30 min. Sections were then incubated with
rabbit anti-GFAP polyclonal (1:500; Chemicon International) or
rabbit monoclonal anti-calbindin antibodies (1:2000; Sigma)
overnight at 4°C in a dark humidified chamber. For NeuN
staining, sections were pre-treated by heating in 0-01 M citrate,
pH 6, for 40min, in an oven at 140°C for antigen retrieval.
Sections were then incubated with a mouse NeuN monoclonal
antibody (1:100; Chemicon International) diluted in PBT for 1h
at 37°C. Post-processing and preparation of negative control
sections were performed as described in our previous report™”.

Statistical analyses

Values are expressed as percentage affected per group. The
y* test was used to assess whether the number of animals
affected by alterations in cytoarchitecture and organisation of
the cerebellar folia during early postnatal development differed
among the groups. Differences were considered significant for
P values<0-05. The data were analysed using SPSS for
Windows, version 18.0 (SPSS Inc.).

Results

The cerebella showed no evident macroscopic defects, such as
asymmetry or absence of folia, in any of the dietary groups.

Table 1. Presence of alterations in primary and secondary fissures in each folic acid (FA) dietary group

(Number of rats and percentages)

FA-deficient diet
(0 mg/kg FA diet)

Control diet
(2mg/kg FA diet)

FA-supplemented diet
(8 mg/kg FA diet)

FA supra-supplemented diet
(40 mg/kg FA diet)

n % n % n % n %

Normal 10 100 6 60 6 60 2 20
Affected 0 4 40* 4 40* 8 80™*
Primary fissure

F 0 0 0 0 2 20 0 0

F+E 0 0 2 20 2 20 4 40
Secondary fissure

F 0 0 1 10 0 0 0 0

F+E 0 0 0 0 0 0 0 0
Primary + secondary fissures

F 0 0 11 0 0 0 4t 0

F+E 0 0 11 10 0 0 4t 40

F, fusion of a fissure where the pia mater partially disappeared; F + E, fusion of a fissure associated with neuronal ectopia.Statistically significantly different from the control group:

*P<0:05, *P<0-01 (y* test).
1 On the same cerebellum.
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The cerebellar vermi were examined according to the criteria of
Larsell & Jansen®?, whereby sagittal sections of the whole
cerebellar vermis in normal cerebellum show the pia mater
inside the fissure that separates the opposite molecular layers
between the two folia, next to the Purkinje and granule layers.
The pia mater usually extends to the deepest part of the fissure,
where the molecular layer from one folium curves and then
continues to form the adjacent folium. The primary fissure is
easily recognised because it is the longest, followed by sec-
ondary fissure (Fig. 1). All rats in the control groups exhibited
these organisational characteristics at the light microscope level.

The alterations found in the experimental groups, in which
rats were fed FA-modified diets, occurred only in the primary
and secondary fissures. In both fissures, two types of alterations
were observed (Table 1):

e F: fusion of a fissure where the pia mater partially
disappeared, with consequent loss of the fissure because of
adhesion of the opposing molecular layers (Fig. 2-7).

e F+E: fusion of a fissure associated with neuronal ectopia (E),
whereby the granule cells did not occupy their usual position
in the granular layer, but formed an ectopic islet inside the
molecular layer. Ectopic granular cells were always
positioned in the fused areas (Fig. 3-5).

The control group, however, showed neither of these
alterations.

Isolated fusion was observed in the deepest part of the fissure
for two rats in the FA-supplemented dietary group (in the
primary fissure), in two rats in the FA-deficient dietary group
(only in the secondary fissure in one rat and, in the other, in the
prima fissure and the ectopic granular cells of the secondary
fissure) and in four rats in the supra-supplemented dietary
group (with fusion of the secondary fissure and ectopia in the
primary fissure). The fusion extended from five to ten sections
(an approximate distance of 35-42 pm).

Fusion in the presence of ectopic granular cells (F+E) was
the most frequent alteration (Table 1). The size of lesions was
variable, ranging from the presence of a few granular cells
(Fig. 6) to uncountable clusters (Fig. 4, 5 and 7) extending from
five to fifty-seven sections (an approximate distance of
35-399 pm).

NeuN labelling clearly showed that ectopic cells were granule
cells located inside the molecular layer (Fig. 5). Calbindin
staining showed that Purkinje cells were unaffected (Fig. 6).
GFAP staining showed that radial glial fibres were severely
disorganised, irregular and mistargeted in affected fissures
exclusively in the fusion area, in contrast to the characteristic
parallel-running normal fibres (Fig. 7).

The frequency of defects varied markedly according to the
dietary FA group. Within the FA-deficient diet group (0 mg/kg
FA diet), 40 % of the rats showed cerebellar alterations (P < 0-05,
Table 1). In the FA-supplemented diet group (8 mg/kg FA diet),
40% of the rats showed changes in the primary fissure
(P<0-05), whereas the secondary fissure was unaffected
(Table 1). Finally, the supra-supplemented diet group
(40 mg/kg FA) showed the highest incidence of abnormalities
(80%) compared with the control group (P<0-01), with the
F+E alteration apparent in all eight rats (Table 1).

Fig. 2. Sagittal section of a cerebellum from a folic acid-deficient diet
rat stained with the Kliver—Barrera technique. (a) Whole cerebellum
showing primary and secondary fissures. The squared area is magnified in
(b). 4x Magnification. (b) High-power magnification of the deepest part
of the cerebellum. Partial disappearance of pia mater (») and fusion of
primary and secondary fissures are observable (*), with fusion of the
opposite molecular layers. 20x Magnification. (c) The deepest part of the
cerebellum (control). Pia mater (») reaches the ends of the fissures.
20x magnification. pr, Primary fissure; sec, secondary fissure; roman
numerals (in yellow; 1V, V, VIII and IX) denote corresponding folia;
Mol, molecular layer; precul, preculminate fissure; ppd, prepyramidal fissure;
precul, preculminate fissure.
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Fig. 3. Sagittal section of a cerebellum from a folic acid-supplemented diet rat
stained with the Kliver—Barrera technique. (a) Whole cerebellum showing folia
and main fissures. The primary fissure (squared area) is magnified in (b). 4x
Magnification. (b) High-power magnification of the boxed area in the primary

Discussion

The present study is the first to demonstrate that cerebellar
morphological defects can arise from deficient, as well as high,
FA levels in the diet.

Growth is a developmental stage especially vulnerable to
modifications in FA status because of the importance of this
vitamin in biological processes such as cell division, methyla-
tion potential and gene expression®®. The present study
investigated the potential for dietary FA deficiency, or moderate
v. high supplementation, to modify postnatal morphology of the
cerebellum in growing rats.

As we have previously reported, neither FA deficiency
nor supplementation altered the average weight gain of
these animals throughout the study period(@, We also
previously showed that FA deficiency compromises normal
methionine metabolism, as FA deficiency resulted in a
significant increase in serum homocysteine (Hcy) concentra-
tion compared with control animals®. Other studies have
demonstrated that folate deficiency increases Hcy levels,
inducing apoptosis of neurons®*>®_ Unfortunately, we were
not able to measure folate or other metabolites in the brain in
the present study, because of tissue size/weight. Moreover,
tissue samples had been fixed for morphological determina-
tions and analysis. However, on the basis of analysis of
biochemical parameters, a deficiency in FA levels was clearly
evident®. Moreover, Berrocal-Zaragoza et al.®® showed that
hepatic folate, but not brain folate, was significantly decreased
with FA dietary deficiency in rats. Despite this, these authors
still concluded that FA deficiency caused learning and
memory deficits.

In the present study, we found that FA-deficient and
supra-supplemented diets may compromise cerebellar
morphology in growing rats. The cerebellum undergoes
postnatal development in mammals, and it is vulnerable to
adverse environmental factors®'®. Dietary FA manipulation in
growing rats produced a number of abnormalities in the
experimental groups (Table 1). The defect patterns observed
in the present study are comparable to those shown by
Sakata-Haga et al.“*” and Kotkoskie & Norton®" in the primary
fissure after prenatal exposure of rats to excess ethanol,
and to those observed by Sievers ef al.“**® after intracisternal
injections (in the fourth ventricle) of 6-hydroxydopamine.
The latter study suggests that impaired corticogenesis
produces similar cytoarchitectonic changes. On the basis
of the examination of cerebellar morphology, our findings
indicate that FA at high supplementation may act more
as a xenobiotic than as an essential nutrient, at an early
stage after the end of development. Sievers et al.“**® found
that all fissures were affected, instead of only two, and this
was accompanied by the disappearance of the pia mater
(a key event in the pathological fusion of two adjacent folia).

fissure in (a). 10x Magnification. (c) High-power magnification of the boxed
area in (b). 20x Magnification. (d) High-power magnification of the boxed area in
(c). » point to ectopic granule cells within the granular layer. 40x Magpnification.
(e) High-power magnification of a normal secondary fissure. 10x Magnification.
pr, Primary fissure; sec, secondary fissure; Gr, granular layer; Mol, molecular
layer; PM, pia mater; Pu, Purkinje layer; Wm, white matter.
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Fig. 4. Sagittal section of a cerebellum from a folic acid supra-supplemented diet rat stained with the Kliver—Barrera technique. (a) Whole cerebellum showing folia
and main fissures. The primary fissure (squared area) is magnified in (b). 4x Magnification. (b) High-power magnification of a normal secondary fissure. 10x
Magnification. (c) High-power magnification of the boxed area in (a). The pia mater is absent in the deepest part of the primary fissure. Ectopic granular layers of two
different folia are fused, fragmenting the continuity of the molecular layer. The squared area is magnified in (d). 20x Magnification. (d) High-power magnification of the
boxed area in (c). Purkinje cells (==3-) are visible in their usual locations, at the boundary between the molecular and ectopic cell clusters. 40x Magnification.
pr, Primary fissure; sec, secondary fissure; Gr, granular layer; Mol, molecular layer; PM, pia mater; Wm, white matter.

In addition, fusions were also associated with impaired
cerebellar corticogenesis. Similar cerebellar defects have been
observed at the perinatal stage in Gpr56 knockout
mice, including ectopic granule cell clusters, disorganised
Bergmann arborisation with processes extending out in random
directions and pia mater disruption. All of these defects may
contribute to motor deficits“*®. In contrast, FA supplementation
in a homozygous methylenetetrahydrofolate reductase gene
knockout model® induced a marked reduction in the size of
the cerebellum and cerebral cortex, and enlarged lateral
ventricles. These mice show perturbed granule cell maturation
(but not neurogenesis), depletion of external granule cells and
disorganisation of Purkinje cells, mainly confined to the anterior
lobe of the cerebellum.

Similarly, adverse effects were observed with FA supple-
mentation in three genetic murine NTD mutants, with increased
incidence of NTD in homozygous mutants, occurrence of NTD
in heterozygous embryos and embryonic lethality before neural
tube closure"®. Microarray analysis also revealed that higher
gestational FA levels may alter expression of genes in the
cerebellum of mice™”.

In adults, FA supplementation has been found to prevent

colorectal cancer™ and improve immune function®, and it

has been hypothesised that FA supplementation reduces CVD
risk by lowering Hey levels®”. However, these potential ben-
efits of FA may be counteracted by some adverse effects. The
best-known adverse effect of exposure to high doses of FA is
the possible masking of vitamin By, in pernicious anaemia®"
In addition, it has been suggested that high FA supplementation
may enhance the development and progression of already
existing, undiagnosed premalignant and malignant lesions of
the colon®?.
negative effect on dietary metabolic protein utilisation in virgin
rats, pregnant rats and growing rats”>>*. Moreover, during
gestation, this effect may be associated with reduced fetal
growth®®. Possible adverse effects caused by excess FA intake
in humans may relate to alterations in immune function and
cognitive decline®>>®. Finally, an imbalance between dietary
vitamin By, and FA levels may also affect several immunological
parameters, such as natural killer cytotoxicity and B lympho-
cytes, after only a short-term dietary treatment®”. Therefore,
although FA should be considered as a safe vitamin, more
research is needed on possible negative effects, even in low-
risk populations, after prolonged and high consumption, parti-
cularly as supplementation and fortification is increasingly
common in Western countries.

High FA supplementation may also have a
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Fig. 5. Sagittal section of a cerebellum showing fusion and ectopic granular cells in the primary and secondary fissures immunostained for NeuN. These
alterations appeared in the three experimental groups (folic acid-deficient, supplemented and supra-supplemented diet groups). (a) Whole cerebellum showing the
location of granular cells in folia and the main fissures. The squared area is magnified in (b). 4x Magnification. (b) High-power magnification of the boxed area in
(a), showing the deepest part of the cerebellum with the end of fissures. 10x Magnification. (c) High-power magnification of the normal preculminate fissure.
20x Magnification. (d) High-power magnification of the secondary fissure in which the pia mater (----- ) disappears at the fissure fusion point (*), where a small
number of ectopic granular cells are located (»). 20x Magnification. (e) High-power magnification of a primary fissure. * Mark the fissure fusion point, where ectopic
granular cells are located (==3»). 20x Magnification. pr, Primary fissure; precul, preculminate fissure; sec, secondary fissure; Gr, granular layer; Mol, molecular layer;
PM, pia mater; Wm, white matter.
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Fig. 6. Sagittal section of a cerebellum showing fusion and ectopic granular cells in a primary fissure immunostained for calbindin. These alterations appeared in the
three experimental groups (folic acid-deficient, supplemented and supra-supplemented diet groups). (a) Whole cerebellum showing folia and main fissures. Primary
fissure (squared area) is magnified in (b). 4x Magnification. (b) High-power magnification of a normal secondary fissure. The soma of Purkinje cells appeared strongly
stained between the molecular and granular layers (»). 10x Magnification. (c) High-power magnification of the boxed area in (a) showing alterations in the primary
fissure, which had ectopic granular cells in the deepest part. The soma of Purkinje cells appeared strongly stained in their normal place between the molecular and
granular layers (») (these cells do not migrate with ectopic granule cells). 10x Magnification. (d) High-power magnification of a normal secondary fissure showing
Purkinje cell trees. 20x Magnification. (e) High-power magnification of a primary fissure showing Purkinje cell trees in the area of fissure fusion, where the dendrites
appear to invade the opposite molecular layer (*). 20x Magnification. pr, Primary fissure; sec, secondary fissure; Gr, granular layer; Mol, molecular layer; PM, pia

mater; Wm, white matter; Pu, Purkinje cells.

Epigenetic processes play a central role in regulating the
tissue-specific expression of genes. Alterations in these
processes can lead to profound changes in phenotype and
have been implicated in the pathogenesis of many
human diseases. There is growing evidence that environmental

factors — particularly variations in diet and nutrient status during
specific developmental periods — can induce changes in the
epigenome, which are then stably maintained throughout life
and influence susceptibility to disease in later life®®. In this
context, FA deficiency appears to enhance the methylation of
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Fig. 7. Sagittal section of a cerebellum showing fusion and ectopic granular
cells in a primary fissure immunostained for glial fibrillary acidic protein. These
alterations appeared in the three experimental groups (folic acid-deficient,
supplemented and supra-supplemented diet groups). (a) A normal
prepyramidal fissure and alterations in the primary fissure are shown. The
Bergmann glia extend processes from the Purkinje layer up to the surface of
the molecular layer, forming perfect palisades (») with the characteristic normal
parallel-running fibres, as in the prepyramidal fissure. In the primary fissure,
radial glial fibres were severely disorganised, irregular and misguided (») in the
absence of the fissure. 10x Magnification. (b) High-power magnification of the
normal prepyramidal fissure showing the parallel running Bergmann fibres (»).
Gr, granular layer; Mol, molecular layer. 20x Magnification. (c) High-power
magnification of the altered primary fissure in the fused region, showing clumps
of Bergmann glial processes extending in random directions, which cross into
the opposite slope of the folium to form whorl-like structures (»). 40x
Magnification. Roman numerals (IV, V and VIIl) denote corresponding folia;
Mol, molecular layer; Gr, granular layer; ppd, prepyramidal fissure; pr, primary
fissure; Wm, white matter; PM, pia mater.

genes in the brain, affecting cognitive and behavioural
functions, and can accelerate several processes associated with
ageing”. FA deficiency has been shown to result in hepatic
DNA hypomethylation, but high-dose FA supplementation does
not appear to induce higher methylation(@ . Our results are
consistent with a study by Waterland & Jirtle®”, which showed
that dietary supplementation with high FA levels, vitamin By,
choline and betaine — long presumed to be purely beneficial —
may have deleterious effects on gene regulation in humans at
epigenetically susceptible loci.

Early growth may also be susceptible to the effects of dietary
folate intervention. Small and large animal models suggest that

the fetal-to-early postnatal periods are highly susceptible to
internal and external factors, which can strongly affect pheno-
type in later life. Early postnatal over-nutrition leads to a
reduction in spontaneous physical activity and energy expen-
diture in females, and early postnatal life is a critical period
during which nutrition can affect hypothalamic developmental
epigenetics(@) . The current state of evidence reveals that folate
has a role in the development and plasticity of the nervous
system even after birth, particularly during childhood and
adolescence®”. An FA-supplemented diet (8:0 mg/kg FA diev),
compared with a control diet of laboratory chow (2-7 mg/kg FA
diev), in rats fed ad libitum from 30 to 60d of age, provoked
deficits in motivation and spatial memory, and also decreased
levels of thyroxine and triiodothyronine in the periphery and
decreased protein levels of thyroid receptor-al and -a2 in the
hippocampusm).

The effects of FA supplementation may differ among
the various tissues and organs, to the extent of inducing
opposing effects, possibly associated with differential effects
on the epigenome. This represents a potential major challenge
for nutritional recommendations for the general population
and for the design of studies in humans. General assumptions
on the safety of FA may need to be reconsidered, taking
into account the epigenetic effects on organs that complete their
development after birth. However, there is no doubt that the
diet must contain adequate levels of FA throughout critical
developmental periods, during pregnancy and lactation, as well
as throughout early life, until cerebellar development is
complete.

In conclusion, our present results show that low quantities
of FA may result in defects similar to those produced by
excessive amounts, affecting the primary and secondary
fissures in the cerebellum. The effects of FA deficiency and
supplementation should be investigated, taking into account
the effect on epigenetic gene regulation. Such studies should
provide insight into the long-term effects of FA deficiency,
or supra-supplementation, in early life in humans. Thus,
whether these findings in rodents apply equally in humans
is not yet known, and further studies are needed to determine
the relevance of these observations on the role of FA in
the cerebellum.
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