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MULTIPLICATIVE TRANSFERS IN ORDINARY COHOMOLOGY
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1. Introduction

In [10] Segal shows that the groups of units in certain ordinary cohomology rings are
the zeroth terms of generalised cohomology theories. Geometric methods then give a
multiplicative transfer on these groups of units for fibrations with finite fibres; see Kahn
and Priddy [6] and Adams ([1], 4). On the other hand Evens [5] by manipulations
with cochains has constructed a multiplicative transfer in the cohomology of a group G
and a subgroup H of finite index. Now it is well known that the algebraic cohomology
of G and H can be identified with the topological cohomology of their classifying spaces
BG and BH, and that there is a fibration BH-+BG with finite fibres. This suggests that
Evens' algebraic transfer and the geometric transfer derived from Segal's work may be
related. In the present paper I confirm this by constructing a common generalisation; I
also describe some of its properties.

The construction of this generalised transfer is given in Section 4. It is the
construction of the geometric transfer in [1], 4.2, generalised to allow local coefficients.
To show that the construction also generalises Evens' transfer it is described in terms of
cochains in Section 6 (compare Theorem 6.1 below with 4.5 and 5.5 of [5]). The formal
properties of the transfer are stated in Section 3 and proved in Section 5. They
correspond to those of the geometric transfer as stated in [1], 4.3, so far as they are
relevant. They also imply the formal properties of the algebraic transfer as stated in [5],
6, except for the double coset rule, which is proved in Section 7. Section 2 contains
remarks about the coefficient groups.

When I began this work I hoped that the algebraic transfer would be a special case of
the usual geometric transfer, so that the properties of the algebraic transfer could be
deduced from those of the geometric transfer without extra work. This fails, partly
because of the need to generalise the geometric transfer, partly because we are using the
wrong construction of it. The transfer in a cohomology theory for a fibration with finite
fibres can be regarded as a construction on the fibration (as in [1], 4.1) or on the space
representing the cohomology theory (as in [1], 4.2). It is the former construction that
has been most studied and the latter that is generalised here. The result of all this is that
the work in Section 5 generalises proofs that are well known but have not been
published (so far as I know). Even so, I think the proofs in Section 5 are easier than
ones involving cochains would be; and the proof of the double coset rule (Section 7),
which follows the ideas of [1], end of 4.3, may be illuminating.

I am grateful to Professor J. F. Adams for telling me of Evens' transfer and suggesting
comparing it with the geometric transfer.
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114 RICHARD STEINER

2. Coefficient groups

Let p:{X, A)-*(Y, B) be a fibration of CW complexes with finite fibres (we require that
A—p~1(B)). We have to define multiplicative transfers from cohomology classes of
(X, A) to cohomology classes of (Y, B). To see what cohomology classes to take we make
three observations.

2.1. Let G* be one of Segal's cohomology theories [10], constructed from a graded
ring R = (J?0, Ru...). Then G°(X) is the group of units in

H*(X;R)=flH«(X;Rq).

So G° is represented by the product of Eilenberg-MacLane spaces

K(R)* = K(RtO)xf[K(Rq,q),
« = i

where R$ denotes the group of units in Ro. We see that the path-components of K(R)*
are in bijection with R$, and that the base-point is in the path-component
corresponding to 1. Now G°(X, A) is the set of homotopy classes of maps from X to
K(R)* sending A to the base-point; it follows that G°(X, A) is not, as one might expect,
a subset of H*(X, A; R) = ]\™=0 H\X, A;Rq). However G°(X, A) is a subset of

H°(X;R0)xY\H\X,A;Rq).

2.2. The most general results on the cup-product are obtained from products of the
form

H*(;M) x H*(;N)-+H*(; M®N)

(M and N abelian groups) rather than of the form

(R a ring). For a similar reason we shall use graded abelian groups in this paper rather
than graded rings.

23. To obtain Evens' transfer in the generality of [5] one must use local coefficients.
Following 2.2 and 2.3 we shall use as coefficients for the cohomology classes of (X, A)

graded local systems on X; these are defined to be functors from nX, the fundamental
groupoid of X, to the category of graded abelian groups of the form
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MULTIPLICATIVE TRANSFERS 115

Following 2.1 we take as domain of the transfer the somewhat strange-looking
cohomology sets

**(X, A;M) = H°(X; Mo) x f[ H\X, A; Mq). (2.4)

The transfer is to be a sort of "cup-product along the fibres" of p, so its codomain will
be

where p8M is the graded local system on Y given by

(P®M)O0= (g) M(x) for yeY. (2.5)

We use the anticommutative convention for the tensor product of a finite family of
graded abelian groups: for two factors we have

(M®N)r= 0 Mp®Nq,
p + q = r

and M<g)N is identified with N®M by

m®n = {— \)pqn®m for meMp, neNq;

for more than two factors the tensor product is given by induction; the tensor product
of the empty family of graded abelian groups is to be

(Z denotes the integers) and the tensor product of the empty family of elements is to be
leZ.

Remark 2.6. The conventions on empty families are not arbitrary; they are arranged
to satisfy the usual universal properties. Indeed

is universal among graded 0-linear maps from the product of the empty family of
graded abelian groups to a graded abelian group (O-linearity is a vacuous condition).

So our basic transfer will map JV*(X,A;M) to JV*(Y, B; p®M). A morphism of
graded local systems over Y from p®M to N, say, will therefore give a transfer from
je*(X, A; M) to J^*{Y, B; N). The transfer derived from Segal's work [10] maps a subset
of J^*(X,A;R) to a subset of J^*(Y,B;R) where R is a constant anticommutative
graded ring; this comes from the morphism p®R-*R given by multiplication in R. The
transfer of Evens [5]

fl H2\H;L)-+ f[ H2«(G;JtH..G{L))
q=0 q=0
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116 RICHARD STEINER

(G a group, H a subgroup of finite index, L an //-module, JtH-,G{L) the monomial G-
module as defined in [5], 3) can be obtained by taking X = BH, Y=BG, A = B = 0,

M=(L,0,L,0,...) and N = {J(H^G{L),O,J(H-.G{L),0,..).

(We remark that graded //-modules and graded local systems on BH are equivalent,
since H and nBH are equivalent groupoids, and similarly for G.) To describe the
morphism from p^M to N we note that (p®M)9 is zero if q is odd and a direct sum of
copies of JtH_G(L) if q is even; the morphism is obtained by identifying copies.

We next mention two obvious constructions on graded local systems. First, if M is a
graded local system on X and

is a map of pairs, then as in the ungraded case we have an induced graded local system
f*M on X' and an induced map

/ * : Jf*(X, A; M)-+Jtf*(X', A'; f*M).

Second, if* M and N are graded local systems on X, then they have a tensor product
M<g)N, namely the graded local system on X given by

for xeX,

and there is a cup-product

3V*(X, A;M)x Jt?*(X, A; N)-^J^*(X, A; M®N)

constructed as in Steenrod [13], 11.
Now suppose that M is a graded local system on X. Then the map p® from graded

local systems on X to graded local systems on Y has the following obvious properties.

2.7. The map p® is a functor.

2.8. If f

X' > X

-I .-!
Y' > Y

is a pull-back, then p'®/*M is naturally equivalent to g*ptsM.

2.9. If p is the identity, then p9M = M.

2.10. If q: Y-*Z is also a fibration with finite fibres, then q^p^M is naturally
equivalent to (qp)®M.
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2.11. If X is empty and M is the unique graded local system on X, then p®M is the
constant graded local system with

) = (Z, 0,0,...) for yeY.

2.12. If X is a disjoint union Xl\_\X2 with inclusions

h'.X^X, i2:X2-*X,

then p®M is naturally equivalent to

2.13. If N is also a graded local system on X, then p®(M<g) N) is naturally equivalent
to

3. The formal properties of the transfer

Let p:{X, A)-*(Y, B) be a fibration of CW complexes with finite fibres and let M be a
graded local system on X. In Section 4 we shall construct a transfer map (not a
homomorphism)

(the domain and codomain are defined in Section 2) with the following properties (to be
proved in Section 5).

3.1. If a:M-*N is a morphism of graded local systems on X, which induces
a: p®M^p®N since p 8 is a functor (2.7), then the diagram

Jf *(X, A; M) ——* 3V*(X,A;N)

commutes.

3.2. If

p'
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118 RICHARD STEINER

is a pull-back, then

Pl/*(«)=**Pu(w) for ueJf*(X,A;M)

(we identify p'®f*M and g*p(SM by 2.8).

3.3. If p: X-* Y is the identity, then

pu(u) = u for u e 3te*{X, A; M)

(note that p<S)M = M by 2.9).

3.4. If q:{Y, B)-*(Z, C) is also a fibration with finite fibres, then

(we identify qmp®M and (gp)(g,M by 2.10).

3.5. If X is empty, M is the unique graded local system on X (so that
, B;p^M)=H°{Y;I) by 2.11), and 0 is the unique element of 3V*{X, A;M), then

P u(0)=leH°(Y;Z).

3.6. If X is a disjoint union X J L J X J with A1=X1nA, A2 = X2(~\A, and with
inclusions

ii.iXt, At)^(X, A), i2:(X2, A1)-*(X, A),

then

P » = (p»iL«7(«)u(pi2Li!(«) for ue JT*(X, X; M)

(we identify pg,M and (pii)®i*Af ®(pi2)®i*M by 2.12).

3.7. If N is also a graded local system on X, then

pyj(uuv) = pyj(u)vpu(v) for M6^*(X, ^;M), veJf*(X,A;N)

(we identify PaiMl&N) and p^M^p^N by 2.13).

4. The construction of the transfer

We begin with some remarks on Eilenberg—MacLane spaces, and then recall that
J^*(X,A;M) (and similarly ^>*(^B;p8Af)) can be regarded as a set of homotopy
classes. Next we construct something analogous to an operad action (see May [8], 1),
and finally construct the transfer on the lines of [1], 4.2.
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Let L be an abelian group and q be a non-negative integer. We need a definite
Eilenberg-MacLane space K(L, q), not just a homotopy type. In order to construct the
operad action it is convenient to take K(L,q) as the functional topological abelian
group described by Segal in [10] (it is there denoted S"®L). This K(L, q) is the gth
delooping of L by Segal's infinite loop space machine [9]. One can show that these
spaces K(L,q) are the geometric realisations of the standard simplicial abelian groups
giving Eilenberg-MacLane spaces (compare [9] with May [7], 23, for instance). The
following proposition is a standard fact about these simplicial abelian groups (see [7],
23); it may also be obtained by inspection of [9].

Proposition 4.1. The space K(L,q) is the geometric realisation of a functorial simplicial
abelian group whose non-degenerate simplexes in degrees up to q are n, the base-point, in
degree 0 and L\{0} in degree q.

Now let G be a graded abelian group. We set

K(G)=f[K(Gq,q).
4 = 0

The graded local system M gives a composite functor KM from X to spaces, hence a
bundle

\JKM= [j KM{x)
X xeX

over X. Following Siegel [11], 3.6, which gives the absolute case, we have

Proposition 4.2. The cohomology set 3tf*(X, A; M) may be identified with the set of
homotopy classes of sections of

\JKM->X
x

sending each point a of A to a point of the form

(k, 0,0,...) € KM(a) = fl HM(a\, </>•
,=o

The proof is by obstruction theory; for instance one can apply Whitehead [15], VI
(6.16).

Next we recall from [8], 1 that an operad # is a sequence of spaces #(0),
with structure maps

y:#(n)x^m^x ... x<$(m^ctf{ml + ...+ mn),

an identity element 1 e#(l), and an action of the symmetric group En on ^(n) for each n,
satisfying various conditions. The following result gives us an "external" analogue of an
operad action on the spaces K(G), where G runs through graded abelian groups.
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120 RICHARD STEINER

Theorem 43 . There is an operad <€ and there are maps

6: <&(n) x /C(G(1)) x . . . x K(G(n))

for G(l),..., G(n) graded abelian groups such that

(i) 0 is natural in G(l), . . . , G(n);

(ii) each space <if(n) is contractible;

(iii) for each fixed ce^(n) the map

0(c; - ) : K(G(1)) x . . . x

is graded multilinear and represents the cup-product;

(iv) 0(y(c;du...,dn);g{\, 1) , . . . ,g{\ ,mj,. . . ,g(n, 1),...,g(n,mn))

= 0(c; 9(d,; g(l, 1), . . . , g(l, mj),..., 0(dn; g(n, 1),.. . , g(n, mn)))

for ce<${n), d,eV(md, g(i,j)eK(G(i,M

(v) 0(l;g)=g for 16^(1) the identity and geK(G);

(vi) 0(c a;g{a\),...,g(an))• a = 6»(c;g(l),...,g(n)) for ceV(n), aeEn, g(i)eK(G(i)) (where

a:

is given by permuting factors and putting in signs according to the anticommutative
convention).

Proof. This is almost the same as in [14], 2. For q = (q(l),..., q(rij) an n-tuple of non-
negative integers with q(l)+... +q(ri) = q we have a contractible space #(q) consisting of
the natural multilinear maps

x . . . x K{Un), q(n))^K(L(1)®... <g)L(n), q)

representing the cup-product (L(l),. . . , L(n) run through abelian groups). We set

the product being taken over all n-tuples q. One can check that the ^{n) with the
obvious structure form an operad %>, and (ii) follows from the contractibility of the "<?(q).

To construct the maps 0, let c = (cj e ^(n) and

= fl
i
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Write 6(c;g(l),...,g[n)) in the form

{hq)eK(G(l)®...®G{n))= f[ K({G(l)®...®G{n))q,q).
<j = 0

For q an n-tuple with q(l)+... +q(n) = q let

iq: K(G(1),(1)®... ®G(n)m, q)^K((G(l)®... ® G{n))q, q)

be induced by the obvious inclusion. Then hq is to be

where the sum is taken over w-tubles q such that q{\) +...+ q(n) = q.
One can now check (i) and (iii)—(vi). This completes the proof.

We now construct the transfer from 4.3 by the method of [1], 4.2, applying it to
sections of bundles rather than maps into fixed spaces. Recall that we have a fibration
p:X-*Y with finite fibres and functors KM and K{p0M) from nX and nY respectively
to spaces. According to 4.2 the transfer has to map certain homotopy classes of sections
of \JX KM to homotopy classes of sections of \JY K(p®M).

Let us write ILY for U"=oAr". We have functors <£ and UKM from KTIX to spaces
given by:

<g'(x1,...,xn) = ^(n) and TlKM(x1,...,xn) = KM(x1)x ... xKM(xn)

for (x , , . . . ,x j6 l" ; # sends morphisms of nHX to identity maps; and UKM acts on
morphisms in the obvious way. These functors give us a product functor ^ x IIKM
from nHX to spaces with

(<g x UKM)(x) = <g(x) x UKM(x) for x e TIX.

We also have a graded local system (X)M on TIX given by

for (x1;...,xn)eX". This gives us a functor K((X)M) from 71ILY to spaces. We can now
see that 4.3 gives us a natural transformation

(4.4)

Next we define a subspace p^X of TIX by the condition that (x, x j is in p^X if
and only if xl,...,xn are distinct points making up a fibre of p:X-*Y. One might say
that p+X is the space of fibres of p. We note that the part of p^X lying in X" is a
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122 RICHARD STEINER

principal Sn-bundle, and that Y is the disjoint union of the orbit spaces. We shall
express this by saying that £ acts freely on p^X and

Since <i?(n) is a contractible space (4.3(ii)) on which 2n acts, there is an equivariant map
from p^XnX" to ^(ri) determined up to equivariant homotopy. These maps fit together
to give an equivariant section

A:p*X^\J <6 (4.5)
p.X

determined up to equivariant homotopy.
Now let z: X->\JX KM be a section representing a class u in 3^*{X, A; M) (see 4.2). In

the obvious way it gives us a section

n z : I D f - . | ) M M . (4.6)
nx

From 4.4-4.6 we obtain a composite section

p*X——^-> (J C& x UKM) ^ > (J K((X)M). (4.7)
p.X p .*

One can check that ((J0)°(A, Ilz) is equivariant, so yields a section

Using the multilinearity of 0 (4.3(iii)) one can check that w represents a class in
3^C*{Y,B;p9M). Since A is determined up to equivariant homotopy, the class represented
by w depends only on the equivariant homotopy class of Ilz; that is, it depends only on
the homotopy class of z. So the class u in jf?*(X, A; M) represented by z gives us a class
v in Jf *(Y, B; p®M) represented by w, and v depends only on u. We define pu(u) to be v.

5. Proofs of the formal properties

We now prove the properties 3.1-3.7 for the transfer constructed in Section 4.

Proof of 3.1. This follows from the naturality of 8 (4.3(i)).

Proof of 3.2. Suppose that we use a section k.p^X-*^^^ in the construction of
u. If x'ep'+X', then <&(x') = '&((nf)(xr)), and we can define an equivariant section

U
for x'ep'+X'.
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If we use the sections A and A' in the construction of pu and p'u, then 3.2 is true at the
level of sections.

Proof of 3.3. Here p^X = X=Y, <g{x)=<g{\) for xep^X, and we can define an
equivariant section A-.p+X^U^xW by

A(x) = le<i?(l) for xep+X.

If we use this A in the construction of p u , then 3.3 is true at section-level by 4.3(v).

Proof of 3.4. Let z be a section representing u. Suppose we use equivariant sections

Xip+X^W and n:q+Y->\J<<g
p.x q.r

to construct pu and qu. Using the equivariance properties of y, the structure map of the
operad # (see [8], l.l(c) for these), we find that there is an equivariant section

making the square

(qp.

*xO..nu,nz)) U (
9.P.X

(J(yxi)
J (VxUKM)

equivariantly commutative, where i is the obvious inclusion. On the other hand 4.3(iv)
shows that the square

(J
U(vxl)

(J

is equivariantly commutative, where j is the obvious inclusion. Now a section s
representing qupu(u) is obtained from

by passing to orbit spaces twice, while a section t representing (qp)u(u) is obtained from
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by passing to orbit spaces once. It follows from the commutativity of the two squares
that s = t, so quPu(u)=(qp)w(u) as required.

Proof of 3.5. This follows from the conventions (see 2.6).

Proof of 3.6. By 3.2-3.4 it suffices to consider the case Xl=X2=Y, Al = A2 = B, and
p: X = Y LJ Y-* Y is the standard collapsing map. We then have to show that

Pu(") = '*("M *(«) for u e tf *(X, A; M).

Now p+X is the disjoint union of two copies of the diagonal of Y2, which are
interchanged by the non-trivial element i of E2. An equivariant section A.'-PtX->\Jp,x

<£
can be obtained by sending one copy to a fixed element c of #(2) (note that every fibre
is ^(2)) and the other copy to c-x. If we use this X to construct pu, then the result
follows from 4.3(iii).

Proof of 3.7. This follows from 3.3, 3.4 and 3.6 by considering the composite
fibration

(XUX,AUA)-JH^(x, A)-^-*(Y, B).

6. The transfer in terms of cochains

In this section we describe the transfer

pw: Jf*(X, A; M)-*J^*(Y, B;

in terms of cochains. We suppose for simplicity that the fibres of p have constant
cardinality n; the general case reduces to this by splitting Y into components. We shall
write S(Z) for the singular complex of a space Z; and if N is a graded local system on Z,
then we shall write ®ZG for ©zeZG(z).

Suppose that ueJV*(X,A;M) is represented by a cocycle

c:S(X)->0M.
x

Then c will be a graded homomorphism over X; that is, if a: hq^X is a singular q-
simplex with leading vertex o(0) £ X (0 here denotes the leading vertex of A*), then

We have to find a cocycle

over Y representing

pJu)eJ?*(Y,B;P<sM).
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To do this we use ideas based on acyclic models; see Spanier [12], 4.2 and Dold [3],
1. Let W be a resolution of Z by free Z£n-modules; by [3], 1.12 we have a natural
equivariant chain homotopy equivalence

a: W®S(Xn)-+(g)

from a and

(X)c:(X) )(©M] = |

(X)M is defined in Section 4) we construct an equivariant cocycle

c" = cx...xc:

over X" (see Remark 6.2 below). By our assumption on the cardinality of the fibres of p
we have an inclusion map v.p^X-^X"; we therefore have an equivariant cocycle

i*(cn) = c"o(l x j): ©
P.X

over p+X. The augmentation E: W->Z induces an equivariant homology equivalence

and a® 1 has an equivariant chain homotopy inverse

because £„ acts freely on p^X (so that the complexes consist of free ZEn-modules).
Acyclic model arguments show that the equivariant chain homotopy class of

a o (1 ® j) o p: S(p,X)->(g) S(X)

is independent of the choices of W, a and /?.
Putting all this together, we obtain an equivariant cocycle

p.x

over p^X whose equivariant cohomology class is independent of any choices. By passing
to orbits we obtain a cocycle

whose cohomology class is independent of any choices.
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We shall prove the following result.

Theorem 6.1. The cocycle c' has cohomology class pu(u) in Jt*(Y, B;

Remark 6.2. The definition of c" requires a little care. It is essentially the composite

(g)c°<x:

but we have to make it lie over X" by using the morphisms of nX. To do this let weW
and a: A*->X", and suppose that a has components Gt,...,on:A

q->X. By the naturality
of a we shall have

O(W®<T) = £ ayzlk®... ®onznk
k

for certain singular simplexes xik in A«. We define C"{W<2)G) to be

£ OJU.C((T1TU)® ... ®<J3nk.c{anxnk),
k

where a>ik: ffiTik(0)-KTi(0) in nX is the image under ar of the unique morphism from Tlt(0)
to 0 in A*. Compare the definition of the cup-product of local cochains in [13], 11. We
shall say that c" is (X)"com made vertical.

To prove Theorem 6.1 we proceed as follows. Let z:X->\JxKM be a section
representing u. Then />,_,(M) is represented by the section w of 4.8, which is covered by the
equivariant section ((J 9) o (A, Tlz) of 4.7. Let

be an equivariant classifying cocycle. We have

for a a singular simplex in {Jp,x ^((X)M), \a\ the projection of a onto the fibre through
its leading vertex, and i a classifying cocycle of this fibre. We can make (J i equivariant,
because £„ acts freely on (Jp,x K((^)M). The basic constructions of obstruction theory
(see for instance £15], VI.5-6) now show that p^(u) is the class of the cocycle covered
by the equivariant cocycle

S[\J(Vx UKM) }—-»S (J K«g)M) } - -* 0((g)M). (6.3)

https://doi.org/10.1017/S0013091500016606 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016606


MULTIPLICATIVE TRANSFERS 127

So we have to show that this cocycle is equivariantly cohomologous to the cocycle
i*(c")o /? covering the cocycle d of 6.1.

To do this, we shall replace the complexes in 6.3 by chain homotopy equivalent
complexes in such a way that the problem reduces to considering 9 fibre by fibre.
Suppose in general that Z is a space and F a functor from nZ to spaces. For fixed q^O
we have a functor Sq(F) from nZ to abelian groups. Let S(Z; Sq(F)) be the chain complex
whose homology is H*(Z; S,(F)); as a graded abelian group we have

S(Z;Sq(F)) = 0 S(Z, z)®SJiF(z)),
zeZ

where SiZ, z) is the subgroup of S(Z) generated by simplexes with leading vertex z. On
varying q we obtain a double complex S{Z; S{F)).

Theorem 6.4. There is a natural chain homotopy equivalence

This is proved by acyclic models, the models being the constant functors F on TIA'
with F(z) = AJ for zeA'. The proof and the result are similar to those of Brown [2], but
easier.

We note that 6.4 easily yields Serre spectral sequences. Also, if F is a constant functor
(F(z)=Z' for zeZ), then 6.4 becomes the equivalence

S{Z)®S(Z')*S(ZxZ') (6.5)

of Eilenberg and Zilber [4].

We return to considering 6.3. Since every fibre of p has cardinality n,

(J (<g x IlKM) = <g(n) x (J TIKM.
p.X p.X

Let V be a resolution of Z by free ZXn-modules. Since <#(n) is contractible (4.3(ii)), W
= V<S>S(^(n)) is also a resolution of Z by free ZSn-modules. We now see that under the
equivalence 6.5 (A, IIz) is equivariantly equivalent to the composite

)®S{p+X) •®'$n*> S(<i?(n))<g> S(\J T1KM),

where /? is an equivariant chain homotopy inverse to e®l. Using 6.4 and 6.5 we then
see that the cocycle of 6.3 is equivariantly cohomologous to
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))®S(U UKM)
p.x

r; S(n/CM)) = S

©
p.*

made vertical: the morphisms of p^X act trivially on S(^(n)), and the last mosphism is
e®i because |Ji is projection onto the fibre followed by i.

A comparison of this with the cocycle of 6.1 shows that the proof of 6.1 reduces to
the following result.

Proposition 6.6. / / G ( l ) , . . . , G(n) are graded abelian groups, then the composite

x ... x KG(ri)) ~ S(#(n) x KG(l) x...x KG(n))

is cohomologous to s®n, where

p.S(KG(l)x ...KG(n))^G(l)®...®G(n)

represents the cross-product of the universal classes.

Proof. For L an abelian group and q ̂  0, let C{L, q) be the simplicial chain complex
of K(L,q) (4.1 tells us that K(L,q) is the geometric realisation of a simplicial set). Then
the inclusion of C(L,q) in S(K(L,q)) is a homology equivalence ([12], 4.6.11). Combining
this with 6.5 gives a natural homology equivalence

y: S ( ^ ( n ) ) ® (g) § C(G(i) , , q)^S(V(n) x KG(1) x...x KG(n))
; = i <j=o

(recall that KG(i) is

https://doi.org/10.1017/S0013091500016606 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016606


MULTIPLICATIVE TRANSFERS 129

It follows from 4.1 that C(G(i)q, q) has a basis

with deg(r/)=O, deg(g) = q for g E G(i),\{0}, deg{b)>q for beB'^. A typical basis element
for the domain of y therefore has the form

with a a singular simplex in ^(n), biqeBiq, biq = r] for all but finitely many pairs i, q. It
now suffices to show that

(i) iOy{z)=gl®...®gn if deg(<r) = O and ®qbiq = t\®.
fceG(i%(0\{0}) for each i,

(ii) i0y(r)=O otherwise.

Now (i) is true because 6 represents the cup-product (4.3(iii)). And if T is as in (ii), then
we can find non-negative integers dl,...,dn such that blq = rj for q>dt and dt + ...
+ dn<deg(r). Let H(i) be the graded subgroup of G(i) obtained by truncation at d{; that
is,

q G{i)q for q£d,,

0 for q>dt.

Then the naturality of 6 (4.3(i)) shows that i9y{T) lies in

But this vanishes in the degree of T, since d1 +... + dn < deg (T), SO idy(r) = 0, as required.
This completes the proof of (ii), hence of 6.6, hence of 6.1.

7. The double coset rule

Suppose that G, H and K are groups, i:H-+G is the inclusion of a subgroup of finite
index, a n d / : K-+G is a homomorphism. We then have the transfer

iu:H*(H;M)-+H*(G;i@M)

for M a graded H-module. The double coset rule describes the composite

(Often / is required to be an inclusion too, but this is not necessary.)

EMS—B
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To state the rule, write G as a disjoint union of double cosets

G= U f(K)grH.
r=l

Let Kr be f~l(grlig~l), jr: Kr-+K be the inclusion, and c,: Kr->H be given by

cr(k)=gr1f(k)gr for IceK,.

The rule then says that

r = l

and that with this identification

(7.1)

/ * U « ) = F U o C , » for usH*(H;M). (7.2)
r = l

The rule is proved by applying 2.8, 2.12, 3.2 and 3.6 to the following geometric result.

Lemma 13. The square

d (Bcr)

U BK, -> BH
r = l

(Bjr)\ Bi\
Bf

BK > BG

is homotopy equivalent to a pull-back square whose columns are fibrations with finite
fibres.

The proof of 7.3 is straightforward, and will be omitted.
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