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A.H. Clifford ([2], [3]) has shown that all finite dimensional irreducible repre-
sentations of a completely 0-simple semigroup can be obtained as extensions of
those of its maximal subgroups. Lallement and Petrich, [7], have given an alter-
native method for constructing the irreducible representations of a finite 0-simple
semigroup from its Schutzenberger representation ([13]). Using the form which
they obtain for the irreducible representations of a finite 0-simple semigroup
S = Jt*(G; m, n; P), Lallement and Petrich show that

Rad Ji = {XBJ( : PXP is over Rad $(G)}

where ~# is the Munn algebra isomorphic to the (contracted) algebra $(S) of S
over $.

In the same paper, necessary and sufficient conditions are given for the exis-
tence of an isomorphism

when 0 is algebraically closed and t is the invertibility rank of P. However the gen-
eral problem of determining the structure of <P(S)/Rad <P(S) is not solved there
nor is the case of infinite completely 0-simple semigroups considered. The main
object of this paper is to determine the radical of <P(S) when S is an arbitrary com-
pletely 0-simple semigroup and also to obtain a representation for #(S)/Rad #(S)
as a subdirect sum of computable primitive rings.

The representation theory developed in [2], [3] depends strongly on the
fact that the representations under consideration are finite dimensional and
it is not adequate to deal with the infinite dimensional case. In [9] we have
described a variant of Clifford's theory which determines all representations of
S « ^°(G; I, A; P), by endomorphisms of 9?-modules, in terms of proper
representations of G. This representation theory was developed for a class of rings
which we call Munn rings. These rings are the infinite dimensional analogs of the
Munn algebras considered in [11], Section 4; thus the algebra of any completely
0-simple semigroup is a Munn ring.

The results of [9] provide the tools with which to investigate the ideal struc-
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258 D. B. McAlister [2]

ture of a Munn ring and to find its primitive homomorphic images. Throughout
this paper, we shall assume familiarity with the results and terminology of [9].

In Section 1, the ideal structure of a Munn ring J( = ̂ #(91; I,A;P) is investi-
gated and the primitive ideals of J( are determined in terms of the primitive ideals
of 91. It is shown that

= {Xe J( : PXP is over Rad 91}
(Theorem 1.6).

In the second section, the primitive homomorphic images of the Munn
ring Jl are determined (Theorem 2.3). From this theorem, a representation of
^ • / R a d ^ as a subdirect sum of primitive rings, is evident. In the case when Jl
satisfies the descending chain condition (d.c.c.) on right ideals. 21 satisfies the
d.d.c. on right ideals and / is finite. Further an exact description of ^ /Rad J(
can be given (Theorem 2.5).

Section 3 is concerned with the special case which was considered by Lalle-
ment and Petrich ([7], Theorem 3.6). Using the structure given by Theorem 2.5 for
^ / R a d J( when J( = ^"(91; m, n; P) obeys the d.c.c. on right ideals, we give
necessary and sufficient conditions for the existence of an isomorphism

^f/Rad J( x (9I/Rad 21),

where t is the invertibility rank of P; (Theorem 3.4). Unfortunately, the existence
of such an isomorphism does not characterise Jt', even in the case when t = 1. In
order to provide such a characterisation of Jt, one has to consider the basic radical
of J( which is

5(~O = {XeJt: PXP = 0).

Theorem 3.11 gives necessary and sufficient conditions for the existence of an
isomorphism

again where t = invertibility rank P. In the presence of such an isomorphism J(
itself is characterised up to isomorphism. As a corollary to Theorem 3.11, we show
that a finite 0-simple semigroup S is a regular rectangular semigroup with zero
adjoined if and only if

<P(S)IB(<P(S)) « 4>(G).

Because the algebra of a finite 0-simple semigroup is a Munn ring which
obeys the d.c.c. on right ideals, the results obtained in previous sections apply to
these semigroups. In fact, Theorem 2.5 can be used to describe the algebra of an
arbitrary finite semigroup modulo its radical. This is done in Section 4.

1. The ideals of a Munn ring

DEFINITION 1.1. An ideal TV of a Munn ring J( is basic if it is the kernel of a
basic representation of JK.
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[3] Rings related to completely O-simple semigroups 259

PROPOSITION 1.2. An ideal TVofa Munn ringJtis basic ifandonly ifJtaJt £ TV
implies ae N. If this is the case then the representation ofJt on the cosets ofJt/N
is basic with kernel TV.

The intersection of basic ideals is basic and hence, for any ideal TV of Jt, there is
a minimum basic ideal which contains TV; this is

B(N) = { a e J : JtaJt £ N}.

In particular, the intersection of all basic ideals is basic and is

5(0) = { a e l . - J f l i = 0}.

PROOF. Suppose that TV is basic and let ae Jt be such that JtaJt s TV.
Let F : Jt -> Horn (C, C) be a basic representation of Jt, over a ring 9i with iden-
tity, which has kernel TV. For each subset UofC denote by [U] the S^-submodule of
C generated by U; since F is basic, [CF(Jt)] = C.

Since JtaJt £ /v, [CF (JtaJt)] = 0. Thus CT{xay) = 0 for all x, y e Jt.
This implies [CF(*Jif)r(ay)] = 0 for each y e *Jt'. Therefore, since F is basic,
CF(a) is a submodule oi C which is contained in N(F) and hence is zero. This means
r(a) = 0 and so, since N = Ker r,aeN.

Conversely, suppose J(aJ( £ TV implies ae N and consider the represen-
tation r of J( on JK/N. Then

/(F) = subgroup of ^MjN generated by the cosets N+xa

where a, xeJl;
N(r) = {N+x :xaeN for all a

and
Ker r = {a e Jt : xa e TV for all JC e

The fact that J(aJ( £ TV" implies aeN shows immediately that TV(r) = TV,
the zero of ~#/TV and Ker F = TV. Further since, by the proof of [9], Corollary
1.6, Jt is generated as a group by Jt1,

I(F) = subgroup generated by the cosets in N+J(2 = Jt/N.

That the intersection of basic ideals is basic follows because, as is easily seen,
the direct sum of basic representations is basic. To prove the final two assertions it
is thus only necessary to prove that

B(N) = {a:JtaJt £ TV}

is the smallest basic ideal containing TV. From the proof of the characterisation
already obtained, it follows that -S(TV) is certainly contained in any basic ideal
which contains TV. Hence it suffices to prove that 2?(TV) is basic. To do this, we use
the characterisation obtained above.

Suppose JtaJt <=, B(N); then Jt2aJt2 £ TV and so, since Jt is generated
as a subgroup by Jt1, JtaJt £ TV. Thus a e B(N) and B(N) is basic.

https://doi.org/10.1017/S1446788700009733 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009733


260 D. B. McAlister [4]

Although Proposition 1.2 gives a characterisation of the basic ideals of a
Munn ring, it does not give very much information about their structure. Much
stronger results can be obtained; in fact, the basic ideals of ^(91; /, A; P) can be
described precisely in terms of the ideals of 91. This is done in Theorem 1.4.

Let~# = ^(91; /, A; P) be a Munn ring and let M be an ideal of J(. For each
(/, A) e Ix A such that/?^ is invertible, we obtain an ideal Mu of 91 as follows:

Ma = {ae9I :(a;i, A)e M}.

LEMMA 1.3. If (i, A), (j, //) e IxA are such that pxi andp^ are invertible then
Ma = Mj,.

PROOF. If a e Ma then (a; i, A) e M and thus

(a; j , n) = fal; j , X)(a; i,

also belongs to M. Hence Ma £ Mjft and, by symmetry, Mjfl c Mix. This
proves the result.

As a consequence of Lemma 1.3, it makes sense to speak of the ideal I(M) of
91 induced by an ideal M of ̂ (. On the other hand, given any ideal Â  of 91, the set

B(N) = {Xe J( : PXP is over W}
is an ideal of ^ .

In the following theorem, let ^(91), £C{JK) denote, respectively, the lattices
of ideals of 91 and J(. Further, let 3§{JV) denote the A-subsemilattice of ££(Jl)
which consists of the basic ideals of Jl'.

THEOREM 1.4. The mapping I: £e(J() -> =£?(9l), which associates, with each
ideal M of J(, the induced ideal I(M) of 91, is a complete lattice homomorphism
of £?(J() onto J§?(9t). The mapping B : <S?(9l) -»• <£(J() is a ̂ -complete semi-
lattice homomorphism of J§?(91) into Jf(^#) whose image is £8{J(\ Further,
I o B is the identity mapping on J?"(9l) and, for each M e JS?(9I), B(M) is the maxi-
mum ideal N of Jl such that I(N) = M.

PROOF. Let {Mk : k e K} be a set of ideals of J( and let (i, A) e Ix A be such
that pu is invertible. Then

aeI(n{Mk:ke K}) if and only if (a; i, A) 6 n {Mk: ke K)

w h i c h o c c u r s if a n d o n l y if a e n {I(Mk) :ke K}. H e n c e

/ (n {Mk: k e is:}) = n {I(Mk) :keK}.

On the other hand, it is easy to see that

:keK) <= I(v{Mk:ke K}).

Hence, when we prove the converse inclusion, we will have shown that / is a com-
plete lattice homomorphism.
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[5] Rings related to completely 0-simple semigroups 261

Let XeJt; then

for some b e 91. Hence, if (a; /, A) e v {Mk : k e K}, then

(a; i, X) = (p;t
l; i, X)(a; i, X)(j>^1; i, X)

where (by, i, X)eu {Mk :keK}, 1 ̂ j ^ n.
Hence a = bt + • • • +bn e v {I(Mk) : k e K}. This proves

I(v{Mk :keK})c v{I(Mk) :keK}

so that we have equality.
Now consider B and this time let {Mk :keK] denote a set of ideals of 91.

Then XeB(n {Mk:ke K}) if and only if PXP is over n{Mk :keK}. But this
is possible if and only if PXP is over Mk for each k e K. Hence

B(n {Mk:ke K}) = n{B(Mk) :keK}

and so B is a A-complete semilattice homomorphism.
Next we show that Io B is the identity on i?(9l); this proves that / is onto as

claimed in the statement of the theorem. Let M be an ideal of 21 and let y : 21 -»
Hom (21/M, 2I/M) be the representation of 21 on 2I/M; since 21 has an identity, y is
proper. Let Q, R be epic and monic respectively such that QR = y(P). Then, by
[9], Theorem 2.7, F = [y; Q, R] is a basic representation of J( with kernel B(M);
hence B(M) is basic. Further, since the representation of 21 induced by F is
equivalent to y, l(B(M)) = M. Thus Io Bis the identity on£?(%).

The fact that B(M) is basic for each Me .S?(2l) shows that Im B £ J*(^) .
On the other hand, [9], Theorem 2.7 shows that each basic ideal of J( is of the
form B(M) for some M e =£?(2I). Hence Im B = 3S(J().

Finally, let N be any ideal o f ^ with M = I(N) and denote b y ^ 1 the ring
obtained by adjoining an identity to ^ . Then N is an ideal of J(l and the
mapping F :J! -> Hom (Jly\N,JlxlN) denned by

(N+x)F(X) = N+xX,

for each x e^1, Xe Jt', is a representation of ̂  with kernel N. This representa-
tion is of the form

F(X) = Ry(X)Q

where y is a representation of 21 with kernel M and g/? = y(P). Then l e JV im-
plies Ry(X)Q = 0 and thus y(PXP) = 0. Therefore N E 5(M).

The following corollary generalises the well known result for ideals in matrix
rings ([10], Theorem 2.24); a slight adaptation of the argument in [10] also suffices
to prove the more general result.
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COROLLARY 1.5. Let %be a ring with identity and let I be a set. Then the ideals
of the ring ̂  of all finitely non-zero 1x Imatrices over 91 are the sets of the form

A-is over M}
where M is an ideal o/2I.

PROOF. Jt x ^#(91; I, I; A) where A is the Ixl identity matrix. If N is any
ideal of J( with I(N) = M then there is a representation y : 91 -• Horn (A, A)
and Q : 'A -> C, R : C -> A1 such that QR = y(A) and further

N = {X e J( : Ry{X)Q = 0}.

Thus Xe N implies y(AXA) = 0.
Now y(AXA) is the morphism IA -* A1 determined by the Ix I matrix y(X).

Hence Xe Nimplies y(X) = 0 while, on the other hand, if y(X) = 0 then XeN.
Since M = Ker y, it follows that

N = {Xe ^ :X hover M}.

THEOREM 1.6. Let Jt = ^(9 t ; /, A; P) be a Munn ring. Then the basic ideals
of.JK are the ideals

B(M) = {XeJ(: PXP is over M}

where M is an ideal of 91.

B(M) is maximal if and only if M is maximal;
B{M) is primitive if and only ifM is primitive.

Further, the radical of \J( is

R a d ^ = { J e J : PXP is over Rad 91}.

PROOF. That the basic ideals are of the form B(M) above is merely a restate-
ment of part of Theorem 1.4. From Theorem 1.4, any maximal ideal is basic and
so of the form B{M) for some Me J5f(9l). But M s N implies B(M) S B(N) so
that M must be maximal in J?(9I). On the other hand, if M is a maximal ideal of
21 and B(M) s N then M = Io B(M) £ I(N). Hence M = I(N) so that B(M) =
B{I(N)) 2 W. Hence B{M) is maximal.

An ideal TV of J( is primitive if and only if it is the kernel of an irreducible
representation o f ^ over the integers. Therefore, by [9], Theorem 3.7, N'\% primi-
tive if and only if N = B(M) where Mis the kernel of an irreducible representation
of 91 over the integers. Thus N is primitive if and only if N = B(M) where M is a
primitive ideal of 9L

Finally, the radical of J( is the intersection of its primitive ideals. Hence

Rad J( = n {^(M): M is a primitive ideal of 91}
= B(r\ {M : M is primitive in 91})
= B (Rad 91).
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REMARK 1.7. Lallement and Petrich [7] have shown that, i f^# is the algebra
ot a finite 0-simple semigroup J(*(G; I, A; P), over a field <£, then

Rad J( = { l e j ? : PXP is over Rad <P{G)}.

Brown [1] has considered algebras which he called generalised matrix algebras.
These are Munn rings of the form^#(<P; m,n;P) where $ is a field of characteristic
zero and Brown shows that

: PXP = 0}.

2. The primitive homomorphic images

In this section, we use the Jacobson Density Theorem [6] to characterise the
primitive homomorphic images of a Munn ring. We shall adhere to the terminology
and notation used in [10], Chapter 5 in connection with the density theorem, ex-
cept that we require all modules to be left modules.

LEMMA 2.1. Let 31 be a dense ring of linear transformations of a vector space
A over a division ring D. Ifn is a positive integer, then the ring 5ln ofn x n matrices
over % is a dense ring of linear transformations of the vector space A" = "A over D.

PROOF. Certainly 2ln acts as a singly transitive ring of endomorphisms of "A
and so is irreducible. By the density theorem 9ln is therefore a dense ring of linear
transformations of "A considered as a vector space over the opposite ring to the
centraliserof9ln.

Easy calculation shows that the centraliser of 2L, is isomorphic to the opposite
ring of D and that the scalar multiplication induced on "A coincides with the or-
dinary multiplication by scalars in D. Hence we have the result.

LEMMA 2.2. Let A be a vector space over a division ring D and let I be an in-
finite set. Iff1, • • •,/" are linearly independent in the vector space A1 over D then
there exist il, • • •, in e / such that gl, • • •, g", defined below, are linearly inde-
pendent; gJ is given by

fj=f% ifi = ilt

0 otherwise

forj = 1,2, •• •, n.

PROOF. Pick iy e / such that/;} # 0. If/;', • • •/;" are linearly independent we
are done; we need only pick any n-1 other elements i2, • • •, in of/. If not, we can
manipulate/1 • • • /" so that / ; ' , • • •/? are linearly independent and/i

s
1

+1, • • •,/;"
are all zero without destroying the linear independence of/1 , • • •,/". Since the
n—s vectors / s + 1 , • • • , / " are linearly independent, there exist, by means of an
obvious induction is+1,- • •, in such that ks+1, • • •, k", defined by
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{ 0 otherwise

^ j ^ n are linearly independent. Pick i2, • • •, is e /distinct from each other
and from it, is+i, • • •, in and define gx, • • •, g" as in the statement of the lemma.
Then gl, • • •, g" are linearly independent.

THEOREM 2.3. Let <J( = -#(2t; I, A; P) be a Munn ring and let M be a primi-
tive ideal of\Jl'. Let y : 21 -* Horn (A, A) be a morphism o/9l, with image a dense
ring of linear transformations of a vector space A over a division ring D, and suppose
that M = Ker y.

Let C = A/Ker y(P), where y(P) is regarded as a morphism AA -* A1 of vector
spaces over D. Then ^#/B(M) is isomorphic to a dense ring of linear transformations
of the vector space C over D.

PROOF. Let Q : AA -* C and R : C -* A1 be morphisms of vector spaces over
D such that QR = y(P) with Q epic and R monic. Then T :J( -+ Horn (C, C),
where T = [y; Q, R], is, by [9] Theorem 3.7, an irreducible representation of J(
over D. Further F{J() w Jt\B{M\

To show that F(ytf) is a dense ring of linear transformations of C, it suffices
to prove that F{J() is singly and doubly transitive on C; [10], Theorem 5.47. If
C does not have dimension one over D, it in fact suffices to show that F{JK) is
doubly transitive on C. We shall assume that dim C ^ 2 and prove that F{<J() is
doubly transitive on C; the proof in the case when dim C = 1 is essentially similar.

Let (c t , c2), (di, d) be pairs of linearly independent elements of C. Then there
are linearly independent elements el, ez in A such that elQ = dt, i = 1, 2. Further,
since R is monic, f1 = ctR a n d / 2 = c2R are linearly independent. Hence it
suffices to find XeJK such tha.tfly{X) = e\ i = 1, 2.

S ince / 1 , / 2 are linearly independent, there exist u,ve /such that gl, g2 defined
by

A j fk if k = u,v

[ 0 otherwise

are linearly independent. Suppose that, for some

g'y(x) = el i = l, 2,
and define Y eJ( by

KKk if h = u, v

0 otherwise
Then

f'y(Y) = g'y(Y) = g'y(X) = el i = 1, 2.

Thus it suffices to find I s J ' such that

g'y(x) = el i = l, 2.
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Now el, e2 have non-zero components belonging to at most a finite number
of the A; say m. Let n = max(w, 2). Then, as a final reduction of the problem, it
suffices to show that the n x n matrices over y(W) are a dense ring of linear trans-
formations of the vector space "A = A" over D. That this is the case, is ensured
by Lemma 2.1.

Theorem 2.3 can be applied to give a complete description of the algebra of
a Munn ring Jt', which obeys the descending chain conditions on right ideals,
modulo its radical. Thus, in particular, we can give a complete description of the
algebra of a finite 0-simple semigroup modulo its radical. This answers a question
raised by Lallement and Petrich [7].

PROPOSITION 2.4. Let J( = ^#(91; /, A; P) be a Munn ring. If ^ obeys the
descending chain condition for right ideals, then 9t obeys the descending chain con-
dition for right ideals and I is finite.

PROOF. For each right ideal M of 91 define

R(M) = {XeJt: XP is over M}.

Then R(M) is a right ideal of J( and further (ap^1; i, X) e R(M) if and only if
ae M, for each (r, X) e Ix A such that pu is invertible. Hence M <= N implies
R(M) c: R(N). This shows that if ^ obeys the d.c.c. on right ideals, so does 91.

For each subset / ' of /, define

J?(I') = {XeJ? : X]x = 0 if jil'}.

Then J({I') is a right ideal of J( and / " c I' implies Jt{l") c J((l'). Hence, if
J( obeys the d.c.c. on right ideals, / is finite.

Let 91 be a ring which obeys the d.c.c. on right ideals such that 91 is generated
as a group by 9l2. Then each proper primitive ideal of 91 is maximal. Further 91 has
only a finite number of maximal ideals, Mx ,•••, Ms say, and

9l/Rad 9t « 91/Mi © • • •

Each 91/A/i is isomorphic to the ring of linear transformations of a finite dimen-
sional vector space Vt over a division ring Dt. Further Dt and the dimension st of
F; are uniquely determined by Mf so that 9I/M; x (Dj)s. for a unique division
ring Dt and positive integer st. If y : 91 ->• Horn (A, A) is a ring morphism of onto
a dense ring of linear transformations of a vector space A over a division ring D,
then y is onto Horn (A,A),D = Di and A = Vt where Ker y = Mt. The results
described above follow from the Wedderburn-Artin Theorem, [10], Theorem 5.59
and the isomorphism theorem of [7], page 45.

Suppose now that, as well as satisfying the d.c.c. for right ideals, 91 has an
identity and let A be a set and n a positive integer; let P : As# -*• 91" be a morphism
of 9l-modules. Then, for each morphism yt : 91 -> (Di)s. with kernel M i ; yi(P) has
finite rank ( = dim Im yt(P)) over Dt.
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Since Dt, s; are uniquely determined up to isomorphism and since yi(P) is de-
fined in a natural manner from yt, it follows that rank }>;(P) depends only on Mt.
We call this rank the M,-rank of P and denote it by t1.

THEOREM 2.5. Let J( = ^ ( 2 1 ; /, A; P) be a Munn ring which obeys the d.c.c.
on right ideals. Then 21 obeys the d.c.c. on right ideals and I is finite.

Suppose that Mt, • • •, Mn are the distinct maximal ideals o/2l and that these
have associated division rings Dl,--,Dn. Then

= {XeJt : PXP is over Rad 21}
and

^ / R a d u f * (DO,, © • • • © (£>„),„•

PROOF. Only the statement about ^f/Rad J( still has to be proved. By the
Wedderburn Artin theorem, ^ / R a d <J( is isomorphic to the direct sum of the rings
^/Nf, i = 1, 2, • • •, k, where Nt, i = 1, 2, • • •, k are the distinct maximal ideals
of ~M. By Theorem 1.6, the maximal ideals are the ideals B(Mt), i = 1, 2, • • • n.

Let £>, be the division ring associated with Mt and let yt be the homomorphism
of 21 onto Horn (A, A), where A is a vector spcae over Dt, with kernel Mt. Let
\I\ = m; then y^P) is a morphism AA -* Am of vector spaces over Dt. Hence
AjKtr i(P) x "Di = D\' where tt g m dim A; by definition, tt is the Afrrank of P.

By Theorem 2.3, J(\B{M^) is (isomorphic to) a dense ring of the vector space
AA/Ker yt(P), over Z);. Since AA/Ker y;(-P) is finite dimensional, this means

Horn ( ^ / K e r 7S(P), ^^/Ker y,-(P)) w Horn (D^D/') « (£>,),, •

Hence we have the result.
As an immediate corollary to Theorem 2.5, we can obtain the structure of

the algebra J( of a finite 0-simple semigroup <J?°(G; m, n; P), over a field $,
modulo its radical. In the case in which the field $ is algebraically closed, or the irre-
ducible representations of the structure group are one dimensional over <P, the
determination of ^# /Rad^# is particularly easy; it is only necessary to calculate
rank y(P), over <t>, for each irreducible representation y of G.

EXAMPLE 2.6. Let G = {a, e} be the cyclic group of order two and let <P be a
field. Let 21 = #(G) and let P: 2<P(G) -> <P(G)2 be given by the matrix

Then J! = ^ ( 2 1 ; 2, 2; P) is the (contracted) algebra of S = ^°{G; 2, 2; P)
over <P.

(I) $ has characteristic 2. Then 21 has a unique irreducible representation
y : 21 -» <£ defined by
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The kernel of y is

M = {ke + naeW-.k + n = 0} = {xe 21: x2 = 0};

since 21 has a unique maximal ideal, this is also Rad 91.
By Theorem 2.5,

Rad uf = B(M) = {["* y~| e uf : (x + y + u+v)2 = oj

and, since rank y(P) = 1,

2I/Rad St.x 4> x

(II) ^ does not have characteristic two. 91 has two irreducible representations,
both of degree one, defined by

y^ke + fia) = X + fi, y2(Xe + na) = k-\i.

Here 91 is semisimple and is isomorphic to <P © <P.
By Theorem 3.6,

= B(0) = (P*1 X21 e ^ : x, = A;(a + e), A; e 0 and ^ ^ =

Since rank y^P) = 1 and rank y2(P) = 2,

^ / R a d ^ T x (0) © (<P)2 ^ (9t/Rad9t),

for any positive integer t.

REMARK 2.7. Suppose that^# = ~#(9I; w, w; P) and let y : 21 -* Horn (y4, ^ )
be a morphism of 2t onto the endomorphism ring of a finite dimensional vector
space A over a division ring Z). Then we can give a short proof of Theorem 2.3,
for this case, as follows. Let C = "A/Ker y(P) and let QR be the obvious natural
factorisation of y(P) into Q : \4 -> C and / ? : C -> 4̂"". Then C is finite dimensional
so that Q is projective and R is injective. Hence

Ry{J*)Q = R Hom(^m, "A)Q = Horn (C, C).

3. A special case

DEFINITION 3.1. Let 21 be a ring with identity and let P be an n x m matrix over
9t. Then the invertibihty rank of P is the largest non-negative integer s for which P
has an invertible sxs submatrix. (We adopt the convention that an empty sub-
matrix is 0 x 0).

DEFINITION 3.2. Let 2t be a ring with identity and let P b e a n n x m matrix over
% with invertibihty rank t. Let A and B be permutation matrices over 21 (cf. 7,
page 34) such that
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APB = \M P -
IP21 P22

where M i s an invertible txt submatrix of P and let

Lo o
Then P is suitable iiPQP-P is over Rad 91.

Definitions 3.1 and 3.2 are slight generalisations of concepts introduced by
Lallement and Petrich [7] for matrices over an algebra 91, over a field <P; in their
terminology, a suitable matrix is a <P-matrix.

Lemma 3.3, which follows, is a generalisation of [7], Lemma 3.3. The argument
given in [7] serves to prove the present result if we note that any finite matrix over
a division ring, is suitable.

LEMMA 3.3. Let %bea ring with identity, which obeys the d.c.c. on right ideals,
and let Pbeannxm matrix over 91, with invertibility rank t. Then P is suitable if and
only if

M-rank P - t degree %IM

for each maximal ideal M of%.

THEOREM 3.4. Let 'Hbe a ring with identity which obeys the d.c.c. on right ideals.
Let^Jf = ^ (91; m, n; P) be a Munn ring and suppose that P has invertibility rank t.
Then

^ / R a d ^ f aa (9I/Rad 91),

if and only if P is suitable.

PROOF. Suppose that P is suitable and that

8l /Rad8I«(D1) , 1©---e( / ) 4) l k .

Then, by Lemma 3.3 and Theorem 2.5,

SW/RadSW «(©,),., ©•••©(DtX*.
But

( D i k 0 • • • © (Dk)tSk » ((DX © • • • © (Dk)Sk\,
hence

^ / R a d * (9t/Rad 21),
as claimed.

Conversely, let Mt, • • •, Mk be the distinct maximal ideals of 91 and suppose
that

9I/M; » (D,\t i = 1, 2, • • •, k.

Then, for each / = 1, 2, • • •, k,

(Dt),r
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Consider the isomorphism

(2>i),l( 0 • • • © (Dk)Skf » (DO, © • • • © (D*)tk.

Then, because of the uniqueness of representation of simisimple rings, those sum-
mands on the left which are matrix rings over Dx must be isomorphic to those on
the right which are matrix rings over Dt. Suppose that Dt, • • •, Dr are isomorphic
to one another but not to any of Dr+l, • • •, Dk. Then

(DXt © • • • © (Dr)Srt « (DX © • • • @(Dr)tr

as rings and hence as vector spaces over Z)x. Thus

s t t + ••• + s r t = ? ! + • • • + t r .

Further, since P has an invertible txt submatrix, M r rank P ^,stt, I ^ i ^ r.
Hence stt = th I ^ i ^ r. Similarly stt = tt, r ^ i ^ k and so, by Lemma 3.3,
P is suitable.

REMARK 3.5. Lallement and Petrich [7], Theorem 3.6, proved that, i
); m, n; P) is the algebra of a finite O-simple semigroup JK°(G; m, n; P)

over a field <P, then
Jf x (<*>((7)/Rad #(G))r

provided that P is suitable with invertibility rank t. They have also proved the con-
verse in the case when <P is algebraically closed.

Although Theorem 3.4 gives a sufficient condition for the existence of an iso-
morphism

x (9l/Rad 9T)t,

the condition contained in the theorem is not necessary; it is possible for such an
isomorphism to exist without t being the invertibility rank of P.

EXAMPLE 3.6. Let <P be a field and let 91 = <P © $ ffi $. Then 91 is the con-
tracted algebra of {e, a, b, 0} where

e = (1, 1, 1) a = ( 1 , 0 , 0 ) b = (0,1,0).

Let P : 32l -+ 913 be given by the matrix

e
0

0

0
a

0

0
0

b

Then, since neither a nor b is invertible, P has invertibility rank 1.
On the other hand, 21 has three irreducible representations, each of degree

one; these act as the projections 91 -* <P. If y denotes any one of these, then y(P)
has rank 2, over <P. Hence, if J( = JK(SH; 3, 3; P).
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(9I)2«(9I/Rad2l)2;

the latter isomorphism holds since 91 is semisimple.
Although Theorem 3.4 gives, modulo 91, a complete description of

when P is suitable, it does not give much information about ^ itself. If we
strengthen the conditions, in Definition 3.2, slightly, it is possible to obtain
much more information about Jl'.

DEFINITION 3.7. Let 21 be a ring with identity and let f b e a n n x m matrix
over 91, with invertibility rank t. Then P is apt if there exist permutation matrices
A, B and a t x t invertible submatrix MofP such that

APE r M

and P = PQP where
- l

.0 0.

3.8 REMARKS. If 91 is semisimple, the concepts of aptness and suitability
coincide.

If 91 is an algebra over a field <P, then any finite matrix over 91, whose entries
are scalar multiplies of the identity, is apt; such a matrix can be regarded as a ma-
trix over <P.

Any non-zero, apt matrix has an invertible entry.
An analog of Theorem 3.4 holds for Munn rings if we replace the word suit-

able by the word apt and the radical of ~# by the basic radical B(0) of J(\ we shall
write the latter as B(M). In order to give a compact proof of this analog, we prove
the following general proposition about Munn rings.

PROPOSITION 3.9. Let P be an nxm matrix over a ring with identity and let
A, B be permutation matrices such that

M P121
APB =

where M is an invertible txt submatrix ofP; let

It C
.0 D

where D = P22—P2iM~1Pl2. Then there is an isomorphism between the Munn
rings ~#(2I; m, n; P) and Jti^i; m, n; F).

PROOF. Let

LP21 / . - J Lo /m_r

Then U and V are invertible and P = UFV.
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Define </> : u?(9l; m, n; P) -> u?0H; m, n; F) by

X<t> = VXU for each XeJ(.

Then, since U, V are invertible, (j> is an isomorphism of the additive structures.
Further, since P = UFV, tf> preserves multiplication and thus is a ring isomorphism.

COROLLARY 3.10. Let P be an apt nx.ni matrix over a ring % with identity,
with invertibility rank t. Then

1; m, n; P) x ^ ( 2 1 ; m, n; E)
where E has matrix

I7' °1.
Lo oj

PROOF. Let A, B, M be such that PQP — P; then simple matrix calculation
shows that D = 0, (D as in Proposition 3.9). The result is now immediate from
the proposition.

THEOREM 3.11. Let ^ = ^ ( 9 1 ; m, n; P) be a Munn ring where P has inverti-
bility rank t and 91 is an algebra of finite degree over afield €>. Then

JCIB{J!) x (91),
if and only if P is apt.

PROOF. If Pis apt then, by Corollary 3.10, we may suppose ^ = ^ ( 9 1 ; m, n; E).
It is an easy matter to show that B(y#) consists of all

r*n x12-\
lx21 x22]

in J( with Xlt = Ot, the zero txt matrix over 91. Hence, clearly ^ # / 5 ( ^ # ) x (91),.

Conversely, we can supposed = ^ ( 9 t ; m, n; F) where Fis as in Proposition
5.9 and M is any txt invertible submatrix of P. Then, for

21 x 2 2

FXF = F - X

LDX21 DX22DJ

and so, if X€ B{JK), Xlt = 0. Thus

dimB(^) ^ (mn-t2) degree 91.

But dim B(J?) = mn degree 91 -t1 degree 91, by hypothesis. Hence

B{M) = {Xe^? :Xlt = 0}.
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Let X12 be the t x (m — t) matrix given by

if i = V, j =j', 1 ^ i ^ t, l ^ j | m - (

otherwise.
Then

= F
L

eB(3R) and so X12D = 0.
O 0 J

But Xi2D has /'-th row the y'-th row of D. As V, j ' range over 1 ^ /' ^ t,
i ^j' ^ m — t, this shows that all rows of D are zero and hence D = 0. This
means precisely that P is apt.

COROLLARY 3.12. (To the proof.) Let P be an apt nxm matrix over an algebra
21 of finite degree over afield <P, with invertibility rank t. Then, if A, B are per-
mutation matrices over % such that

APB = \M P»]
lP2l P22]

where Mis txt andinvertible,PQP = P where

4. Finite semigroups

In this section we apply the theory obtained in previous sections to the al-
gebra of a finite semigroup. As a first step we state the following theorem which
characterises the algebra of a finite 0-simple semigroup. Because this algebra is a
Munn ring the result is an immediate corollary to Theorem 2.5.

THEOREM 4.1. Let S » JK°{G; m, n; P) be a finite 0-simple semigroup and let
<P be a field. Then the (contracted) algebra <P(S) of S over $ is isomorphic to the
Munn ring dl = d((${G); m, n; P).

Suppose that
4>(G)/Rad *(G) « (DO,, 0 • • • 0 (Dr)Sr

where Dt,\ ^ / ^ r is a division ring. For each i, let

Mt = (Dt)si ® • • • © (Dt-X-i © (A + i)Si + 1 © • • • 0

and let tt = Mrrank P. Then

Rad <P(S) = {XeJK : PXP is over Rad <P(G)}
and

*(S)/Rad *(S) * (DX © • • • © (Dr),r.
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Munn [11 ], has shown that, if S is a regular rectangular semigroup with zero
adjoined, <£(S)/Rad 4>(S) « <P((/)/Rad $(G), where G is a non-zero maximal
subgroup of S and <£ is any field. Example 2.6 shows that the converse is not true;
the semigroup S considered there is not a regular rectangular semigroup with zero
adjoined. In order to characterise these semigroups among all finite O-simple semi-
groups, we use Theorem 3.11.

THEOREM 4.2. Let S be a finite O-simple semigroup and let G be a non-zero
maximal subgroup ofS. Let <P be afield. Then S is a regular rectangular semigroup
if and only if

<P(S)/B{<P(S)) « #(G).

PROOF. Since S is completely O-simple, we may assume that ptl = e, the
identity of G and thatpM e {e, 0} if i = 1 or X = 1; [5], page 95. Then, by the result
of Thierrin, [14], which is given in [5], page 98. Example 8b, S is a regular rec-
tangular semigroup with zero adjoined if and only if pu = e for each z e /, X e A.

If each entry in P is e then, clearly, P is apt with invertibility rank one. Hence,
by Theorem 3.11, J(lB{Jt) « <P(G) where J( = J?{$(G); m, n; P) « <P(S).

Conversely, if ~rf/B(<J?) x <!>{G), then P must have invertibility rank 1 and
so is apt. Hence, if we partition P as

21

Pu — Pi\P\i- Since each row and column of P has an invertible entry, this implies
that no entry in P 2 1 or P12 is zero; hence each is e. Therefore each entry in P22>
and thus in P, is e. This shows that 5 is a regular rectangular semigroup with zero
adjoined.

DEFINITION 4.3. A principal series for a finite semigroup S = S° is a series

of ideals of S such that no factor Si/Si+1, 0 ^ i ^ n, has a proper ideal.
Clearly, any finite semigroup has a principal series. Green [6] has proved

that any two principal series for S1 have the same length and that the factors are
pairwise isomorphic. Further each principal factor ([5], page 72) of S appears
exactly once in each principal series. The factors in a principal series are either null
semigroups of order two or are completely O-simple. The completely O-simple
factors are called the regular factors of S.

THEOREM 4.4. Let S be a finite semigroup and let J1, • • •, Jr be the regular
principal factors of S. Let 0 be afield. Then

! )/Rad <Z>(/i)) © • • • ©

PROOF. We use the terminology of [5], Theorem 5.33 which is due to Munn
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[12]. According to that theorem, the apex of an irreducible representation y of S

is a regular principal factor J of S and there is an irreducible representation y' of

J such that

(4.1) y{x) = y\xe)

for each xe<P(S) where e is such that Rad <£(./)+ e is the identity of $( / ) /

Rad $(./). It follows that

y(<P{S)) = y'{<P(J)).

Conversely, given any irreducible representation y' of a regular principal factor J

of S, y defined by (4.1) is an irreducible representation of S. Hence, since $(S)/

Rad <P(S) is isomorphic to the direct sum of its simple homomorphic images

<2>(S)/Rad 4>(S) « ^(J^/Rad <Z>(/X)) © • • • 0 (<P(/,)/Rad *(/ ,))

as claimed.

If we combine Theorems 4.1, 4.4, we have a computational method for deter-

mining the algebra of a finite semigroup S modulo its radical. The determination of

the radical in the general case remains an open question although the radical can

be determined if S is commutative or has just one regular ^-class. (cf. [5], Theo-

rem 5.31 for S commutative).
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