ON PRIME RIGHT ALTERNATIVE RINGS WITH COMMUTATORS IN THE LEFT NUCLEUS

Erwin Kleinfeld and Harry F. Smith

A ring is called s-prime if the $\mathbf{2}$-sided annihilator of a nonzero ideal must be zero. In particular, any simple ring or prime ($-1,1$) ring is s-prime. Also, a nonzero s-prime right alternative ring, with characteristic $\neq 2$, cannot be right nilpotent. Let R be a right alternative ring with commutators in the left nucleus. Then R is associative in the following cases: (1) R is prime, with characteristic $\neq 2$, and has an idempotent $e \neq 1$ such that $(e, e, R)=0$. (2) R is an algebra over a commutative-associative ring with $1 / 6$, and R is either s-prime, or R is prime and locally ($-1,1$).

1. Introduction

A ring is right alternative if it satisfies the identity

$$
\begin{equation*}
(y, x, x)=0 \tag{1}
\end{equation*}
$$

where by definition the associator $(x, y, z)=(x y) z-x(y z)$. A right alternative ring which also satisfies the identity $S(x, y, z)=0$, where $S(x, y, z)=(x, y, z)+(y, z, x)+$ (z, x, y), is called $(-1,1)$; and one which satisfies the weaker identity $S(x y, x, y)=0$ is said to be locally $(-1,1)$.

In Section 2 we define a ring to be s-prime if the 2 -sided annihilator of any nonzero ideal is zero. Any simple ring or prime $(-1,1)$ ring is s-prime. Also, if the attached Jordan ring $R^{(+)}$of a right alternative ring R is prime, then R is s-prime, although the converse need not be true. We shall show that a nonzero s-prime right alternative ring, with characteristic $\neq 2$, cannot be right nilpotent. In particular, there does not exist a nonzero s-prime right alternative nil algebra, over a commutative-associative ring with $1 / 2$, which satisfies the minimum condition on right ideals.

In any ring R the left nucleus is the subring $N=\{n \in R \mid(n, R, R)=0\}$. In Section 3 we shall consider a right alternative ring such that the linear span of all commutators $[x, y]=x y-y x$ is contained in N. Such rings were first considered by

[^0]Paul [8], who showed that if R is a semiprime ($-1,1$) ring with characteristic $\neq 2,3$, then $[R, R] \subseteq N$ implies R is associative. Likewise, the authors [3] have shown that a simple right alternative ring R with characteristic $\neq 2$ is associative if $[R, R] \subseteq N$. In Section 3, assuming $[R, R] \subseteq N$, we shall extend these results in the following ways. First, if a prime right alternative ring R with characteristic $\neq 2$ has an idempotent $e \neq 1$ such that $(e, e, R)=0$, then R is associative. Next, assuming R is a right alternative algebra over a commutative-associative ring with $1 / 6$, then R is associative if R is s-prime, or if R is prime and locally $(-1,1)$.

Finally, we note that in our proofs we shall need to make use of the following identities:

$$
\begin{gather*}
(w x, y, z)-(w, x y, z)+(w, x, y z)=w(x, y, z)+(w, x, y) z \tag{T}\\
S(x, y, z)=[x y, z]+[y z, x]+[z x, y] \tag{S}\\
{[x y, z]=x[y, z]+[x, z] y+(x, y, z)-(x, z, y)+(z, x, y)} \\
(y, x, z)+(y, z, x)=0, \\
2 S(x, y, z)=[[x, y], z]+[[y, z], x]+[[z, x], y], \\
{[x \circ y, z]+[y \circ z, x]+[z \circ x, y]=0,} \\
(w, x, y z)+(w, y, x z)=(w, x, z) y+(w, y, z) x, \\
(x y, z, w)+(x, y,[z, w])=x(y, z, w)+(x, z, w) y, \\
([w, x], y, z)-[w,(x, y, z)]+[x,(w, y, z)]=(x, w,[y, z])-(w, x,[y, z]), \\
z(x, x, y)=(z x, x, y)+(z, y x, x) \\
(x, x, y)^{4}=0 \\
{[y,(x, x, y)]=0}
\end{gather*}
$$

where as usual $x \circ y=x y+y x$. Straightforward verifications show that (T), (S), and (C) hold in any ring. Identity (1^{\prime}) is just the linearised form of (1), and (2)-(8) are known to hold in any right alternative ring with characteristic $\neq 2$. For example, (2), (5), and (6) can be found directly in [14], and (4) is just the linearised form of an identity there. Also, in any right alternative ring $S(x, y, z)+S(x, z, y)=0$, so (S) gives (3). Identity (7) can be found in [10], and (8) was established in [4]. That (9) holds in a locally ($-1,1$) ring with characteristic $\neq 2$ also follows from [14].

2. s-PRIME RINGS

Let A and B be ideals of a ring R. If $A B=0$ implies either $A=0$ or $B=0$, then R is said to be prime; and if $A B=0=B A$ implies $A=0$ or $B=0$, then R is said to be weakly-prime. Also, if $A^{2}=0$ implies $A=0$, then R is semiprime. It is clear that any prime ring is weakly-prime, and that any weakly-prime ring is semiprime.

Proposition 1. A ring R is prime if and only if R is weakly-prime.
Proof: Let A and B be ideals of a weakly-prime ring R with $A B=0$. Then $(A \cap B)^{2} \subseteq A B=0$ implies $A \cap B=0$ since R is semiprime, and so also $B A \subseteq$ $A \cap B=0$. Since R is weakly-prime, this means either $A=0$ or $B=0$, that is, R is prime.

We now define a ring R to be s-prime if $A n n(A)=\{x \in R \mid x A=0=A x\}=0$ for any nonzero ideal A of R. It is easy to see that any simple ring is s-prime, any s-prime ring is weakly-prime, and also that an s-prime ring is without nonzero nilpotent ideals. We note that Miheev [5] has constructed a finite-dimensional, prime, right alternative nil algebra with nilpotent heart. Thus a prime right alternative ring need not be s prime. However, Sterling [13] has shown that in a $(-1,1)$ ring the 2 -sided annibilator of an ideal is itself an ideal. Thus from Proposition 1 it follows that a ($-1,1$) ring is prime if and only if it is s-prime. We also note that Pchelincev [9] has constructed a prime $(-1,1)$ ring that is not alternative, that is, does not also satisfy the identity $(x, x, y)=0$. Thus even an s-prime $(-1,1)$ ring need not be alternative.

It is well-known that if R is a right alternative ring, then redefining multiplication by $x \circ y=x y+y x$ gives a ring $R^{(+)}$which is Jordan, that is, satisfies $[x, y]=0=$ ($\left.x^{2}, y, x\right)$. This ring $R^{(+)}$is referred to as the attached Jordan ring.

Proposition 2. Let R be a right alternative ring. If the attached Jordan ring $R^{(+)}$is prime, then R is s-prime.

Proof: Let R be a right alternative ring such that $R^{(+)}$is prime, and let A be a nonzero ideal of R. Clearly A is also an ideal of $R^{(+)}$. Now suppose $x \in \operatorname{Ann}(A)$. Then by $\left(1^{\prime}\right) A(x \circ R) \subseteq(A x) R+(A R) x \subseteq A x=0$, and $(x \circ R) A \subseteq(x R) A+(R x) A \subseteq$ $(x A) R+x(R \circ A)+(R A) x+R(x \circ A) \subseteq x A+A x=0$. Thus $A n n(A)$ is also an ideal of $R^{(+)}$. But $A \circ \operatorname{Ann}(A)=0$, so $R^{(+)}$prime implies $\operatorname{Ann}(A)=0$, that is, R is s-prime.

We note that the converse of Proposition 2 is not true. In particular, Miheev [6] has constructed a simple right alternative nil ring that is not alternative, and in his example the subspace spanned by the set $D B_{t}$ is a trivial Jordan ideal. Thus R an s-prime right alternative ring does not even imply $R^{(+)}$is semiprime.

We next define an element x of a ring R to be anticommutative if $x \circ R=0$. We note that Kleinfeld [2] has shown that a semiprime alternative ring can have no nonzero anticommutative elements. However, this is not so for prime right alternative rings in general. In the finite-dimensional, prime, right alternative nil algebra constructed by Miheev [5], the basis element e_{10} is anticommutative.

Proposition 3. Let R be an s-prime right alternative ring with characteristic $\neq 2$. If $t \in R$ is anticommutative, then $t=0$.

Proof: Since by assumption t is anticommutative, from (3) we have $0=$ $[x \circ y, t]+[y \circ t, x]+[t \circ x, y]=[x \circ y, t]$. But also $(x \circ y) \circ t=0$, so characteristic $\neq 2$ gives

$$
\begin{equation*}
(x \circ y) t=0=t(x \circ y) . \tag{10}
\end{equation*}
$$

We now let $V=\{v \in R \mid t v=0\}$. Then by (10) and (1') we have $0=t(x \circ v)=$ $(t x) v+(t v) x=(t x) v$, and so also ($x t) v=0$ since t anticommutes. Now using these calculations and (1^{\prime}), we see $t(x v)=-(x v) t=(x t) v-x(t \circ v)=0$, and then $t(v x)=$ $-t(x v)+(t v) x+(t x) v=0$. Hence V is an ideal of R with $t V=0=V t$. Since R is s-prime, this means either $t=0$ or $V=0$. But $0=t \circ t=2 t^{2}$ and characteristic $\neq 2$ imply $t^{2}=0$. Thus $t \in V$, and so in either case we arrive at $t=0$.

Now let R be any ring. We set $R^{[1]}=R$ and then define inductively $R^{[k]}=$ $R^{[k-1]} R$. If $R^{[n]}=0$ for some integer $n \geqslant 1$, then R is said to be right nilpotent.

Theorem 1. A nonzero s-prime right alternative ring with characteristic $\neq 2$ cannot be right nilpotent.

Proof: Suppose R is an s-prime right alternative ring with characteristic $\neq 2$, and that R is right nilpotent. Then by Skosyrskiǐ [11] $R^{(+)}$is nilpotent, say of index n. Now if $n>1$, then for $n-1$ factors the elements $(((R \circ R) \circ R) \ldots) \circ R$ are anticommutative, and so must be zero by Proposition 3. But this contradicts that n is the index of nilpotency for $R^{(+)}$, and so it must be that $n=1$, that is, $R=0$.

Corollary . There does not exist a nonzero s-prime right alternative nil algebra R, over a commutative-associative ring with $1 / 2$, such that R satisfies the minimum condition on right ideals.

Proof: By Skosyrskiǐ[12] such an R would be right nilpotent, and so by Theorem 1 it must be zero.

As noted earlier, Miheev [6] has constructed a simple right alternative nil ring that is not alternative. His example is also without proper left ideals. Thus, in contrast to the preceding Corollary, there do exist nonzero s-prime right alternative nil rings with minimum condition on left ideals.

3. Commutators in the left nucleus

In this section we shall be considering a right alternative ring R, with characteristic $\neq 2$, such that $[R, R] \subseteq N$. We first observe that such an R satisfies the following identities:

$$
\begin{gather*}
-[w,(x, y, z)]+[x,(w, y, z)]=(x, w,[y, z])-(w, x,[y, z]), \tag{11}\\
{[[x, y],(a, b, c)]=(a,[b, c],[x, y])=-[[b, c],(a, x, y)] .} \tag{12}
\end{gather*}
$$

Identity (11) is just (6) and the assumption $[w, x] \in N$. Then $[x, y] \in N,(11)$, and (1^{\prime}) give $[[x, y],(a, b, c)]=[[x, y],(a, b, c)]-[a,([x, y], b, c)]=-(a,[x, y],[b, c])+$ $([x, y], a,[b, c])=-(a,[x, y],[b, c])=(a,[b, c],[x, y])$. From this and ($\left.1^{\prime}\right)$ we also have $[[b, c],(a, x, y)]=(a,[x, y],[b, c])=-(a,[b, c],[x, y])$, which establishes (12).

For R any ring, we next let $A=(R, R, R)+(R, R, R) R$. Using (T) it follows directly that A is an ideal of R, which is commonly referred to as the associator ideal of R. Also, suppose B is an ideal of R contained in the left nucleus N of R. Then by (T) we have $B(R, R, R) \subseteq(B R, R, R)+\left(B, R^{2}, R\right)+\left(B, R, R^{2}\right)+(B, R, R) R \subseteq$ $(B, R, R)=0$, and so also $B((R, R, R) R)=(B(R, R, R)) R=0$. Thus we have shown $B A=0$ if B is an ideal contained in N.

Theorem 2. Let R be a prime right alternative ring, with characteristic $\neq 2$, such that $[R, R] \subseteq N$. If R has an idempotent $e \neq 1$ such that $(e, e, R)=0$, then R is associative.

Proof: Since (e, e, R) $=0$, the right alternative ring R permits a Peirce decomposition with respect to e. Thus $R=R_{11} \oplus R_{10} \oplus R_{01} \oplus R_{00}$ (module direct sum), where $R_{i j}=\{x \in R \mid e x=i x, x e=j x\}$ for $i, j=0,1$. Also, by Humm [1] these submodules $R_{i j}$ have the following multiplication table:

	R_{11}	R_{10}	R_{01}	R_{00}
R_{11}	$R_{11}+R_{01}$	R_{10}	R_{10}	0
R_{10}	0	$R_{11}+R_{01}$	R_{11}	R_{10}
R_{01}	R_{01}	R_{00}	$R_{10}+R_{00}$	0
R_{00}	0	R_{01}	R_{01}	$R_{10}+R_{00}$

Now for $i \neq j$ we have $(i-j) R_{i j}=\left[e, R_{i j}\right] \subseteq N$, so $R_{i j} \subseteq N$. Then $0=$ $\left(R_{i j}, e, R_{i j}\right)=(j-i) R_{i j}^{2}$ implies $R_{i j}^{2}=0$. Thus in our case this multiplication table becomes

	R_{11}	R_{10}	R_{01}	R_{00}
R_{11}	$R_{11}+R_{01}$	R_{10}	R_{10}	0
R_{10}	0	0	R_{11}	R_{10}
R_{01}	R_{01}	R_{00}	0	0
R_{00}	0	R_{01}	R_{01}	$R_{10}+R_{00}$

At this point, using the last table and (1^{\prime}), straightforward and standard calculations show $H=R_{10} R_{01}+R_{10}+R_{01}+R_{01} R_{10}$ is an ideal of R. Also, since by (T) N is a subring and we know $R_{i j} \subseteq N$ for $i \neq j$, this ideal H is contained in the left nucleus
N. Thus by (13) $H A=0$. Now since by assumption R is prime, either $H=0$ or $A=0$. But if $H=0$, then $R_{10}=0=R_{01}$ implies R_{11} and R_{00} are orthogonal ideals. Since R is prime and $e \neq 0$ is in R_{11}, this means $R=R_{11}$. Hence $e=1$, which is a contradiction. Therefore we must have the associator ideal $A=0$, which proves that R is associative.

Now let R be any ring with $[R, R] \subseteq N$, and set $\bar{N}=\{n \in N \mid n A=0\}$.
Lemma 1. For R a ring with $[R, R] \subseteq N$, the following are equivalent for $n \in N$:
(a) $n \in \bar{N}$,
(b) $n R \subseteq N$,
(c) $\quad R n \subseteq N$.

Proof: From (T) we have $n(x, y, z)=(n x, y, z)$. Thus $n R \subseteq N \Leftrightarrow n(R, R, R)=$ $0 \Leftrightarrow n A=0$, that is, $(a) \Leftrightarrow(b)$.

Since $n x=[n, x]+x n$ and $[R, R] \subseteq N, n R \subseteq N \Leftrightarrow R N \subseteq N$, that is, $(b) \Leftrightarrow(c)$.
Corollary. If R is a ring with $[R, R] \subseteq N$, then $\bar{N} R \subseteq \bar{N}$.
Proof: By Lemma 1(b) $\bar{N} R \subseteq N$, and $(\bar{N} R) A=\bar{N}(R A) \subseteq \bar{N} A=0$. Thus $\bar{N} R \subseteq \bar{N}$.

Lemma 2. If R is a ring with $[R, R] \subseteq N$, then $[N, N] \subseteq \bar{N}$.
Proof: Let $n, m \in N$. Then using $(C),[R, R] \subseteq N$, and that N is a subring, we have $[n, m] y=[n y, m]-n[y, m]-(n, y, m)+(n, m, y)-(m, n, y)=[n y, m]-n[y, m] \in N$. Thus $[N, N] \subseteq \bar{N}$ by Lemma 1 .

Lemma 3. If R is a ring with $[R, R] \subseteq N$, then $(R, N, N) \subseteq N$
Proof: $S(x, y, z) \in N$ from (S) and $[R, R] \subseteq N$. Thus for $n, m \in N$ we have $(x, n, m)=(x, n, m)+(n, m, x)+(m, x, n)=S(x, n, m) \in N$.

Lemma 4. Let R be a right alternative algebra over a commutative-associative ring with $1 / 2$. If $[[R, R], R] \subseteq N$, then the ideal generated in R by $[[R, R], R]$ is $\langle[[R, R], R]\rangle=[[R, R], R]+[[R, R], R] R$.

Proof: First $R[[R, R], R] \subseteq[R,[[R, R], R]]+[[R, R], R] R$, and $([[R, R], R] R) R=$ $[[R, R], R] R^{2} \subseteq[[R, R], R] R$ using $[[R, R], R] \subseteq N$. Then $R([[R, R], R] R) \subseteq$ $(R,[[R, R], R], R)+(R[[R, R], R]) R \subseteq(R, R,[[R, R], R])+[[R, R], R] R$ by (1') and the preceding. But by (C), (1^{\prime}), and $[[R, R], R] \subseteq N$, we have $2(x, y,[[a, b], c])=$ $[x y,[[a, b], c]]-x[y,[[a, b], c]]-[x,[[a, b], c]] y-([[a, b], c], x, y)=[x y,[[a, b], c]]-x[y,[[a, b], c]]$ $-[x,[[a, b], c]] y$. Thus also $(R, R,[[R, R], R]) \subseteq[R,[[R, R], R]]+R[R,[[R, R], R]]+$ $[R,[[R, R], R]] R \subseteq[[R, R], R]+[[R, R], R] R$ by the preceding. Hence $R([[R, R], R] R) \subseteq$ $[[R, R], R]+[[R, R], R] R$, which proves the lemma.

Lemma 5. Let R be a right alternative ring with characteristic $\neq 2$. If $[R, R] \subseteq$ N and $[N, N]=0$, then $[[R, R],(R, R, R)]=0$.

Proof: First by (2), $[R, R] \subseteq N$, and $[N, N]=0$, we have $2(R, N, N)=$ $2 S(R, N, N) \subseteq[[R, N], N]+[[N, N], R]+[[N, R], N]=0$, so characteristic $\neq 2$ implies $(R, N, N)=0$. Thus (12) and $[R, R] \subseteq N$ give $[[R, R],(R, R, R)] \subseteq$ $(R,[R, R],[R, R]) \subseteq(R, N, N)=0$.

Lemma 6. Let R be a semiprime right alternative algebra over a commutativeassociative ring with $1 / 2$. If $[R, R] \subseteq N$ and $[N, N]=0$, then $[[R, R], R]=0$.

Proof: We shall show that $\langle[[R, R], R]\rangle$ is a trivial ideal. First, using $[[a, b],[[y, z], x]] \in[N, N]=0$, (C) and (1^{\prime}), we have $[[a, b],[y, z] x+[x, z] y]=$ $[[a, b], x[y, z]+[x, z] y]=[[a, b],[x y, z]-2(x, y, z)-(z, x, y)] \in[N, N]+[[R, R],(R, R, R)]$ $=0$ by Lemma 5 . This then gives $[[a, b],[[s, t], z] x]=-[[a, b],[x, z][s, t]] \in[N, N]=0$, that is, $[[R, R],[[R, R], R] R]=0$. This, (C) and ($\left.1^{\prime}\right),[R, R] \subseteq N$, and $[N, N]=0$, then imply $[[R, R], R]^{2} \subseteq[[R, R],[[R, R], R] R]+[[R, R],[[R, R], R]] R+2([[R, R], R], R,[R, R])+$ $([R, R],[[R, R], R], R)=[[R, R],[[R, R], R]] R \subseteq[N, N] R=0$. Hence also $[[R, R], R]([[R, R], R] R)=[[R, R], R]^{2} R=0$, so by Lemma 4 we have $[[R, R], R]$ $\langle[[R, R], R]\rangle=0$. Then likewise $([[R, R], R] R)\langle[[R, R], R]\rangle=[[R, R], R](R([[R, R], R]\rangle) \subseteq$ $[[R, R], R]\langle[[R, R], R]\rangle=0$. Thus it follows $\langle[[R, R], R]\rangle^{2}=0$, and so R semiprime gives $[[R, R], R]=0$.

Corollary. Let R be a semiprime right alternative algebra over a commutativeassociative ring with $1 / 6$. If $[R, R] \subseteq N$ and $[N, N]=0$, then R is associative.

Proof: By Lemma $6[[R, R], R]=0$, and so R is associative by $[8]$.
Lemma 7. Let R be a semiprime right alternative ring with $[R, R] \subseteq N$. If $L \subseteq A \cap \bar{N}$ is a left ideal, then $L=0$.

Proof: First $R L \subseteq L,(L R) R=L R^{2} \subseteq L R$, and using ($\left(^{\prime}\right) R(L R) \subseteq(R, L, R)+$ $(R L) R \subseteq(R, R, L)+L R \subseteq L+L R$. Thus the ideal generated by L in R is $\langle L\rangle=L+$ $L R$. Now by the Corollary to Lemma $1\langle L\rangle=L+L R \subseteq A \cap \bar{N}$. Hence $\langle L\rangle^{2} \subseteq \bar{N} A=0$, so R semiprime gives $0=\langle L\rangle=L$.

At this point we let $I=\{\bar{n} \in \bar{N} \mid A \bar{n}=0\}=N \cap \operatorname{Ann}(A)$.
Lemma 8. For R a semiprime right alternative ring with $[R, R] \subseteq N$, the following are equivalent for $\bar{n} \in \bar{N}$:
(a) $\bar{n} \in I$,
(b) $(R, A, \bar{n})=0$,
(c) $R \bar{n} \subseteq \bar{N}$.

Proof: If $\bar{n} \in I$, then $(R, A, \bar{n}) \subseteq(R A) \bar{n}+R(A \bar{n}) \subseteq A \bar{n}=0$. Thus (a) \Rightarrow (b). If $(R, A, \bar{n})=0$, then using $\left(1^{\prime}\right)$ we have $(R \bar{n}) A \subseteq(R, \bar{n}, A)+R(\bar{n} A) \subseteq(R, A, \bar{n})=0$.

Thus this and Lemma 1(c) imply $R \bar{n} \subseteq \bar{N}$, that is, (b) \Rightarrow (c). If $R \bar{n} \subseteq \bar{N}$, then using (1^{\prime}) we see $R(A \bar{n}) \subseteq(R, A, \bar{n})+(R A) \bar{n} \subseteq(R, \bar{n}, A)+A \bar{n} \subseteq \bar{N} A+A \bar{n} \subseteq A \bar{n}$. Thus $A \bar{n} \subseteq A \cap \bar{N}$ is a left ideal, so by Lemma $7 A \bar{n}=0$. Therefore (c) \Rightarrow (a), which proves the lemma.

Suppose now that R is a right alternative ring with characteristic $\neq 2$, and let $M=\{m \in R \mid(m, R, R)=0=(R, R, m)\}$ be the nucleus of R. If R is prime and not associative, then by [7] M coincides with the centre of R. Thus under the indicated assumptions we have

$$
\begin{equation*}
[M, R]=0 \tag{14}
\end{equation*}
$$

Lemma 9. Let R be a prime right alternative ring with characteristic $\neq 2$ and $[R, R] \subseteq N$. If $\bar{n} \in \bar{N}$, then $\bar{n} \in I$ if and only if $(R,[R, R], \bar{n})=0$.

Proof: First let $\bar{n} \in I$. Then using (1^{\prime}), (5), $[R, R] \subseteq N$, and (T), we have $(R,[R, R], \bar{n})=-(R, \bar{n},[R, R]) \subseteq(R \bar{n}, R, R)-R(\bar{n}, R, R)-(R, R, R) \bar{n}=(\bar{n} R, R, R)=$ $\bar{n}(R, R, R)=0$.

Conversely, suppose that $(R,[R, R], \bar{n})=0$. We may assume that R is not associative, since otherwise $A=0$ clearly implies $\bar{N}=R=I$. Now by (5), $[R, R] \subseteq N,\left(1^{\prime}\right)$, and (T), we see $(R, R, R) \bar{n} \subseteq(R \bar{n}, R, R)+(R, \bar{n},[R, R])-R(\bar{n}, R, R)=(\bar{n} R, R, R)-$ $(R,[R, R], \bar{n})=\bar{n}(R, R, R)=0$. Thus

$$
\begin{equation*}
(R, R, R) \bar{n}=0 \tag{15}
\end{equation*}
$$

Then since (7) shows $R(x, x, R) \subseteq(R, R, R)$, by (15) we have

$$
\begin{equation*}
(R(x, x, R)) \bar{n} \subseteq(R, R, R) \bar{n}=0 \tag{16}
\end{equation*}
$$

Next, using (5) and $(R,[R, R], \bar{n})=0$, we see $(R, R,[[R, R], \bar{n}]) \subseteq-\left(R^{2},[R, R], \bar{n}\right)+$ $R(R,[R, R], \bar{n})+(R,[R, R], \bar{n}) R=0$. Since $[R, R] \subseteq N$, this shows $[\bar{n},[R, R]] \subseteq M$; and so by (14) $[[\bar{n},[R, R]], R]=0$. It now follows directly that the ideal generated in R by $[\bar{n},[R, R]]$ is $\langle[\bar{n},[R, R]]\rangle=[\bar{n},[R, R]]+[\bar{n},[R, R]] R$, which by Lemma 2 and the Corollary to Lemma 1 is contained in \bar{N}. Therefore $\langle[\bar{n},[R, R]]\rangle A=0$ and R prime but not associative give

$$
\begin{equation*}
[\bar{n},[R, R]]=0 \tag{17}
\end{equation*}
$$

Then by (17) and $\bar{n}[(R, R, R), R] \subseteq \bar{n} A=0$, we have

$$
\begin{equation*}
[(R, R, R), R] \bar{n}=0 \tag{18}
\end{equation*}
$$

From (18), (T), and (15), we thus see $(w(x, y, z)) \bar{n}=((x, y, z) w) \bar{n}=\{(x y, z, w)-$ $(x, y z, w)+(x, y, z w)-x(y, z, w)\} \bar{n}=-(x(y, z, w)) \bar{n}=-(x(w, y, z)) \bar{n}$ using (1') and linearised (16). This, linearised (16), and (1^{\prime}) now show

$$
\begin{equation*}
[w(x, y, z)] \bar{n} \text { is an alternating function in } w, x, y, z . \tag{19}
\end{equation*}
$$

We shall now show that $(R(R, R, R)) \bar{n}=(R,(R, R, R), \bar{n})=0$. Since by (T) we also have $A=(R, R, R)+R(R, R, R)$, this with (15) will prove $A \bar{n}=0$, and so prove the lemma.

First, using (11) and (15), we have $[t,(x,(y, z, w), \bar{n})]=[x,(t,(y, z, w), \bar{n})]+$ $(t, x,[(y, z, w), \bar{n}])-(x, t,[(y, z, w), \bar{n}])=[x,(t,(y, z, w), \bar{n})]$. This, (15), and (19), give $[t,(x,(y, z, w), \bar{n})]=[x,(t,(y, z, w), \bar{n})]=-[x,(y,(t, z, w), \bar{n})]=[x,(y,(z, t, w), \bar{n})]=$ $-[x,(y,(z, w, t), \bar{n})]$. Then iteration of this last identity shows $[t,(x,(y, z, w), \bar{n})]=$ $-[t,(x,(y, z, w), \bar{n})]$, so characteristic $\neq 2$ implies

$$
\begin{equation*}
[R,(R,(R, R, R), \bar{n})]=0 \tag{20}
\end{equation*}
$$

Now $(R,(R, R, R), \bar{n}) \subseteq N$ by (15) and Lemma 1. Thus using (C), (1'), and (20), we see $2(R, R,(R,(R, R, R), \bar{n})) \subseteq((R,(R, R, R), \bar{n}), R, R)+\left[R^{2},(R,(R, R, R), \bar{n})\right]+$ $R[R,(R,(R, R, R), \bar{n})]+[R,(R,(R, R, R), \bar{n})] R=0$. Since characteristic $\neq 2$, this means ($R,(R, R, R), \bar{n})$ is contained in the centre of R; and so it follows directly that the ideal generated in R by $(R,(R, R, R), \bar{n})$ is $\langle(R,(R, R, R), \bar{n})\rangle=(R,(R, R, R), \bar{n})+$ $(R,(R, R, R), \bar{n}) R$.

Now let a and a^{\prime} be associators, that is, elements of the form (x, y, z). Using (4), (15), and (1'), we have $(w, a, \bar{n}) a^{\prime}=-\left(w, a^{\prime}, \bar{n}\right) a+\left(w, a, a^{\prime} \bar{n}\right)+\left(w, a^{\prime}, a \bar{n}\right)=$ $-\left(w, a^{\prime}, \bar{n}\right) a=-\left(w, a a^{\prime}, \bar{n}\right)-\left(w, \bar{n} a^{\prime}, a\right)+\left(w, a^{\prime}, a\right) \bar{n}=-\left(w, a a^{\prime}, \bar{n}\right)=-\left(w, a^{\prime} a, \bar{n}\right)$, since $(R,[R, R], \bar{n})=0$. Thus $(w, a, \bar{n}) a^{\prime}=-\left(w, a^{\prime} a, \bar{n}\right)=\left(w, \bar{n} a, a^{\prime}\right)-(w, a, \bar{n}) a^{\prime}-$ $\left(w, a, a^{\prime}\right) \bar{n}=-(w, a, \bar{n}) a^{\prime}$, again by (4) (1'), and (15). Since characteristic $\neq 2$, we thus have $(R,(R, R, R), \bar{n}) A=0$; and so $\langle(R,(R, R, R), \bar{n})\rangle=(R,(R, R, R), \bar{n})+$ $(R,(R, R, R), \bar{n}) R \subseteq \bar{N}$ by the Corollary to Lemma 1. But then $\langle(R,(R, R, R), \bar{n})\rangle^{2} \subseteq$ $\bar{N} A=0$, so R semiprime implies $(R(R, R, R)) \bar{n}=(R,(R, R, R), \bar{n})=0$ as claimed.

Lemma 10. Let R be a right alternative ring with characteristic $\neq 2$. If $[R, R] \subseteq$ N, then $(R, N,[N, N]), R[N,[N, N]] \subseteq \bar{N}$.

Proof: First, using (11) and Lemmas 3 and 2, we have ($R, N,[N, N]$) \subseteq $(N, R,[N, N])+[N,(R, N, N)]+[R,(N, N, N)]=[N,(R, N, N)] \subseteq[N, N] \subseteq \bar{N}$. Next, using Lemmas 2 and 1, we see $R[N,[N, N]] \subseteq R[N, N] \subseteq R \bar{N} \subseteq N$. Now by (5) we have $(R, R,[N,[N, N]]) \subseteq\left(R^{2}, N,[N, N]\right)+R(R, N,[N, N])+(R, N,[N, N]) R$. Since we have already shown $(R, N,[N, N]) \subseteq \bar{N}$, it thus follows from Lemma 1 that $(R, R,[N,[N, N]]) \subseteq N$. Then this, ($\left.1^{\prime}\right)$, Lemma 2, and Lemma 1 with its Corollary
give $(R[N,[N, N]]) R \subseteq(R,[N,[N, N]], R)+R([N,[N, N]] R) \subseteq(R, R,[N,[N, N]])+$ $R(\bar{N} R) \subseteq N+R \bar{N} \subseteq N$. But since $R[N,[N, N]] \subseteq R \bar{N} \subseteq N$ by Lemmas 2 and 1 , this shows $R[N,[N, N]] \subseteq \bar{N}$ by Lemma 1 .

Lemma 11. Let R be a semiprime right alternative ring with characteristic $\neq 2$. If $[R, R] \subseteq N$, then $[N,[N, N]] \subseteq I$.

Proof: By Lemma $2[N,[N, N]] \subseteq[N, N] \subseteq \bar{N}$, and by Lemma $10 R[N,[N, N]] \subseteq$ \bar{N}. Thus by Lemma $8[N,[N, N]] \subseteq I$.

Lemma 12. Let R be a prime right alternative ring with characteristic $\neq 2$. If $[R, R] \subseteq N$ and $I=0$, then $[N, N]=0$.

Proof: By Lemma 11 we have

$$
\begin{equation*}
[N,[N, N]] \subseteq I=0 \tag{21}
\end{equation*}
$$

Then (21), (5), and Lemma 10 show $R(A,[R, R],[N, N]) \subseteq(R,[R, R],[N, N]) A+$ $(R A,[R, R],[N, N])+(R, A,[[R, R],[N, N]]) \subseteq(R, N,[N, N]) A+(A,[R, R],[N, N])+$ $(R, A,[N,[N, N]]) \subseteq \bar{N} A+(A,[R, R],[N, N]) \subseteq(A,[R, R],[N, N])$. Thus $(A,[R, R],[N, N])$ is a left ideal. But $(A,[R, R],[N, N]) \subseteq(A, N,[N, N]) \subseteq \bar{N}$ by Lemma 10. Therefore we have this left ideal $(A,[R, R],[N, N]) \subseteq A \cap \bar{N}$, and so $(A,[R, R],[N, N])=0$ by Lemma 7. This, (5), and (21) then give $A(R,[R, R],[N, N]) \subseteq$ $(A R,[R, R],[N, N])+(A, R,[[R, R],[N, N]])+(A,[R, R],[N, N]) R \subseteq(A,[R, R],[N, N])+$ $(A, R,[N,[N, N]])=0$. Thus $(R,[R, R],[N, N]) \subseteq I=0$, since $(R,[R, R],[N, N]) \subseteq$ $(R, N,[N, N]) \subseteq \bar{N}$ by Lemma 10 . But then by Lemmas 2 and 9 we have $[N, N] \subseteq$ $I=0$, which proves the lemma.

Corollary. Let R be a prime right alternative algebra over a commutativeassociative ring with $1 / 6$. If $[R, R] \subseteq N$ and $I=0$, then R is associative.

Proof: This follows directly from Lemma 12 and the Corollary to Lemma 6.
THEOREM 3. Let R be an s-prime right alternative algebra over a commutativeassociative ring with $1 / 6$. If $[R, R] \subseteq N$, then R is associative.

Proof: Since R is s-prime, either $A=0$ or $I=0$. But if $I=0$, then by the Corollary to Lemma $12 R$ is associative. Thus in either case we must have R associative.

THEOREM 4. Let R be a prime locally ($-1,1$) algebra over a commutativeassociative ring with $1 / 6$. If $[R, R] \subseteq N$, then R is associative.

Proof: Since R is locally ($-1,1$) with characteristic $\neq 2, R$ satisfies identity (9); and from the linearised form of this identity we obtain $[R,(x, x, I)]=-[I,(x, x, R)]=0$. Now $(x, x, I)=-(x, I, x) \subseteq N$ by Lemma 8 and Lemma 1 with its Corollary. Thus,
using (C) and (1^{\prime}), analogous to earlier calculations it follows that $(R, R,(x, x, I))=0$; so (x, x, I) is contained in the centre of R. Now by (8), for $k \in I$ we have $(x, x, k)^{4}=0$. Thus the element $(x, x, k)^{2}$, which is contained in the centre of R, generates a trivial ideal. Since R is prime, this means $(x, x, k)^{2}=0$; and so the central element (x, x, k) likewise generates a trivial ideal. Thus we arrive at

$$
\begin{equation*}
(x, x, I)=0 \tag{22}
\end{equation*}
$$

Then using (1'), linearised (22), and Lemma 8, we see $(A, I, R)=-(A, R, I)=$ $(R, A, I)=0$. Thus $A(I R)=(A I) R=0$, and $A(R I)=(A R) I \subseteq A I=0$. Since $I R \subseteq \bar{N}$ by the Corollary to Lemma 1 , and $R I \subseteq \bar{N}$ by Lemma 8 , this shows I is an ideal of R. But $A I=0$, so R prime implies R is associative or $I=0$. But if $I=0$, then by the Corollary to Lemma 12 we also have R associative, which completes the proof of the theorem

References

[1] M.M. Humm, 'On a class of right alternative rings without nilpotent ideals', J. Algebra 5 (1967), 164-174.
[2] E. Kleinfeld, 'Anticommutative elements in alternative rings', J. Algebra 83 (1983), 65-71.
[3] E. Kleinfeld and H.F. Smith, 'On simple rings with commutators in the left nucleus', Comm. Algebra 19 (1991), 1593-1601.
[4] I.M. Miheev, 'A certain identity in right alternative rings', (in Russian), Algebra i Logika 8 (1969), 357-366.
[5] I.M. Miheev, 'On prime right alternative rings', (in Russian), Algebra i Logika 14 (1975), 56-60.
[6] I.M. Miheev, 'On simple right alternative rings', (in Russian), Algebra i Logika 16 (1977), 682-710.
[7] Ng Seong Nam, 'Right nucleus in right alternative algebras', J. London Math. Soc. (2) 21 (1980), 456-464.
[8] Y. Paul, 'A note on (-1,1) rings', Jñānäbha 11 (1981), 107-109.
[θ] S.V. Pchelincev, 'Prime algebras and absolute divisors of zero', (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 79-100.
[10] L.A. Skornyakov, 'Right alternative division rings', (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 177-184.
[11] V.G. Skosyrskiř, 'Nilpotency in Jordan and right alternative algebras', (in Russian), Algebra i Logika 18 (1979), 73-85.
[12] V.G. Skosyrskiir, 'Right alternative algebras with minimality condition for right ideals', (in Russian), Algebra i Logika 24 (1985), 205-210.
[13] N.J. Sterling, 'Prime ($-1,1$) rings with idempotent', Proc. Amer. Math. Soc. 18 (1967), 902-909.
[14] A. Thedy, 'Right alternative rings', J. Algebra 37 (1975), 1-43.

Division of Mathematical Sciences University of Iowa Iowa City, IA 52242
United States of America

Department of Mathematics, Statistics and Computing Science
University of New England
Armidale, NSW 2351
Australia

[^0]: Received 13th December, 1993
 The research of the first author was partially supported by a University of New England Department of Mathematics, Statistics and Computing Science Visiting Research Fellowship.

