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Abstract
We present a categorical point of view on dynamical quantum groups in terms of categories of Harish-Chandra
bimodules. We prove Tannaka duality theorems for forgetful functors into the monoidal category of Harish-Chandra
bimodules in terms of a slight modification of the notion of a bialgebroid. Moreover, we show that the standard
dynamical quantum groups 𝐹 (𝐺) and 𝐹𝑞 (𝐺) are related to parabolic restriction functors for classical and quantum
Harish-Chandra bimodules. Finally, we exhibit a natural Weyl symmetry of the parabolic restriction functor using
Zhelobenko operators and show that it gives rise to the action of the dynamical Weyl group.
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1. Introduction

1.1. Categorical approach to quantum groups

Let G be an affine algebraic group over a field k. The Tannaka duality theorems [71, 25] imply that one can
uniquely reconstruct G from the data of a symmetric monoidal category Rep(𝐺) of G-representations
and the forgetful symmetric monoidal functor

𝐹 : Rep(𝐺) −→ Vect. (1)

Namely, F admits a right adjoint 𝐹R : Vect→ Rep(𝐺), and the algebra O(𝐺) of polynomial functions
on G can be reconstructed as

O(𝐺) � 𝐹𝐹R (𝑘),

where the Hopf algebra structure on O(𝐺) is reconstructed from the monoidal structure on F.
Suppose G is a reductive algebraic group, 𝑞 ∈ C×, and consider the category Rep𝑞 (𝐺) of represen-

tations of the quantum group with divided powers [62, 21]. Then Rep𝑞 (𝐺) carries a natural braided
monoidal structure, and the forgetful functor

𝐹 : Rep𝑞 (𝐺) −→ Vect (2)

is merely monoidal. In the same way, the Hopf algebra O𝑞 (𝐺) of functions on the quantum group is
reconstructed as 𝐹𝐹R (𝑘).

The failure of the forgetful functor to preserve the braiding is captured by the R-matrix (see Theorem
2.27): that is, a collection of maps

𝑅𝑉 ,𝑊 : 𝑉 ⊗𝑊 −→ 𝑉 ⊗𝑊

for two representations 𝑉,𝑊 ∈ Rep𝑞 (𝐺). Moreover, for three representations 𝑈,𝑉,𝑊 ∈ Rep𝑞 (𝐺), the
R-matrix satisfies the Yang–Baxter equation

𝑅𝑈𝑉 𝑅𝑈𝑊 𝑅𝑉𝑊 = 𝑅𝑉𝑊 𝑅𝑈𝑊 𝑅𝑈𝑉 (3)

in End(𝑈 ⊗ 𝑉 ⊗𝑊).

1.2. Dynamical quantum groups

In several areas of mathematical physics, a version of the above equation has appeared for a dynamical
R-matrix 𝑅𝑉 ,𝑊 (𝜆) : 𝑉 ⊗𝑊 → 𝑉 ⊗𝑊 , which depends on a parameter 𝜆 ∈ 𝔥∗ (dual space of the Cartan
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subalgebra 𝔥 ⊂ 𝔤); the corresponding dynamical Yang–Baxter equation is

𝑅𝑈𝑉 (𝜆 − ℎ (3) )𝑅𝑈𝑊 (𝜆)𝑅𝑉𝑊 (𝜆 − ℎ (1) ) = 𝑅𝑉𝑊 (𝜆)𝑅𝑈𝑊 (𝜆 − ℎ (2) )𝑅𝑈𝑉 (𝜆), (4)

where the shifts refer to the 𝔥-weights of the corresponding elements of 𝑈 ⊗ 𝑉 ⊗ 𝑊 . We refer to
U𝔥 � O(𝔥∗) as the base of the dynamical quantum group. As explained by Felder [41], equation (4) is
closely related to the star-triangle relation for face-type statistical mechanical models [6]. Moreover, it
naturally appears in the description of the exchange algebra in the Liouville and Toda conformal field
theories [43]. The study of the dynamical R-matrix gave rise to the theory of dynamical quantum groups;
see [35, 33] for reviews.

On the classical level, ordinary quantum groups correspond to Poisson-Lie structures on G [30].
Similarly, dynamical quantum groups correspond to dynamical Poisson groupoid structures on the
trivial groupoid 𝔥∗ ×𝐺 × 𝔥∗ ⇒ 𝔥∗ (see [59] for Poisson groupoids and [36] for the dynamical version).
After quantisation, ordinary quantum groups become Hopf algebras, while dynamical quantum groups
become bialgebroids or Hopf algebroids (see [82] for the original definition of bialgebroids, [61, 92] for
Hopf algebroids and [37] for the dynamical version).

One is naturally led to wonder about the categorical interpretation of dynamical quantum groups
similar to the categorical interpretation in equation (2) of ordinary quantum groups explained above.
Our first goal is to develop such an approach (inspired by a previous work by Donin and Mudrov [28,
29]) and prove Tannaka-type reconstruction statements.

1.3. Dynamical quantum groups via Harish-Chandra bimodules

An important object in representation theory is the category HC(𝐺) of Harish-Chandra bimodules: the
monoidal category of U𝔤-bimodules with an integrable diagonal action. As we will explain shortly, the
theory of dynamical quantum groups turns out to be closely related to the category HC(𝐻) of Harish-
Chandra bimodules for a torus H. In the main body of the paper (see section 3.1), we present a general
formalism that incorporates classical and quantum examples as well as nonabelian bases (following
[73]), but for simplicity here we stick to the case of HC(𝐻).

First, we introduce the notion of a Harish-Chandra bialgebroid, which is an 𝔥-bialgebroid introduced
in [37, Section 4.1] with certain integrability assumptions; see Theorem 3.29 for the general definition
and Theorem 3.30 for the case of HC(𝐻). Namely, it is a bigraded algebra 𝐵 = ⊕𝛼,𝛽∈Λ𝐵𝛼𝛽 , where Λ
is the character lattice of H, together with two quantum moment maps 𝑠, 𝑡 : O(𝔥∗) → 𝐵, a coproduct
Δ : 𝐵→ 𝐵 ×U𝔥 𝐵, where the Takeuchi product introduced in [82] is

(𝐵 ×U𝔥 𝐵)𝛼𝛽 =
⊕
𝛿∈Λ

𝐵𝛼𝛿 ⊗O (𝔥∗) 𝐵𝛿𝛽 ,

and a counit 𝜖 : 𝐵 → D(𝐻) into the algebra of differential operators on H. We prove the following
equivalent characterisation of Harish-Chandra bialgebroids (see Theorem 3.32).
Theorem. A colimit-preserving lax monoidal comonad ⊥ : HC(𝐻) → HC(𝐻) is the same as a Harish-
Chandra bialgebroid B, so ⊥(𝑀) = 𝐵 ×U𝔥 𝑀 .

We may similarly define comodules over a Harish-Chandra bialgebroid in terms of aΛ-gradedO(𝔥∗)-
module 𝑀 = ⊕𝛼∈Λ𝑀𝛼 together with a coaction map 𝑀 → 𝐵 ×U𝔥 𝑀 . We prove the following Tannaka
reconstruction theorem (see Theorem 3.35).
Theorem. Suppose D is a monoidal category with a monoidal functor 𝐹 : D → HC(𝐻) that admits a
colimit-preserving right adjoint 𝐹R : HC(𝐻) → D. Then there is a Harish-Chandra bialgebroid B such
that (𝐹 ◦ 𝐹R) (−) � 𝐵 ×U𝔥 (−) and F factors through a monoidal functor

D −→ CoMod𝐵 (HC(𝐻)).

If F is conservative and preserves equalisers, the above functor is an equivalence.
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Let us now explain the origin of dynamical R-matrices. Assume that D, in addition, has a braided
monoidal structure. Moreover, assume that the functor 𝐹 : D → HC(𝐻) lands in free Harish-Chandra
bimodules: that is, there is a functor 𝐹 ′ : D→ Rep(𝐻) and an equivalence 𝐹 (𝑥) � U𝔥 ⊗ 𝐹 ′(𝑥) for any
object 𝑥 ∈ D. The following is Theorem 4.11.

Proposition. Under the above assumptions, the image of the braiding under 𝐹 : D → HC(𝐻) gives
rise to dynamical R-matrices 𝑅 : 𝔥∗ → End(𝐹 ′(𝑥) ⊗ 𝐹 ′(𝑦)) satisfying the dynamical Yang–Baxter
equation (4).

The above proposition is a direct quantum analogue of an interpretation of classical dynamical r-
matrices in terms of 1-shifted Poisson morphisms (see [20] for what this means) [𝔥∗/𝐻] → B𝐺; see
[74, Proposition 5.7].

Let us compare these results to Tannaka reconstruction results for bialgebroids proven in [81, 77].
Suppose R is a ring. It is shown in [81, Theorem 5.4] that a colimit-preserving oplax monoidal monad
on the category 𝑅BMod𝑅 of R-bimodules is the same as a bialgebroid over R. Comparing it to our
Theorem 3.32, the difference is that we work with lax monoidal comonads instead, replace U𝔥BModU𝔥

by the full subcategory HC(𝐻) of Harish-Chandra bimodules and replace Takeuchi’s bialgebroids by
Harish-Chandra bialgebroids (i.e., adding an extra integrability assumption).

Szlachányi [81, Theorem 3.6] has proven a Tannaka-type reconstruction result for monoidal functors
𝐹 : D → 𝑅BMod𝑅 admitting left adjoints in terms of modules over the corresponding bialgebroid.
Shimizu has also proven a version of such a Tannaka reconstruction result in terms of comodules over
the bialgebroid (see [77, Theorem 4.3, Lemma 4.18]).

1.4. Parabolic restriction

Two standard dynamical quantum groups 𝐹 (𝐺) and 𝐹𝑞 (𝐺) are introduced in [31, Section 5] in terms of
the so-called exchange construction. Here 𝐹 (𝐺) quantises the standard rational dynamical r-matrix and
𝐹𝑞 (𝐺) quantises the standard trigonometric dynamical r-matrix (see [35, Section 4]). Our second goal
of the paper is to relate these dynamical quantum groups to objects in geometric representation theory.

Let G be a split reductive algebraic group over a characteristic zero field k, 𝐵 ⊂ 𝐺 a Borel subgroup
and 𝐻 = 𝐵/[𝐵, 𝐵] the abstract Cartan subgroup; we denote by 𝔤, 𝔟, 𝔥 their Lie algebras. Consider the
correspondence of algebraic stacks

[𝔟/𝐵]

�����
��
��
��

���
��

��
��

��

[𝔤∗/𝐺] [𝔥∗/𝐻] .

(5)

It appears in many areas of symplectic geometry and geometric representation theory:

◦ Let �̃� be the variety parametrising Borel subgroups of G together with an element 𝑥 ∈ 𝔤 contained in
the Lie algebra of the corresponding Borel subgroup. The projection �̃�→ 𝔤 is known as the
Grothendieck–Springer resolution (see [22, Section 3.1.31]). We may identify [�̃�/𝐺] � [𝔟/𝐵] so
that the projection [𝔟/𝐵] → [𝔤∗/𝐺] is identified with the Grothendieck–Springer resolution
[�̃�/𝐺] → [𝔤/𝐺]. The study of the categories of D-modules on this correspondence is closely
related to Springer theory (see [46] and references there).

◦ Let 𝑁 ⊂ 𝐵 be the unipotent radical. Then we may identify

[𝔟/𝐵] � [𝐺\T∗(𝐺/𝑁)/𝐻],

where T∗(𝐺/𝑁)/𝐻 → 𝐺/𝐵 is the universal family of twisted cotangent bundles over the flag
variety parametrised by 𝜆 ∈ 𝔥∗. In particular, quantisation of this correspondence is closely related
to the Beilinson–Bernstein localisation theorem [7] (see [9]).
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◦ The stacks [𝔤∗/𝐺], [𝔥∗/𝐻] have 1-shifted symplectic structures in the sense of [69]; moreover,
equation (5) is a 1-shifted Lagrangian correspondence. It is shown in [19, Section 2.2.1] that a
Lagrangian L in [𝔤∗/𝐺] is the same as a Hamiltonian G-space: that is, an algebraic symplectic
variety X equipped with a symplectic G-action and a moment map 𝑋 → 𝔤∗. Composing the
Lagrangian 𝐿 → [𝔤∗/𝐺] with the correspondence equation (5), we obtain a Lagrangian in [𝔥∗/𝐻]:
that is, a Hamiltonian H-space. It is shown in [72] that this procedure coincides with the procedure
of symplectic implosion [45, 23].

◦ One may replace Lie algebras by the corresponding groups: that is, one may consider the
correspondence [𝐺/𝐺] ← [𝐵/𝐵] → [𝐻/𝐻]. It is shown in [14, Theorem A] that this
correspondence (and its analogue for a parabolic subgroup) appears in the description of
logarithmic connections on a disk.

Consider the induced bimodule category

QCoh([𝔤∗/𝐺]) � QCoh([𝔟/𝐵]) � QCoh([𝔥∗/𝐻]), (6)

where QCoh([𝔤∗/𝐺]) is the symmetric monoidal category of quasi-coherent sheaves on the stack
[𝔤∗/𝐺]. Explicitly, it can be identified as

QCoh([𝔤∗/𝐺]) � LModSym(𝔤) (Rep 𝐺)

and similarly for H.
In section 3.3, we study a quantum version of the bimodule given by equation (6):

HC(𝐺) � Ouniv
� HC(𝐻). (7)

Here, as before, HC(𝐺) is the monoidal category of Harish-Chandra bimodules: that is, U𝔤-bimodules
with an integrable diagonal action. Ouniv is a universal version of category O: it is the category of
U𝔤-modules internal to the category Rep(𝐻) whose 𝔫-action is locally nilpotent. Equivalently, it is the
category of (U𝔤, U𝔥)-bimodules whose diagonal B-action is integrable. The module structure on either
side is given by the tensor product of bimodules using the latter description of Ouniv. The universal
Verma module 𝑀univ = U𝔤 ⊗U𝔟 U𝔥 is naturally an object of Ouniv.

Let us explain how it relates to the classical picture. The algebra U𝔤 has a natural PBW filtration;
consider the corresponding Rees algebra over 𝑘 [ℏ]. The above constructions can be repeated to produce
𝑘 [ℏ]-linear categories so that at ℏ = 0, the bimodule given by equation (7) reduces to the bimodule
given by equation (6).

Passing to the right adjoint of the action functor HC(𝐻) → Ouniv on the universal Verma module
𝑀univ, one obtains the parabolic restriction functor

res : HC(𝐺) −→ HC(𝐻)

given by res(𝑋) = (𝑋/𝑋𝔫)𝑁 , which is naturally lax monoidal. The following statement combines
Theorem 3.10 and Theorem 5.7 and provides a quantisation of symplectic implosion.

Proposition. An algebra in HC(𝐺) is a G-equivariant algebra A with a quantum moment map U𝔤→ 𝐴.
We have an isomorphism of algebras res(𝐴) � 𝐴//𝑁 , where 𝐴//𝑁 is the quantum Hamiltonian reduction
by N.

For a generic central character 𝜒 : Z(U𝔤) → C, the BGG category O𝜒 with that central character
is semisimple with simple objects given by Verma modules. We prove an analogous statement in the
universal case. The following statement combines Theorem 5.17 and Theorem 5.18.
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Theorem. Consider the subcategories HC(𝐻)gen ⊂ HC(𝐻) and Ouniv,gen ⊂ Ouniv of modules with
generic 𝔥-weights. Then the functor HC(𝐻)gen → Ouniv,gen is an equivalence. In particular,

resgen : HC(𝐺) −→ HC(𝐻)gen

is strongly monoidal and colimit-preserving.

The key step in the above statement is to prove that the Verma module for generic highest weights is
projective; in the universal setting, this is captured by the existence of the extremal projector [4] (see
Theorem 5.14), which splits the projection U𝔤→ 𝑀univ for generic 𝔥-weights.

There is a natural monoidal functor free : Rep(𝐺) → HC(𝐺) given by 𝑉 ↦→ U𝔤 ⊗ 𝑉 , so we get a
monoidal functor

Rep(𝐺) free
−−→ HC(𝐺) resgen

−−−−→ HC(𝐻)gen.

Moreover, we show in Theorem 5.23 that the Harish-Chandra bialgebroid reconstructed from
Rep(𝐺) → HC(𝐻)gen is isomorphic to 𝐹 (𝐺) (as an 𝔥-bialgebroid) so that Rep(𝐺) is equivalent to
𝐹 (𝐺)-comodules. We also prove analogous statements in the setting of quantum groups in Section 5.2.

These results have the following interpretation. The same braided monoidal category Rep𝑞 (𝐺) has
different monoidal functors Rep𝑞 (𝐺) → Vect corresponding to different choices of the classical r-
matrix; by Tannaka duality, this corresponds to nonstandard quantum groups, such as the Cremmer–
Gervais quantum group in the case 𝐺 = SL𝑛. In this paper, we study the monoidal functors Rep𝑞 (𝐺) →
HC𝑞 (𝐻)

gen, which give rise to dynamical quantum groups. Note that these are different ways to study
the same braided monoidal category.

We also expect that the approach to dynamical quantum groups 𝐹 (𝐺) and 𝐹𝑞 (𝐺) presented here
in terms of the correspondence in equation (5) might be useful to have an interpretation of Felder’s
dynamical quantum group [41] in terms of the 1-shifted Lagrangian correspondence Bun𝐺 (𝐸) ←
Bun𝐵 (𝐸) → Bun𝐻 (𝐸) of moduli stacks of bundles on an elliptic curve E. It is interesting to note that
the same correspondence is closely related to Feigin–Odesskii algebras [40] (in particular, Sklyanin
algebras [79]); see [74, Example 4.11] and [48].

It is shown in [8, Theorem 3.11] that HC𝑞 (𝐺)-module categories are the same as Rep𝑞 (𝐺)-braided
module categories [17, Section 5.1]. In particular, the monoidal functor resgen : HC𝑞 (𝐺) → HC𝑞 (𝐻)

gen

allows one to transfer Rep𝑞 (𝐻)-braided module categories to Rep𝑞 (𝐺)-braided module categories.

1.5. Dynamical Weyl group

Let 𝑊 = N(𝐻)/𝐻 be the Weyl group and �̂� the braid group covering W. The group W naturally
acts on the symmetric monoidal category Rep(𝐻), so we may consider the category of W-invariants
Rep(𝐻)𝑊 . Moreover, there exists a map �̂� → N(𝐻) lifting �̂� → 𝑊 [84], so the forgetful functor
Rep(𝐺) → Rep(𝐻) factors through a symmetric monoidal functor

Rep(𝐺) −→ Rep(𝐻)�̂� . (8)

Our third goal of the paper is to exhibit Weyl symmetry of the parabolic restriction functor for Harish-
Chandra bimodules. A similar setup works for quantum groups using the quantum Weyl group [62, 80,
57]. Note, however, that the resulting functor

Rep𝑞 (𝐺) −→ Rep𝑞 (𝐻)�̂� (9)

is not monoidal: in fact, the failure of the quantum Weyl group to be monoidal is related to the failure
of the functor Rep𝑞 (𝐺) → Rep𝑞 (𝐻) to be braided; this can be encapsulated in the notion of a braided
Coxeter category [3].
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Zhelobenko [93], in the study of Mickelsson algebras, has introduced a collection of Zhelobenko
operators 𝑞𝑤 : U𝔤 → U𝔤 for every element of the Weyl group 𝑤 ∈ 𝑊 satisfying the braid relations
(see Theorem 6.1). It was realised in [53] that these operators give an action of the braid group �̂� on a
localised Mickelsson algebra.

Consider the W-action on HC(𝐻), where W acts on U𝔥 via the dot action (the usual W-action shifted
by the half-sum of positive roots 𝜌) and on H via the usual action. The above results directly imply the
following statement (see Theorem 6.5).

Theorem. The Zhelobenko operators define a monoidal functor

resgen : HC(𝐺) −→ HC(𝐻)gen,�̂�

lifting resgen : HC(𝐺) → HC(𝐻)gen.

Suppose 𝑉 ∈ Rep(𝐺). Then resgen(U𝔤 ⊗ 𝑉) � (U𝔥)gen ⊗ 𝑉 , where (U𝔥)gen ⊃ U𝔥 is a certain
localisation (see Theorem 5.12). In particular, the �̂�-symmetry is captured by certain rational maps
𝐴𝑤,𝑉 : 𝔥∗ → End(𝑉) satisfying the braid relation. We prove in Theorem 6.8 that these coincide with
the dynamical Weyl group operators introduced in [83, 32].

Let us mention a relationship between these results and the generalised Harish–Chandra isomorphism
[56]. Consider the functor r̃es : HC(𝐺) → HC(𝐻) given by ˜res(𝑋) = 𝔫−𝑋\𝑋/𝑋𝔫+. There is a natural
transformation res(𝑋) → r̃es(𝑋), which becomes an isomorphism in HC(𝐻)gen (see Theorem 5.16).
We obtain a restriction map

HomHC(𝐺) (U𝔤, U𝔤 ⊗ 𝑉)
r̃es ��

∼

��

HomHC(𝐻 ) (U𝔥, U𝔥 ⊗ 𝑉)

∼

��
(U𝔤 ⊗ 𝑉)𝐺 �� U𝔥 ⊗ 𝑉𝐻

(10)

The object (U𝔥)gen ∈ HC(𝐻)gen has a canonical �̂�-equivariance structure given by the dot action of W
on U𝔥. In particular, Zhelobenko operators define maps U𝔥 ⊗ 𝑉𝐻 → (U𝔥)gen ⊗ 𝑉𝐻 and, in fact, the
action factors through the action of the Weyl group. The resulting homomorphism

r̃es : (U𝔤 ⊗ 𝑉)𝐺 −→ (U𝔥 ⊗ 𝑉𝐻 )𝑊

is shown in [56] to be an isomorphism. It generalises the usual Harish-Chandra isomorphism (see, e.g.,
[49, Theorem 1.10]), which is obtained for 𝑉 = 𝑘 the trivial one-dimensional representation.

The papers [16, 44] gave an interpretation of the dynamical Weyl group in terms of equivariant
cohomology of the affine Grassmannian of the Langlands dual group, using the geometric Satake
equivalence. It would be interesting to see the appearance of the Zhelobenko operators using the
Langlands dual interpretation of Harish-Chandra bimodules from [12].

Let us mention a categorical point of view on the Weyl symmetry of the parabolic restriction functor
resgen : HC(𝐺) → HC(𝐻). By abstract reasons, the action functor HC(𝐺) → Ouniv factors through
the category of coalgebras over a comonad St : Ouniv → Ouniv obtained from the right adjoint of the
action functor. In particular, for generic weights, parabolic restriction factors through the category
of St-coalgebras in HC(𝐻)gen. We expect that there is an equivalence between St and the comonad
corresponding to the W-action on HC(𝐻)gen. We refer to [9], where it is called the Weyl comonad, and
[46, Theorem 4.6] for an analogous theorem in the setting of D-modules.

2. Background

In this section, we recall some facts about locally presentable categories, cp-rigid monoidal categories
and Tannaka reconstruction for bialgebras.
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2.1. Locally presentable categories

Let k be a field. All categories and functors we will consider are k-linear. Throughout this paper, we
work with locally presentable categories (refer to [1] and [15, Section 2] for more details). Here are the
main examples:

◦ If C is a small category, the category of presheaves Fun(Cop, Vect) is locally presentable. For
instance, this applies to the category LMod𝐴 of (left) modules over a k-algebra A.

◦ If C is a small category that admits finite colimits, the ind-completion Ind(C) (see [51, Chapter 6]
for what it means) is locally presentable.

◦ If C is a k-coalgebra, the category of C-comodules CoMod𝐶 is locally presentable (see [91,
Corollary 9], noting that a Grothendieck category is locally presentable). In fact, CoMod𝐶 is the
ind-completion of the category of finite-dimensional C-comodules (see [71, Corollaire 2.2.2.3]).

◦ If C,D are locally presentable categories, the category FunL(C,D) of colimit-preserving functors
from C to D is locally presentable.

It turns out that many examples of locally presentable categories are, in fact, presheaf categories.

Definition 2.1. Let C be a locally presentable category. An object 𝑥 ∈ C is compact projective if
HomC (𝑥,−) : C → Vect preserves colimits. C has enough compact projectives if every object receives
a nonzero morphism from a compact projective.

We denote by Ccp ⊂ C the full subcategory of compact projective objects.

Proposition 2.2. Suppose C has enough compact projectives. Then the functor

C −→ Fun((Ccp)op, Vect)

given by 𝑥 ↦→ (𝑦 ↦→ HomC (𝑦, 𝑥)) is an equivalence.

Locally presentable categories naturally form a symmetric monoidal 2-category PrL [13]:

◦ Its objects are locally presentable categories.
◦ Its 1-morphisms are colimit-preserving functors.
◦ Its 2-morphisms are natural transformations.
◦ The tensor product is uniquely determined by the following property: for C,D, E ∈ PrL a

colimit-preserving functor C ⊗ D→ E is the same as a bifunctor C ×D→ E preserving colimits in
each variables.

◦ The unit is Vect ∈ PrL.

An important fact about locally presentable categories is that a colimit-preserving functor between
locally presentable categories admits a right adjoint. We will now write a formula for the adjoint,
assuming the source category has enough compact projectives. Let us first recall the notion of a coend
(see [60] for more details on coends).

Definition 2.3. Suppose C and D are locally presentable categories. The coend of a bifunctor 𝐹 : C ×
Cop → D is the coequaliser∫ 𝑥∈C

𝐹 (𝑥, 𝑥) = coeq
( ∐

𝑥→𝑦 𝐹 (𝑥, 𝑦) �� ��
∐

𝑥 𝐹 (𝑥, 𝑥)
)
.

We will use the following Yoneda-like property of coends (see [60, Proposition 2.2.1]).

Proposition 2.4. For any functors 𝐹 : C → D, 𝐺 : Cop → D, we have natural isomorphisms∫ 𝑥∈C
HomC (𝑥, 𝑦) ⊗ 𝐹 (𝑥) � 𝐹 (𝑦),

∫ 𝑥∈C
HomC (𝑦, 𝑥) ⊗ 𝐺 (𝑥) � 𝐺 (𝑦).
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The following is an immediate corollary.

Proposition 2.5. Suppose 𝐹 : C → D is a colimit-preserving functor of locally presentable categories,
where C has enough compact projectives. Then the right adjoint is given by the coend

𝐹R (𝑥) =
∫ 𝑦∈Ccp

HomD (𝐹 (𝑦), 𝑥) ⊗ 𝑦.

The counit of the adjunction 𝐹𝐹R (𝑥) → 𝑥 is given by the evaluation map HomD (𝐹 (𝑦), 𝑥) ⊗ 𝐹 (𝑦) → 𝑥;
the unit of the adjunction 𝑧 → 𝐹R𝐹 (𝑧) is given by including the identity map id : 𝐹 (𝑧) → 𝐹 (𝑧) in the
coend.

2.2. Cp-rigidity

By convention, all monoidal categories C that we consider in this paper are locally presentable such
that the tensor product bifunctor C × C → C preserves colimits in each variable. So, by the universal
property of the tensor product in PrL, it descends to a colimit-preserving functor

𝑇 : C ⊗ C −→ C .

We denote by C⊗op the same category with the opposite monoidal structure.
We will consider rigid monoidal categories in the text. Since we work with large categories, we

cannot expect all objects to be dualisable (as in the category of all vector spaces); instead, we will
restrict our attention to compact projective objects.

Definition 2.6. Let C be a monoidal category with enough compact projectives. It is cp-rigid if every
compact projective object admits left and right duals.

Lemma 2.7. Suppose C is a cp-rigid monoidal category and 𝑥, 𝑦 ∈ C are compact projective objects.
Then 𝑥 ⊗ 𝑦 is also compact projective.

Proof. We have

HomC (𝑥 ⊗ 𝑦,−) � HomC (𝑥, (−) ⊗ 𝑦∨).

By assumption, the tensor product preserves colimits in each variable, so (−) ⊗ 𝑦∨ is colimit-preserving.
Since x is compact projective, HomC (𝑥,−) is colimit-preserving. Therefore, HomC (𝑥 ⊗ 𝑦,−) is also
colimit-preserving. �

If C is cp-rigid, the tensor product functor 𝑇 : C ⊗ C → C admits a colimit-preserving right adjoint
𝑇R : C → C ⊗ C (see, e.g., [18, Section 5.3]). It has the following explicit formula.

Proposition 2.8. Suppose C is a cp-rigid monoidal category. Then

𝑇R (𝑦) �
∫ 𝑥∈Ccp

(𝑦 ⊗ 𝑥∨) � 𝑥.

Proof. By Theorem 2.5, the right adjoint is

𝑇R (𝑦) �
∫ 𝑥1 ,𝑥2∈Ccp

HomC (𝑥1 ⊗ 𝑥2, 𝑦) ⊗ (𝑥1 � 𝑥2).
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Since compact projective objects in C are dualisable, we can rewrite it as

𝑇R (𝑦) �
∫ 𝑥1 ,𝑥2∈Ccp

HomC (𝑥1, 𝑦 ⊗ 𝑥∨2 ) ⊗ (𝑥1 � 𝑥2)

�
∫ 𝑥2∈Ccp

(𝑦 ⊗ 𝑥∨2 ) � 𝑥2,

where in the last isomorphism, we have used Theorem 2.4. �

Consider C ⊗ C as a C ⊗ C⊗op-module category via the left action on the first factor and the right
action on the second factor. By [18, Proposition 4.1], 𝑇R is a functor of C ⊗ C⊗op-module categories.
This can be expressed in the following isomorphism.

Proposition 2.9. Suppose C is as before. Then𝑇R : C → C⊗C is a functor of C⊗C⊗op-module categories.
Concretely, for any object 𝑦 ∈ C, there is a natural isomorphism∫ 𝑥∈Ccp

(𝑦 ⊗ 𝑥∨) � 𝑥 �
∫ 𝑥∈Ccp

𝑥∨ � (𝑥 ⊗ 𝑦)

that is given for a compact projective 𝑦 ∈ C by

𝑥∨ � (𝑥 ⊗ 𝑦)
coev𝑦 ⊗id
−−−−−−−→ (𝑦 ⊗ 𝑦∨ ⊗ 𝑥∨) � (𝑥 ⊗ 𝑦)

𝜋𝑥⊗𝑦
−−−−→

∫ 𝑥∈Ccp

(𝑦 ⊗ 𝑥∨) � 𝑥.

Corollary 2.10. The object 𝑇R (1) ∈ C ⊗ C⊗op has a natural algebra structure.

Proof. 𝑇R𝑇 is naturally a monad on C ⊗ C⊗op. By definition, 𝑇 : C ⊗ C → C is a functor of C ⊗ C⊗op-
module categories. By Theorem 2.9 𝑇R : C → C ⊗ C is also a functor of C ⊗ C⊗op-module categories.
Therefore, (𝑇R𝑇) (1C⊗C) has a natural algebra structure. �

The key property of cp-rigid monoidal categories is that they are canonically self-dual objects of PrL.

Theorem 2.11. Let C be a cp-rigid monoidal category with a compact projective unit. The evaluation
and coevaluation pairings

ev : C ⊗ C 𝑇
−→ C HomC (1,−)

−−−−−−−−−→ Vect (11)

coev: Vect
(−) ⊗1
−−−−−→ C 𝑇 R

−−→ C ⊗ C . (12)

establish the self-duality of C as an object of the symmetric monoidal bicategory PrL.

Proof. See [47, Proposition 2.16] for an analogous statement on the level of∞-categories. �

Remark 2.12. The conclusion of the theorem remains true if we drop the assumption that the unit of
C is compact and projective and replace HomC (1,−) : C → Vect by the colimit-preserving functor that
coincides with HomC (1,−) on compact projective objects.

Corollary 2.13. Let C be a cp-rigid monoidal category with a compact projective unit and D any
monoidal category. Then the functor

D ⊗ C −→ FunL(C,D) (13)

given by

𝑑 � 𝑐 ↦→ (𝑐′ ↦→ ev(𝑐, 𝑐′) ⊗ 𝑑)

is an equivalence.
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2.3. Duoidal categories

Let us now study the monoidal properties of the equivalence given by equation (13). The functor
category FunL(C,D) has a natural monoidal structure given by the Day convolution [24] defined by

(𝐹 ⊗Day 𝐺) (𝑥) =
∫ 𝑥1 ,𝑥2∈Ccp

HomC (𝑥1 ⊗ 𝑥2, 𝑥) ⊗ 𝐹 (𝑥1) ⊗ 𝐺 (𝑥2) (14)

with the unit functor

𝑥 ↦→ HomC (1C , 𝑥) ⊗ 1D .

Proposition 2.14. The equivalence given by equation (13) upgrades to a monoidal equivalence

D ⊗ C⊗op ∼−→ FunL (C,D),

where we equip FunL(C,D) with the Day convolution monoidal structure.

Proof. Clearly, the units are compatible since 1D � 1C is sent to the functor (𝑥 ↦→ ev(1C , 𝑥) ⊗ 1D).
Now consider two objects 𝑑1 � 𝑐1, 𝑑2 � 𝑐2 ∈ D ⊗ C. Their Day convolution is computed by

((𝑑1 � 𝑐1) ⊗Day (𝑑2 � 𝑐2)) (𝑥)

=
∫ 𝑥1 ,𝑥2∈Ccp

HomC (𝑥1 ⊗ 𝑥2, 𝑥) ⊗ (𝑑1 ⊗ 𝑑2) ⊗ HomC (1, 𝑐1 ⊗ 𝑥1) ⊗ HomC (1, 𝑐2 ⊗ 𝑥2).

So, we have to exhibit a natural isomorphism

HomC (1, 𝑐2 ⊗ 𝑐1 ⊗ 𝑥) �
∫ 𝑥1 ,𝑥2∈Ccp

HomC (𝑥1 ⊗ 𝑥2, 𝑥) ⊗ HomC (1, 𝑐1 ⊗ 𝑥1) ⊗ HomC (1, 𝑐2 ⊗ 𝑥2).

By assumption, C is generated by compact projectives, so it is enough to define this isomorphism on
those.

The right-hand side is∫ 𝑥1 ,𝑥2

Hom(𝑥1 ⊗ 𝑥2, 𝑥) ⊗ Hom(1, 𝑐1 ⊗ 𝑥1) ⊗ Hom(1, 𝑐2 ⊗ 𝑥2)

�
∫ 𝑥1 ,𝑥2

Hom(𝑥1 ⊗ 𝑥2, 𝑥) ⊗ Hom(𝑐∨1 , 𝑥1) ⊗ Hom(𝑐∨2 , 𝑥2)

� Hom(𝑐∨1 ⊗ 𝑐∨2 , 𝑥)

� Hom(1, 𝑐2 ⊗ 𝑐1 ⊗ 𝑥),

where we have used Theorem 2.4 in the third line. �

We will now examine the monoidal properties of the self-duality pairings given by equations (11)
and (12).

Proposition 2.15. The functors

ev : C⊗op ⊗ C −→ Vect, coev: Vect→ C ⊗ C⊗op

have a natural lax monoidal structure.
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Proof. We begin with the evaluation functor. The unit map 𝑘 → ev(1, 1) = HomC (1, 1) is given by the
inclusion of the identity. Suppose 𝑐1 � 𝑐2, 𝑑1 � 𝑑2 ∈ C⊗op ⊗ C are two compact projective objects. Then
we define ev(𝑐1, 𝑐2) ⊗ ev(𝑑1, 𝑑2) → ev(𝑑1 ⊗ 𝑐1, 𝑐2 ⊗ 𝑑2) via the commutative diagram

ev(𝑐1, 𝑐2) ⊗ ev(𝑑1, 𝑑2) �� ev(𝑑1 ⊗ 𝑐1, 𝑐2 ⊗ 𝑑2)

Hom(1, 𝑐1 ⊗ 𝑐2) ⊗ Hom(1, 𝑑1 ⊗ 𝑑2) ��

∼

��

Hom(1, 𝑑1 ⊗ 𝑐1 ⊗ 𝑐2 ⊗ 𝑑2)

∼

��
Hom(𝑐∨1 , 𝑐2) ⊗ Hom(𝑑∨1 , 𝑑2) �� Hom(𝑐∨1 ⊗ 𝑑∨1 , 𝑐2 ⊗ 𝑑2)

Next we consider the coevaluation functor. A lax monoidal structure on coev is the same as an algebra
structure on coev(𝑘) = 𝑇R (1), which, in turn, is provided by Theorem 2.10. �

Now suppose C,D are cp-rigid monoidal categories with compact projective units and E any monoidal
category. Then the composition functor

FunL(D, E) ⊗ FunL(C,D) −→ FunL(C, E)

has a natural lax monoidal structure with respect to the Day convolution.
Proposition 2.16. Suppose C,D, E are as above. The diagrams

FunL(D, E) ⊗ FunL(C,D) �� FunL(C, E)

E ⊗ D⊗op ⊗ D ⊗ C⊗op id⊗ev⊗id ��

∼

��

E ⊗ C⊗op

∼

��

and

Vect id �� FunL (C, C)

Vect coev �� C ⊗ C⊗op

∼

��

of lax monoidal functors with respect to the Day convolution commute up to a monoidal natural
isomorphism.

Recall the following notion (see [2, Definition 6.1], where it is called a 2-monoidal category).
Definition 2.17. A duoidal category is a category C equipped with two monoidal structures (C, ◦, 𝐼) and
(C, ⊗, 𝐽) such that the functors ◦ : C × C → C and 𝐼 : Vect→ C are lax monoidal with respect to (⊗, 𝐽).
Example 2.18. Consider the category FunL(C, C). It carries a monoidal structure ◦ given by the com-
position of functors whose unit I is the identity functor. It also carries the Day convolution monoidal
structure ⊗𝐷𝑎𝑦 . It is shown in [42, Proposition 50] that the two are compatible so that FunL(C, C) is a
duoidal category.
Example 2.19. Consider the category C ⊗ C. It carries a convolution monoidal structure ◦ defined by

(𝑀1 � 𝑀2) ◦ (𝑁1 � 𝑁2) = ev(𝑀2, 𝑁1) ⊗ 𝑀1 � 𝑁2

whose unit is 𝐼 = coev(𝑘) ∈ C ⊗ C. It also carries a pointwise monoidal structure C ⊗ C⊗op whose unit
is 𝐽 = 1C � 1C . It follows from Theorem 2.15 that the two monoidal structures are compatible, so C ⊗ C

https://doi.org/10.1017/fms.2022.68 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.68


Forum of Mathematics, Sigma 13

becomes a duoidal category. Moreover, C is naturally a module category over C ⊗ C with respect to
convolution

(C ⊗ C) ⊗ C −→ C

and is given by

(𝑐1 � 𝑐2) � 𝑑 ↦→ ev(𝑐2, 𝑑) ⊗ 𝑐1.

We are now ready to relate the two duoidal structures. The following statement combines Theorems
2.14 and 2.16.

Theorem 2.20. Suppose C is a cp-rigid monoidal category with a compact projective unit. The equiva-
lence given by equation (13)

C ⊗ C −→ FunL (C, C)

given by 𝑐1 � 𝑐2 ↦→ (𝑑 ↦→ ev(𝑐2, 𝑑) ⊗ 𝑐1) upgrades to an equivalence of duoidal categories, where the
two monoidal structures are the convolution product and the pointwise monoidal structure on C ⊗ C⊗op

while the two monoidal structures on FunL(C, C) are the composition of functors and Day convolution.
This equivalence intertwines C as a C ⊗ C-module category with respect to convolution and C as a
FunL(C, C)-module category with respect to composition of functors.

2.4. Bimodules and lax monoidal functors

Suppose 𝑓 : 𝐴 → 𝐵 is a homomorphism of algebras. Then B becomes an (𝐴, 𝐵)-bimodule with a
distinguished element given by 1 ∈ 𝐵. Conversely, the data of an (𝐴, 𝐵)-bimodule M with a distinguished
element 1𝑀 ∈ 𝑀 such that the action map 𝐵 → 𝑀 is an isomorphism, is the same as the data of a
homomorphism 𝐴→ 𝐵. In this section, we will describe a similar construction on the categorical level.
Recall from [34, Chapters 7.1,7.2] the notion of a module category over a monoidal category.

Suppose C and D are monoidal categories and M a (C,D) bimodule category together with a
distinguished object Dist ∈M. The action functors of C and D on Dist ∈M define colimit-preserving
functors

actC : C −→M, actD : D −→M,

which we write as 𝑥 ↦→ 𝑥 ⊗ Dist and 𝑦 ↦→ Dist ⊗ 𝑦, respectively. By the adjoint functor theorem, these
admit right adjoints that we denote by actRC and actRD. The counit of the adjunction defines a natural
morphism

𝜖 : Dist ⊗ actRD (𝑚) → 𝑚

for 𝑚 ∈M. Moreover, actD : D →M is a functor of right D-module categories, so actRD : M→ D is
a lax D-module functor: that is, we have a natural morphism

𝜙 : actRD (𝑚) ⊗ 𝑦 −→ actRD (𝑚 ⊗ 𝑦)

satisfying an associativity axiom.
Consider the functor

𝐹CD = actRD ◦ actC : C −→ D.
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Proposition 2.21. The morphisms

1D → actRD ◦ actD (1D) � actRD ◦ actC (1C)

and

actRD (𝑥 ⊗ Dist) ⊗ actRD (𝑦 ⊗ Dist) → actRD (𝑥 ⊗ Dist ⊗ actRD (𝑦 ⊗ Dist))
→ actRD (𝑥 ⊗ 𝑦 ⊗ Dist)

define the structure of a lax monoidal functor on 𝐹CD.

Proof. Let us prove the associativity condition. For brevity, denote 𝑎R = actRD, 𝐷 = Dist. We have to
show that the diagram

(𝑎R (𝑥 ⊗ 𝐷) ⊗ 𝑎R (𝑦 ⊗ 𝐷)) ⊗ 𝑎R (𝑧 ⊗ 𝐷)
∼ ��

𝜙

��

𝑎R (𝑥 ⊗ 𝐷) ⊗ (𝑎R (𝑦 ⊗ 𝐷) ⊗ 𝑎R (𝑧 ⊗ 𝐷))

𝜙

��
𝑎R (𝑥 ⊗ 𝐷 ⊗ 𝑎R (𝑦 ⊗ 𝐷)) ⊗ 𝑎R (𝑧 ⊗ 𝐷)

𝜖

��

𝑎R (𝑥 ⊗ 𝐷) ⊗ 𝑎R (𝑦 ⊗ 𝐷 ⊗ 𝑎R (𝑧 ⊗ 𝐷))

𝜖

��
𝑎R ((𝑥 ⊗ 𝑦) ⊗ 𝐷) ⊗ 𝑎R (𝑧 ⊗ 𝐷)

𝜙

��

𝑎𝑅 (𝑥 ⊗ 𝐷) ⊗ 𝑎R ((𝑦 ⊗ 𝑧) ⊗ 𝐷)

𝜙

��
𝑎R ((𝑥 ⊗ 𝑦) ⊗ 𝐷 ⊗ 𝑎R (𝑧 ⊗ 𝐷))

𝜖

��

𝑎R (𝑥 ⊗ 𝐷 ⊗ 𝑎R ((𝑦 ⊗ 𝑧) ⊗ 𝐷))

𝜖

��
𝑎R ((𝑥 ⊗ 𝑦) ⊗ 𝑧 ⊗ 𝐷)

∼ �� 𝑎R (𝑥 ⊗ (𝑦 ⊗ 𝑧) ⊗ 𝐷)

is commutative. Using naturality and the associativity condition for the lax module structure on actR,
the above diagram is reduced to

𝑎R (𝑥 ⊗ 𝐷) ⊗ (𝑎R (𝑦 ⊗ 𝐷) ⊗ 𝑎R (𝑧 ⊗ 𝐷))

𝜙

������
����

����
���� 𝜙

�����
����

����
����

�

𝑎R (𝑥 ⊗ 𝐷 ⊗ 𝑎R (𝑦 ⊗ 𝐷) ⊗ 𝑎R (𝑧 ⊗ 𝐷))

𝜖

��

𝜙

		�������
�������

�������
�������

���
𝑎R (𝑥 ⊗ 𝐷) ⊗ 𝑎R (𝑦 ⊗ 𝐷 ⊗ 𝑎R (𝑧 ⊗ 𝐷))

𝜙

��
𝑎R ((𝑥 ⊗ 𝑦) ⊗ 𝐷 ⊗ 𝑎R (𝑧 ⊗ 𝐷))

𝜖

��

𝑎𝑅 (𝑥 ⊗ 𝐷 ⊗ 𝑎R (𝑦 ⊗ 𝐷 ⊗ 𝑎R (𝑧 ⊗ 𝐷)))

𝜖

��

𝜖




𝑎R (𝑥 ⊗ 𝐷 ⊗ 𝑎R ((𝑦 ⊗ 𝑧) ⊗ 𝐷))

𝜖

��
𝑎R ((𝑥 ⊗ 𝑦) ⊗ 𝑧 ⊗ 𝐷)

∼ �� 𝑎R (𝑥 ⊗ (𝑦 ⊗ 𝑧) ⊗ 𝐷)

The top segment commutes by naturality of 𝜙. The middle segment commutes since 𝜖 is a natural
transformation of D-module functors. The bottom segment commutes by naturality of 𝜖 .

Unitality is proven analogously. �
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Note that in the above construction, we may freely replace C and D, so we similarly obtain a lax
monoidal functor

𝐹DC : D −→ C .

Definition 2.22. Suppose D is a monoidal category and M a D-module category with a distinguished
object. M is free of rank 1 if the action functor actD : D→M is an equivalence.

Proposition 2.23. Suppose M is free of rank 1 over D. Then the lax monoidal functor 𝐹CD : C → D is
strongly monoidal and preserves colimits.

Proof. Since actD is an equivalence, both the counit 𝜖 : Dist ⊗ actRD (𝑚) → 𝑚 and the structure of a
lax module functor 𝜙 : actRD (𝑚) ⊗ 𝑦 → actRD (𝑚 ⊗ 𝑦) are isomorphisms. In particular, 𝐹CD is strongly
monoidal.

Moreover, actRD is the inverse to actD, so it preserves colimits. �

2.5. Tannaka reconstruction for bialgebras

Recall the Tannaka reconstruction results for bialgebras; refer to [25, 71] for the commutative case and
[85, 86, 75] for the general case.

Let 𝐵 ∈ Vect be a bialgebra. Then C = CoMod𝐵, the category of (left) B-comodules, is locally
presentable. Moreover, it is equipped with a conservative and colimit-preserving monoidal forgetful
functor 𝐹 : C → Vect, which admits a colimit-preserving right adjoint 𝐹R : Vect→ C sending V to the
cofree B-comodule 𝐵 ⊗ 𝑉 cogenerated by V. There is a converse to this statement.

Proposition 2.24. Suppose C is a monoidal category with a colimit-preserving monoidal forgetful
functor 𝐹 : C → Vect, which admits a colimit-preserving right adjoint 𝐹R : Vect → C. Then 𝐵 =
𝐹𝐹R (𝑘) is a bialgebra and F factors as

C −→ CoMod𝐵 .

Moreover, the latter functor is an equivalence if and only if F is conservative and preserves equalisers.

Remark 2.25. A more familiar statement of Tannaka reconstruction is obtained by passing to compact
objects in the above statement. Namely, for a small abelian monoidal category Cc with a biexact tensor
product and a monoidal functor

𝐹 : Cc −→ Vec

to the category of finite-dimensional vector spaces, there is a canonical bialgebra B (the bialgebra of
coendomorphisms of F; see [34, Section 1.10]) such that F factors through

Cc −→ CoModfd
𝐵

through the category of finite-dimensional B-comodules. Moreover, the latter functor is an equivalence
if and only if F is exact and faithful. Refer to [34, Section 5.4] for more details.

Let us now be more explicit. Consider the setup of Theorem 2.24, where C is a monoidal category with
enough compact projectives and a compact projective unit. Since 𝐹R preserves colimits, F preserves
compact projective objects. In particular, for 𝑦 ∈ Ccp, the vector space 𝐹 (𝑦) is finite-dimensional. So,
by Theorem 2.5, the bialgebra B is

𝐵 =
∫ 𝑦∈Ccp

𝐹 (𝑦)∨ ⊗ 𝐹 (𝑦). (15)
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For 𝑦 ∈ Ccp let us denote by

𝜋𝑦 : 𝐹 (𝑦)∨ ⊗ 𝐹 (𝑦) → 𝐵

the natural projection. For 𝑦, 𝑧 ∈ C, denote by

𝐽𝑦,𝑧 : 𝐹 (𝑦) ⊗ 𝐹 (𝑧)
∼
−→ 𝐹 (𝑦 ⊗ 𝑧)

the monoidal structure on F (the unit isomorphism will be implicit). The bialgebra structure on B is
given on generators as follows:

◦ The coproduct is

𝐹 (𝑦)∨ ⊗ 𝐹 (𝑦)
id⊗coev𝐹 (𝑦) ⊗id
−−−−−−−−−−−−→ 𝐹 (𝑦)∨ ⊗ 𝐹 (𝑦) ⊗ 𝐹 (𝑦)∨ ⊗ 𝐹 (𝑦)

𝜋𝑦 ⊗𝜋𝑦
−−−−−→ 𝐵 ⊗ 𝐵.

◦ The counit is

𝐹 (𝑦)∨ ⊗ 𝐹 (𝑦)
ev𝐹 (𝑦)
−−−−−→ 𝑘.

◦ The product is

(𝐹 (𝑦)∨ ⊗ 𝐹 (𝑦)) ⊗ (𝐹 (𝑧)∨ ⊗ 𝐹 (𝑧)) � (𝐹 (𝑦) ⊗ 𝐹 (𝑧))∨ ⊗ 𝐹 (𝑦) ⊗ 𝐹 (𝑧)

(𝐽−1
𝑦,𝑧 )

∨ ⊗𝐽𝑦,𝑧
−−−−−−−−−−→ 𝐹 (𝑦 ⊗ 𝑧)∨ ⊗ 𝐹 (𝑦 ⊗ 𝑧)
𝜋𝑦⊗𝑧
−−−−→ 𝐵.

◦ The unit is

𝑘 � 𝐹 (1)∨ ⊗ 𝐹 (1) 𝜋1
−−→ 𝐵.

It will also be useful to think about 𝜋𝑦 as elements

𝑇𝑦 ∈ 𝐵 ⊗ End(𝐹 (𝑦)).

The following statement is immediate from the above formulas.

Theorem 2.26. The bialgebra B is spanned, as a k-vector space, by the matrix coefficients of 𝑇𝑦 for
𝑦 ∈ Ccp, subject to the relation

𝐹 ( 𝑓 ) ◦ 𝑇𝑥 = 𝑇𝑦 ◦ 𝐹 ( 𝑓 ) (16)

for every 𝑓 : 𝑥 → 𝑦. Moreover:

◦ For 𝑦 ∈ Ccp, we have

Δ (𝑇𝑦) = 𝑇𝑦 ⊗ 𝑇𝑦 . (17)

◦ For 𝑦 ∈ Ccp, we have

𝜖 (𝑇𝑦) = id𝐹 (𝑦) ∈ End(𝐹 (𝑦)). (18)
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◦ Suppose 𝑥, 𝑦 ∈ Ccp are two objects. Then

𝐽−1
𝑥,𝑦𝑇𝑥⊗𝑦𝐽𝑥,𝑦 = (𝑇𝑥 ⊗ id𝐹 (𝑦) ) (id𝐹 (𝑥) ⊗ 𝑇𝑦) (19)

as elements of 𝐵 ⊗ End(𝐹 (𝑥 ⊗ 𝑦)) � 𝐵 ⊗ End(𝐹 (𝑥) ⊗ 𝐹 (𝑦)).
◦ 𝑇1 ∈ 𝐵 ⊗ End(𝐹 (1)) � 𝐵 is the unit.

Let us now study what happens when C is in addition equipped with a braiding.

Definition 2.27. Suppose C is a braided monoidal category and 𝐹 : C → Vect a monoidal functor. For
𝑥, 𝑦 ∈ C, the 𝑹-matrix is

𝑅𝑥,𝑦 : 𝐹 (𝑥) ⊗ 𝐹 (𝑦)
𝐽𝑥,𝑦
−−−→ 𝐹 (𝑥 ⊗ 𝑦)

𝐹 (𝜎𝑥,𝑦 )
−−−−−−−→ 𝐹 (𝑦 ⊗ 𝑥)

𝐽−1
𝑦,𝑥
−−−→ 𝐹 (𝑦) ⊗ 𝐹 (𝑥)

𝜎−1
𝐹 (𝑥) ,𝐹 (𝑦)
−−−−−−−−→ 𝐹 (𝑥) ⊗ 𝐹 (𝑦).

It will be convenient to use the standard matrix notation for R-matrices acting on several variables:
given 𝑥, 𝑦, 𝑧 ∈ C, we denote

𝑅12 = 𝑅𝑥,𝑦 ⊗ id

as an element of End(𝐹 (𝑥) ⊗𝐹 (𝑦) ⊗𝐹 (𝑧)) and similarly for 𝑅13 and 𝑅23. We let the transposed R-matrix
𝑅21 be

𝐹 (𝑥) ⊗ 𝐹 (𝑦)
𝜎−1

−−−→ 𝐹 (𝑦) ⊗ 𝐹 (𝑥)
𝑅𝑦,𝑥
−−−→ 𝐹 (𝑦) ⊗ 𝐹 (𝑥)

𝜎
−→ 𝐹 (𝑥) ⊗ 𝐹 (𝑦).

We also denote

𝑇1 = 𝑇𝑥 ⊗ id, 𝑇2 = id ⊗ 𝑇𝑦

as elements of 𝐵 ⊗ End(𝐹 (𝑥) ⊗ 𝐹 (𝑦)).

Proposition 2.28. Suppose 𝑥, 𝑦, 𝑧 ∈ C. Then the R-matrix satisfies the Yang–Baxter equation

𝑅12𝑅13𝑅23 = 𝑅23𝑅13𝑅12 (20)

in End(𝐹 (𝑥) ⊗ 𝐹 (𝑦) ⊗ 𝐹 (𝑧)). Moreover, T satisfies the FRT relation

𝑅12𝑇1𝑇2 = 𝑇2𝑇1𝑅12 (21)

in 𝐵 ⊗ End(𝐹 (𝑥) ⊗ 𝐹 (𝑦)).

Proof. Denote

�̌�𝑥,𝑦 : 𝐹 (𝑥) ⊗ 𝐹 (𝑦)
𝐽𝑥,𝑦
−−−→ 𝐹 (𝑥 ⊗ 𝑦)

𝐹 (𝜎𝑥,𝑦 )
−−−−−−−→ 𝐹 (𝑦 ⊗ 𝑥)

𝐽−1
𝑦,𝑥
−−−→ 𝐹 (𝑦) ⊗ 𝐹 (𝑥).

Then the Yang–Baxter equation (20) is equivalent to the braid equation

�̌�12 �̌�23 �̌�12 = �̌�23 �̌�12 �̌�23,

which holds in any braided monoidal category.
By equation (16), we have 𝐹 (𝜎𝑥,𝑦)𝑇𝑥⊗𝑦 = 𝑇𝑦⊗𝑥𝐹 (𝜎𝑥,𝑦). The relation given by (19) and the equality

𝐹 (𝜎𝑥,𝑦) = 𝐽𝑦,𝑥 �̂�𝑥,𝑦𝐽
−1
𝑥,𝑦

imply equation (21). �
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Remark 2.29. Quantum groups were originally introduced in [39, 38] as bialgebras as in Theorem 2.26
satisfying the FRT relation in equation (21). The above statements show, conversely, that this relation
naturally follows from the categorical framework.

2.6. Coend algebras and reflection equation

Let C be a cp-rigid monoidal category. Recall the formula for the right adjoint 𝑇R : C → C ⊗ C for the
tensor product functor C ⊗ C → C from Theorem 2.8.

Definition 2.30. The canonical coend is the object F ∈ C defined by

F = 𝑇𝑇R (1) =
∫ 𝑥∈Ccp

𝑥∨ ⊗ 𝑥. (22)

For 𝑥 ∈ Ccp, let us denote by

𝜋𝑥 : 𝑥∨ ⊗ 𝑥 → F

the natural projection.
Now, suppose in addition that C is braided monoidal. Then F admits a structure of a braided Hopf

algebra (see, e.g., [64, 63, 78]). Explicitly, the algebra structure is given on generators as follows:

◦ The product is

(𝑥∨ ⊗ 𝑥) ⊗ (𝑦∨ ⊗ 𝑦)
𝜎𝑥∨⊗𝑥,𝑦∨

−−−−−−−→ 𝑦∨ ⊗ 𝑥∨ ⊗ 𝑥 ⊗ 𝑦

� (𝑥 ⊗ 𝑦)∨ ⊗ 𝑥 ⊗ 𝑦
𝜋𝑥⊗𝑦
−−−−→ F .

◦ The unit is

1 𝜋1
−−→ F .

Consider a monoidal functor 𝐹 : C → Vect. The projections 𝜋𝑥 give rise to elements

𝐾𝑥 ∈ 𝐹 (F) ⊗ End(𝐹 (𝑥)).

Comparing the formulas in equations (15) and (22), we see that there is an isomorphism of vector
spaces

𝐹 (F) � 𝐵.

In particular, as before, 𝐹 (F) is spanned, as a k-vector space, by the matrix coefficients of 𝐾𝑥 for 𝑥 ∈ Ccp

subject to the relation in equation (16) for every 𝑓 : 𝑥 → 𝑦. As before, 𝐾1 ∈ 𝐹 (F) is the unit. However,
the multiplication is different. The following was proved in [66, 26].

Proposition 2.31. Suppose 𝑥, 𝑦 ∈ Ccp are two objects. Then the reflection equation

𝑅21𝐾1𝑅12𝐾2 = 𝐾2𝑅21𝐾1𝑅12 (23)

holds in 𝐹 (F) ⊗ End(𝐹 (𝑥) ⊗ 𝐹 (𝑦)).

Remark 2.32. The reflection equation algebra in the theory of quantum groups was introduced in [58]
as the algebra generated by the matrix elements of K satisfying the reflection equation (23). We see that
it coincides with 𝐹 (F). So, F is also sometimes known as the reflection equation algebra.
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Example 2.33. Suppose H is a Hopf algebra and consider C = LMod𝐻 . Then the coend algebra F is a
Drinfeld twist of the restricted dual Hopf algebra

𝐻◦ =
∫ 𝑉 ∈LModcp

𝐻

𝑉∨ ⊗ 𝑉 ;

see [27, Definition 4.12].

3. Harish-Chandra bimodules

In this section, we study categories of classical and quantum Harish-Chandra bimodules as well as
introduce Harish-Chandra bialgebroids.

3.1. General definition

We will now present a general categorical definition that encompasses categories of both classical
and quantum Harish-Chandra bimodules. We refer to section 3.3 for a relationship to the usual Harish-
Chandra bimodules. This formalism is closely related to the theory of dynamical extensions of monoidal
categories introduced in [28]; see Theorem 3.2.

Throughout this section, we fix a cp-rigid monoidal category C. Recall from [34, Definition 7.13.1]
that the Drinfeld centre ZDr (C) is the braided monoidal category consisting of pairs (𝑧, 𝜏), where 𝑧 ∈ C
and

𝜏𝑥 : 𝑥 ⊗ 𝑧
∼
−→ 𝑧 ⊗ 𝑥

is a natural isomorphism satisfying standard compatibilities. The monoidal structure is given by

(𝑧, 𝜏) ⊗ (𝑧′, 𝜏′) = (𝑧 ⊗ 𝑧′, 𝜏),

where 𝜏 is the composite

𝑥 ⊗ 𝑧 ⊗ 𝑧′
𝜏𝑥 ⊗id𝑧′
−−−−−−→ 𝑧 ⊗ 𝑥 ⊗ 𝑧′

id⊗𝜏′𝑥
−−−−→ 𝑧 ⊗ 𝑧′ ⊗ 𝑥,

where we omit associators. We refer to [34, Proposition 8.5.1] for the braided monoidal structure on
ZDr (C).

Definition 3.1. Let (L, 𝜏) be a commutative algebra in ZDr (C). The category of Harish-Chandra
bimodules is

HC(C,L) = LModL(C).

When there is no confusion, we simply denote HC = HC(C,L).

Remark 3.2. A commutative algebra in the Drinfeld centre is called a base algebra in [28, Definition
4.1]. The full subcategory of HC(C,L) consisting of free left L-modules is called a dynamical extension
of C over L in [28, Section 4.2].

If H is a Hopf algebra, recall that the Drinfeld centre ZDr (LMod𝐻 ) is equivalent to the category of
Yetter–Drinfeld modules over H (see [52, Section XIII.5]). This gives rise to the following important
example.
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Proposition 3.3. Suppose H is a Hopf algebra, and consider C = LMod𝐻 . A commutative algebra L in
ZDr (LMod𝐻 ) is the same as an H-algebra L equipped with a left H-coaction 𝛿 : L→ 𝐻 ⊗ L, a map of
H-algebras, denoted by 𝑥 ↦→ 𝑥 (−1) ⊗ 𝑥 (0) satisfying

𝑥𝑦 = 𝑦 (0) (𝑆
−1 (𝑦 (−1) )) ⊲ 𝑥, 𝑥, 𝑦 ∈ L.

The corresponding isomorphism 𝜏𝑀 : 𝑀 ⊗ L→ L ⊗ 𝑀 is given by

𝑚 ⊗ 𝑥 ↦→ 𝑥 (0) ⊗ (𝑆
−1 (𝑥 (−1) ) ⊲ 𝑚).

Proof. The compatibility of 𝜏𝑀 with the monoidal structure on LMod𝐻 follows from the coassociativity
and counitality of the H-coaction. The compatibility of 𝜏𝑀 with the algebra structure on L is equivalent
to the equation

𝑥 (0) 𝑦 (0) ⊗ 𝑆−1 (𝑦 (−1) )𝑆
−1(𝑥 (−1) ) ⊲ 𝑚 = (𝑥𝑦)(0) ⊗ 𝑆−1 ((𝑥𝑦)(−1) ) ⊲ 𝑚,

which follows from the condition that L → 𝐻 ⊗ L is an algebra map. The commutativity of the
multiplication on L ∈ ZDr (LMod𝐻 ) is

𝑥𝑦 = 𝑦 (0) (𝑆
−1 (𝑦 (−1) )) ⊲ 𝑥.

�

Remark 3.4. The inverse morphism L ⊗ 𝑀 → 𝑀 ⊗ L is given by

𝑥 ⊗ 𝑚 ↦→ 𝑥 (−1) ⊲ 𝑚 ⊗ 𝑥 (0) .

Example 3.5. Consider a Hopf algebra H, and let L = 𝐻. Consider the adjoint action of H on L

ℎ ⊗ 𝑥 ↦→ ℎ (1)𝑥𝑆(ℎ (2) )

for ℎ ∈ 𝐻 and 𝑥 ∈ L. Consider the H-coaction L→ 𝐻 ⊗ L given by the coproduct on H. Then

𝑆−1 (𝑦) ⊲ 𝑥 = 𝑆−1 (𝑦 (2) )𝑥𝑦 (1) .

In particular,

𝑦 (2) (𝑆
−1 (𝑦 (1) )) ⊲ 𝑥 = 𝑦 (3)𝑆

−1 (𝑦 (2) )𝑥𝑦 (1)

= 𝜖 (𝑦 (2) )𝑥𝑦 (1)

= 𝑥𝑦,

which shows that (L, 𝜏) is a commutative algebra in ZDr (LMod𝐻 ).

Since L is a commutative algebra in ZDr (C), the category HC has a natural monoidal structure given
by the relative tensor product: given left L-modules 𝑀, 𝑁 ∈ C, we may turn M into a right L-module
using 𝜏𝑀 , and then the tensor product is given by 𝑀 ⊗L 𝑁 . We also have an adjunction

free : C �� HC: forget,



where free : C → HC is the monoidal functor 𝑥 ↦→ L ⊗ 𝑥 given by the free left L-module and
forget : HC→ C is given by forgetting the L-module structure.

Observe that Lop is an algebra in C⊗op. Moreover, it lifts to a commutative algebra in ZDr (C⊗op) if
we consider the inverse isomorphism 𝜏𝑥 .

Lemma 3.6. There is a natural monoidal equivalence HC(C,L)⊗op � HC(C⊗op,Lop).
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The following construction explains why HC deserves to be called the category of bimodules. There
is a natural monoidal functor

bimod: HC −→ LBModL (C) (24)

given by sending a left L-module M to the L-bimodule, where the right L-action is obtained via 𝜏𝑀 . It
realises HC as a full subcategory of LBModL(C) consisting of objects 𝑀 ∈ LBModL(C) such that the
right and left actions are related by 𝜏𝑀 .

Let us now analyse the categorical properties of HC.

Proposition 3.7. The category HC is cp-rigid. Moreover, we may take free(𝑉) ∈ HC for all 𝑉 ∈ Ccp as
the generating set of compact projective objects. If the unit of C is compact projective, so is the unit in
HC.

Proof. The functor free : C → HC has a colimit-preserving right adjoint forget : HC→ C. So, free(𝑉) ∈
HC is compact projective if 𝑉 ∈ Ccp.

The category HC is generated by free(𝑉) for 𝑉 ∈ C since forget is conservative. But since C has
enough compact projectives, we may restrict to 𝑉 ∈ Ccp.

Since C is cp-rigid, the objects 𝑉 ∈ Ccp are dualisable. Since free : C → HC is monoidal, the objects
free(𝑉) ∈ HC are also dualisable. But we have just shown that such objects are the generating compact
projective objects, while by [18, Proposition 4.1], it is enough to check cp-rigidity on the generating
compact projective objects.

The unit of HC is L viewed as a free left L-module of rank 1, so

HomHC(L,−) � HomC (1C , forget(−)),

which shows that L is compact projective if and only if 1C ∈ C is. �

3.2. Quantum moment maps

Recall that for an algebra 𝐴 ∈ Rep(𝐺), a quantum moment map is a map 𝜇 : U𝔤 → 𝐴 such that the
infinitesimal 𝔤-action on A is given by [𝜇(𝑥),−] for 𝑥 ∈ 𝔤. The following version of this definition in
our setting was introduced in [73, Definition 3.1].

Definition 3.8. Let 𝐴 ∈ C be an algebra. A quantum moment map is an algebra map 𝜇 : L→ 𝐴 such
that the diagram

L ⊗ 𝐴
𝜇⊗id �� 𝐴 ⊗ 𝐴

𝑚

����
���

��

𝐴

𝐴 ⊗ L

𝜏𝐴

��

id⊗𝜇 �� 𝐴 ⊗ 𝐴
𝑚

���������

(25)

commutes.

Remark 3.9. Recall that L ∈ ZDr (C) is a commutative algebra. The quantum moment map condition
expressed by equation (25) says that 𝜇 : L→ 𝐴 is a central map.

Proposition 3.10. An algebra in HC is an algebra in C equipped with a quantum moment map.

Proof. Via the embedding bimod: HC→ LBModL (C) of equation (24), an algebra 𝐴 ∈ HC gives rise
to an algebra in LBModL (C). An algebra in the category of bimodules is the same as an algebra 𝐴 ∈ C
equipped with an algebra map 𝜇 : L→ 𝐴. The condition that it lands in HC ⊂ LBModL(C) is precisely
the quantum moment map equation (25). �
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The following is [73, Definition 3.10].

Definition 3.11. Suppose 𝜖 : L→ 1C is a morphism of algebras in C and A is an algebra equipped with
a quantum moment map. The Hamiltonian reduction of 𝑨 is

HomC (1C , 𝐴 ⊗L 1) � HomLMod𝐴 (C) (𝐴 ⊗L 1C , 𝐴 ⊗L 1C).

A canonical example of an algebra with a quantum moment map we will use is the following.
Let 𝑇HC : HC ⊗ HC → HC be the tensor product functor. By Theorem 2.15, the object 𝑇R (1HC) ∈
HC ⊗ HC⊗op is an algebra. Identifying HC(C,L)⊗op � HC(C⊗op,Lop) using Theorem 3.6, we see that

(forget ⊗ forget) (𝑇R
HC (1HC)) ∈ C ⊗ C⊗op

is an algebra equipped with a quantum moment map from L � Lop.

Definition 3.12. Let C, HC be as before. The algebra D ∈ C ⊗ C⊗op is

D = (forget ⊗ forget) (𝑇R
HC (1HC)).

We denote the canonical quantum moment map by

𝜇 : L � Lop −→ 𝑇R
C (L). (26)

Proposition 3.13. We have an equivalence

D �
∫ 𝑥∈Ccp

(L ⊗ 𝑥∨) � 𝑥 �
∫ 𝑥∈Ccp

𝑥∨ � (𝑥 ⊗ L),

where the latter isomorphism is provided by Theorem 2.9. The algebra structure is given by

((L ⊗ 𝑥∨) � 𝑥) ⊗ ((L ⊗ 𝑦∨) � 𝑦) � (L ⊗ 𝑥∨ ⊗ L ⊗ 𝑦∨) � (𝑦 ⊗ 𝑥)

id⊗𝜏𝑥∨ ⊗id
−−−−−−−−→ (L ⊗ L ⊗ 𝑥∨ ⊗ 𝑦∨) � (𝑦 ⊗ 𝑥)

𝑚⊗id
−−−−→ (L ⊗ (𝑦 ⊗ 𝑥)∨) � (𝑦 ⊗ 𝑥)

𝜋𝑦⊗𝑥
−−−−→

∫ 𝑥∈Ccp

(L ⊗ 𝑥∨) � 𝑥.

The two quantum moment maps L,Lop → D are given by

L � (L ⊗ 1) � 1 𝜋1
−−→ D

and

Lop � 1 � (1 ⊗ L) 𝜋1
−−→ D.

Proof. Since free : C → HC is a monoidal functor, by adjunction, we get a natural isomorphism

(forget ⊗ forget) ◦ 𝑇R
HC � 𝑇R

C ◦ forget, (27)
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where 𝑇C : C ⊗ C → C is the tensor product functor. In particular, applying equation (27) to 1HC, we get
isomorphisms

D �
∫ 𝑥∈Ccp

(L ⊗ 𝑥∨) � 𝑥 �
∫ 𝑥∈Ccp

𝑥∨ � (𝑥 ⊗ L)

using Theorem 2.8.
We have a natural isomorphism

(forget ◦ free ⊗ id) ◦ 𝑇R
C (−) � 𝑇R

C (forget ◦ free(−))

given by Theorem 2.9 that gives rise to an algebra isomorphism

D � (forget ◦ free ⊗ id) ◦ 𝑇R
C (1),

which gives the required formula. �

Example 3.14. Suppose H is a Hopf algebra, L is a commutative algebra in ZDr (LMod𝐻 ) (see Theorem
3.3) and C = LMod𝐻 . Let

𝐻◦ =
∫ 𝑉 ∈LModcp

𝐻

𝑉∨ ⊗ 𝑉

be the restricted dual Hopf algebra. By construction, L is an H-comodule algebra, and 𝐻◦ is an H-
module algebra (via the left H-action). Then D is the smash product algebra generated by L and 𝐻◦

with the additional relation

ℎ𝑙 = 𝑙 (0) (𝑆
−1(𝑙 (−1) ) ⊲ ℎ)

for ℎ ∈ 𝐻◦ and 𝑙 ∈ L.

3.3. Classical Harish-Chandra bimodules

Let G be a reductive group over a characteristic zero field k, and denote by 𝔤 its Lie algebra. Let Rep(𝐺)
be the ind-completion of the category of finite-dimensional representations. The category Rep(𝐺) is
semisimple, so it has enough compact projectives and its unit is compact projective.

Suppose 𝑉 ∈ Rep(𝐺) is a G-representation. For 𝑥 ∈ U𝔤 and 𝑣 ∈ 𝑉 , we denote by 𝑥 ⊲ 𝑣 the induced
U𝔤-action on V. Consider the natural isomorphism

𝜏𝑉 : 𝑉 ⊗ U𝔤 −→ U𝔤 ⊗ 𝑉 (28)

given by

𝑣 ⊗ 𝑥 ↦→ 𝑥 ⊗ 𝑣 − 1 ⊗ 𝑥𝑣

for 𝑥 ∈ 𝔤. It follows from Theorem 3.3 that (U𝔤, 𝜏) defines a commutative algebra in ZDr (Rep(𝐺)).

Definition 3.15. The category of classical Harish-Chandra bimodules is

HC(𝐺) = HC(Rep(𝐺), U𝔤).

Remark 3.16. The embedding in equation (24) realises HC(𝐺) as the category of U𝔤-bimodules whose
diagonal 𝔤-action is integrable (see [11, Definition 5.2] for the original definition of Harish-Chandra
bimodules).
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The following easy lemma (see [73, Example 3.4]) shows that the definition of a quantum moment
map we gave in Theorem 3.8 coincides with the classical notion of a quantum moment map.

Lemma 3.17. Let 𝐴 ∈ Rep(𝐺) be an algebra. A quantum moment map 𝜇 : U𝔤 → 𝐴 is the same as an
algebra map such that for every 𝑥 ∈ 𝔤 the commutator [𝜇(𝑥),−] coincides with the differential of the
G-action.

In the same way, the quantum Hamiltonian reduction from Theorem 3.11 coincides with the usual
definition

𝐴//𝐺 = (𝐴/𝐴𝜇(𝔤))𝐺

of the reduced algebra.
Given a variety X equipped with a G-action, the algebra of differential operators D(𝑋) carries a

quantum moment map 𝜇 : U𝔤 → D(𝑋), which sends 𝔤 ⊂ U𝔤 to vector fields on X generating the
infinitesimal action. For instance, D(𝐺) carries a moment map

𝜇 : U𝔤 ⊗ U𝔤op → D(𝐺) (29)

coming from the left and right G-action on itself. Let us explain how it arises in our context.
By the Peter–Weyl theorem, we have an isomorphism of algebras

O(𝐺) �
∫ 𝑉 ∈Repfd (𝐺)

𝑉∨ �𝑉 ∈ Rep(𝐺) ⊗ Rep(𝐺),

where O(𝐺) carries a 𝐺 × 𝐺-action coming from the left and right G-action on itself. Using this, we
can also describe the algebra D from Theorem 3.12.

Proposition 3.18. The algebraD ∈ HC(𝐺) ⊗HC(𝐺)⊗op is isomorphic to D(𝐺) � U𝔤⊗O(𝐺) equipped
with the 𝐺 × 𝐺-action and the quantum moment map given by equation (29).

In the abelian case, the category of Harish-Chandra bimodules has a straightforward description.
Suppose H is a split torus; let 𝔥 be its Lie algebra and Λ = Hom(𝐻,Gm) the character lattice. Then
Rep(𝐻) is equivalent to the category ofΛ-graded vector spaces, and HC(𝐻) is equivalent to the category
of Λ-graded Sym(𝔥)-modules ⊕𝜆∈Λ𝑀 (𝜆).

Given𝜆 ∈ Λ, we consider the translation functor𝜆∗ : LModSym(𝔥) → LModSym(𝔥) . Then the monoidal
structure ⊗HC on HC(𝐻) is given by

𝑀 ⊗HC 𝑁 =
⊕
𝜆∈Λ

𝜆∗(𝑀) ⊗ 𝑁 (𝜆).

Suppose 𝑉 ∈ Rep(𝐻). Given a vector 𝑣 ∈ 𝑉 of weight 𝜇 ∈ Λ and 𝑓 ∈ O(𝔥∗) � U𝔥, the map given
by equation (28) is given by

𝑣 ⊗ 𝑓 (𝜆) ↦→ 𝑓 (𝜆 − 𝜇) ⊗ 𝑣

for 𝜆 ∈ 𝔥∗. It is convenient to write it as

𝑣 ⊗ 𝑓 (𝜆) ↦→ 𝑓 (𝜆 − ℎ) ⊗ 𝑣,

where h is understood as acting on 𝑣 ∈ 𝑉 . Similarly, given a collection of representations 𝑉1, . . . , 𝑉𝑛 ∈

Rep(𝐻) and vectors 𝑣𝑖 ∈ 𝑉𝑖 , we denote

𝑓 (𝜆 − ℎ (𝑖) )𝑣1 ⊗ . . . 𝑣𝑛 = 𝑓 (𝜆 − 𝜇𝑖)𝑣1 ⊗ . . . 𝑣𝑛

if 𝑣𝑖 has weight 𝜇𝑖 ∈ Λ.
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3.4. Quantum groups

In this section, we fix our conventions for quantum groups. Fix 𝑘 = C. Let G be a connected reductive
group, 𝐵, 𝐵− ⊂ 𝐺 a pair of opposite Borel subgroups and 𝐻 = 𝐵 ∩ 𝐵− a Cartan subgroup. Denote
by Λ = Hom(𝐻,Gm) its weight lattice and Λ∨ = Hom(Gm, 𝐻) the coweight lattice; we denote by
〈−,−〉 : Λ∨ × Λ → Z the canonical pairing. For two simple roots 𝛼𝑖 , 𝛼 𝑗 ∈ Λ, denote by 𝛼𝑖 · 𝛼 𝑗 ∈ Z
the corresponding entry of the symmetrised Cartan matrix. Choose an integer 𝑑 ∈ Z and a symmetric
bilinear form (−,−) : Λ × Λ → 1

𝑑Z such that (𝛼𝑖 , 𝛼 𝑗 ) = 𝛼𝑖 · 𝛼 𝑗 . Given a complex number 𝑞1/𝑑 ∈ C×,
we have the exponentiated pairing

Π : Λ × Λ −→ C×

given by 𝜆, 𝜇 ↦→ 𝑞−(𝜆,𝜇) . Our assumption is that 𝑞1/𝑑 is not a root of unity.
We denote by U𝑞 (𝔤) the quantum group defined as in [62] with a slight modification that its Cartan

part is U𝑞 (𝔥) = 𝑘 [Λ] with Cartan generators 𝐾𝜇 for 𝜇 ∈ Λ (note that the Cartan part in [62] is 𝑘 [Λ∨]).
We denote by U𝑞 (𝔟) ⊂ U𝑞 (𝔤) the quantum Borel subalgebra, U𝑞 (𝔫), U𝑞 (𝔫−) ⊂ U𝑞 (𝔤) the quantum
nilpotent subalgebras and U>0

𝑞 (𝔫), U<0
𝑞 (𝔫−) their augmentation ideals. For each simple root 𝛼, we

denote by {𝐸𝛼, 𝐾𝛼, 𝐹𝛼} the corresponding generators of the U𝑞 (𝔰𝔩2)-subalgebra (they are denoted by
𝐸𝑖 , �̃�𝑖 , 𝐹𝑖 in [62, Section 3.1.1]).

We have the corresponding categories obtained from this data:

◦ Rep𝑞 (𝐻) is the braided monoidal category of Λ-graded vector spaces with the braiding given by
Π𝜏, where 𝜏 is the map exchanging the tensor factors.

◦ Rep𝑞 (𝐺) is the ind-completion of the braided monoidal category of finite-dimensional Λ-graded
vector spaces with a U𝑞 (𝔤)-module structure such that for every vector 𝑥𝜆 of weight 𝜆 ∈ Λ, we have
𝐾𝜇𝑥𝜆 = 𝑞 (𝜇,𝜆)𝑥𝜆. The braiding is given by Θ ◦ Π ◦ 𝜏, where Θ ∈ U𝑞 (𝔫−)⊗̂U𝑞 (𝔫) is the so-called
quasi R-matrix. Refer to [62, Section 32] for more details.

◦ Rep𝑞 (𝐵) is the ind-completion of the monoidal category of finite-dimensional Λ-graded vector
spaces with a compatible U𝑞 (𝔟)-module structure.

Definition 3.19. A U𝑞 (𝔤)-module M is integrable if it lies in the image of the forgetful functor

Rep𝑞 (𝐺) −→ LModU𝑞 (𝔤) .

Equivalently, an integrable U𝑞 (𝔤)-module is a locally finite type 1 U𝑞 (𝔤)-module. We introduce an
analogous definition for U𝑞 (𝔟)-modules.

Denote by O𝑞 (𝐺) ∈ Rep𝑞 (𝐺) the coend algebra from Theorem 2.30.

Definition 3.20. A U𝑞 (𝔤)-module M is locally finite if for every 𝑚 ∈ 𝑀 , the vector space U𝑞 (𝔤)𝑚 is
finite-dimensional.

The algebra U𝑞 (𝔤) with respect to the adjoint U𝑞 (𝔤)-action on itself 𝑥, 𝑦 ↦→ 𝑥 (1) 𝑦𝑆(𝑥 (2) ) is not
locally finite, and we denote by

U𝑞 (𝔤)
lf ⊂ U𝑞 (𝔤)

the largest locally finite submodule.

Example 3.21. Consider U𝑞 (𝔰𝔩2) with the generators 𝐸, 𝐾, 𝐹 and relations

𝐾𝐸 = 𝑞2𝐸𝐾, 𝐾𝐹 = 𝑞−2𝐹𝐾, 𝐸𝐹 − 𝐹𝐸 =
𝐾 − 𝐾−1

𝑞 − 𝑞−1 .

Then U𝑞 (𝔰𝔩2)lf is the subalgebra generated by 𝐸𝐾−1, F and 𝐾−1.
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It is easy to see that U𝑞 (𝔤)lf ⊂ U𝑞 (𝔤) is a subalgebra, but note that it is not a subcoalgebra.
Nevertheless, the following is shown in [50, Theorem 7.1.6].

Proposition 3.22. U𝑞 (𝔤)lf ⊂ U𝑞 (𝔤) is a left coideal: that is, the coproduct restricts to a map

Δ : U𝑞 (𝔤)
lf −→ U𝑞 (𝔤) ⊗ U𝑞 (𝔤)

lf .

Remark 3.23. There is a close relationship between the algebras U𝑞 (𝔤)lf and O𝑞 (𝐺), which can be
established using the quantum Killing form [70]. If G is semisimple simply-connected, U𝑞 (𝔤)lf �
O𝑞 (𝐺); see [50, Proposition 7.1.23] and [89, Theorem 2.113].

3.5. Quantum Harish-Chandra bimodules

For 𝑉 ∈ Rep𝑞 (𝐺), 𝑣 ∈ 𝑉 an 𝑥 ∈ U𝑞 (𝔤), we denote by 𝑥 ⊲ 𝑣 the U𝑞 (𝔤)-action. For 𝑥 ∈ U𝑞 (𝔤)lf , we
denote by Δ (𝑥) = 𝑥 (1) ⊗ 𝑥 (2) the coproduct on U𝑞 (𝔤), where we note that 𝑥 (2) ∈ U𝑞 (𝔤)lf by Theorem
3.22. We define the natural isomorphism

𝜏𝑉 : 𝑉 ⊗ U𝑞 (𝔤)
lf −→ U𝑞 (𝔤)

lf ⊗ 𝑉 (30)

by

𝑣 ⊗ 𝑥 ↦→ 𝑥 (2) ⊗ 𝑆−1 (𝑥 (1) ) ⊲ 𝑣.

Consider U𝑞 (𝔤)lf ∈ Rep𝑞 (𝐺) with respect to the adjoint action. It follows from Theorem 3.3 that
(U𝑞 (𝔤)lf , 𝜏) is a commutative algebra in ZDr (Rep𝑞 (𝐺)).

Definition 3.24. The category of quantum Harish-Chandra bimodules is

HC𝑞 (𝐺) = HC(Rep𝑞 (𝐺), U𝑞 (𝔤)
lf).

Remark 3.25. A similar definition of the category of quantum Harish-Chandra bimodules is given in
[89, Definition 5.26].

Remark 3.26. By [73, Theorem 3.10], the notion of quantum moment maps in this setting coincides
with the quantum moment maps for quantum group actions introduced in [88, Section 1.5].

In this case, the algebra D from Theorem 3.12 is the algebra of quantum differential operators D𝑞 (𝐺)

on G (see [5, Section 4.1], where it is denoted by D 𝑓 𝑖𝑛
𝑞 ).

As in the case of classical Harish-Chandra bimodules, in the abelian case, the category HC𝑞 (𝐺) has
a straightforward description. Let H be a torus and Λ its weight lattice. Then U𝑞 (𝔥)lf = U𝑞 (𝔥) = O(𝐻)
and HC𝑞 (𝐻) is equivalent to the category of Λ-graded O(𝐻)-modules. There is a homomorphism

Λ −→ 𝐻

whose dual map O(𝐻) = 𝑘 [Λ] → O(Λ) on the level of functions is

𝐾𝜇 ↦→
(
𝜆 ↦→ 𝑞 (𝜇,𝜆)

)
for 𝜇, 𝜆 ∈ Λ. In particular, Λ acts by translations on H, and we denote the induced functor by

(𝑞𝜆)∗ : LModO (𝐻 ) → LModO (𝐻 ) .
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The monoidal structure ⊗HC on HC𝑞 (𝐻) is given by

𝑀 ⊗HC 𝑁 =
⊕
𝜆∈Λ

(𝑞𝜆)∗(𝑀) ⊗ 𝑁 (𝜆).

Suppose 𝑉 ∈ Rep(𝐻), 𝑣 ∈ 𝑉 and 𝑓 ∈ O(𝐻) � U𝑞 (𝔥). Then the map given by equation (30) is

𝑣 ⊗ 𝑓 (𝜆) ↦→ 𝑓 (𝜆𝑞−ℎ) ⊗ 𝑣

for 𝜆 ∈ 𝐻.

3.6. Harish-Chandra bimodules and bialgebroids

Let us again consider the general setup of section 3.1, where C is a cp-rigid monoidal category with a
compact projective unit. In particular, HC is also a cp-rigid monoidal category with a compact projective
unit. Our goal in this section is to describe a Tannaka reconstruction result for monoidal forgetful functors
to HC.

Recall from Theorem 2.19 that the category HC⊗HC carries two monoidal structures: the pointwise
monoidal structure on HC ⊗ HC⊗op and the convolution product. We will call the latter the Takeuchi
product in this setting.

Definition 3.27. The Takeuchi product ×L is the monoidal structure on HC ⊗ HC given by

(𝑀1 � 𝑀2) ×L (𝑁1 � 𝑁2) = ev(𝑀2, 𝑁1) ⊗ (𝑀1 � 𝑁2)

with the unit coev(𝑘) = D ∈ HC ⊗ HC.

Example 3.28. Consider the setup of Theorem 3.15. An object of HC(𝐺) ⊗ HC(𝐺) � HC(𝐺 × 𝐺) is
a U𝔤 ⊗ (U𝔤)op-bimodule with a certain integrability condition. For a (U𝔤)op-bimodule M and a U𝔤-
bimodule N, the Takeuchi product is the subspace

𝑀 ×U𝔤 𝑁 ⊂ 𝑀 ⊗U𝔤 𝑁

of elements
∑

𝑖 𝑚𝑖 ⊗ 𝑛𝑖 satisfying ∑
𝑖

𝑚𝑖𝑥 ⊗ 𝑛𝑖 = 𝑚𝑖 ⊗ 𝑛𝑖𝑥

for every 𝑥 ∈ U𝔤; see [82].

We will now formulate the notion of bialgebroids in the category of Harish-Chandra bimodules.
Recall that the algebra D � 𝑇R (L) ∈ C ⊗ Cop carries a natural quantum moment map given by equation
(26).

Definition 3.29. A Harish-Chandra bialgebroid is an algebra 𝐵 ∈ C ⊗ C⊗op equipped with a quantum
moment map 𝑠 ⊗ 𝑡 : L � Lop → 𝐵, which allows us to regard B as an algebra in HC ⊗ HC⊗op, together
with a coassociative coproduct Δ : 𝐵 → 𝐵 ×L 𝐵, a map of algebras in HC ⊗ HC⊗op, and a counit map
𝜀 : 𝐵→ D, a map of algebras in C ⊗ C⊗op compatible with quantum moment maps.

Example 3.30. Let H be a split torus and Λ = Hom(𝐻,Gm) its weight lattice, and consider the category
of Harish-Chandra bimodules HC(𝐻). A bialgebroid in HC(𝐻) is given by the following data:

◦ An algebra with a bigrading

𝐵 =
⊕
𝛼,𝛽∈Λ

𝐵𝛼𝛽 .
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◦ Algebra maps

𝑠, 𝑡 : O(𝔥∗) −→ 𝐵

that satisfy the quantum moment map equations

𝑠( 𝑓 (𝜆))𝑎 = 𝑎𝑠( 𝑓 (𝜆 + 𝛼)), 𝑡 ( 𝑓 (𝜆))𝑎 = 𝑎𝑡 ( 𝑓 (𝜆 + 𝛽))

for 𝑓 ∈ O(𝔥∗) and 𝑎 ∈ 𝐵𝛼𝛽 .
◦ The coproduct Δ : 𝐵→ 𝐵 ×U𝔥 𝐵, a map of algebras compatible with the grading and quantum

moment maps. Here the Takeuchi product is

(𝐵 ×U𝔥 𝐵)𝛼𝛽 =
⊕
𝛿∈Λ

𝐵𝛼𝛿 ⊗O (𝔥∗) 𝐵𝛿𝛽 ,

where the relative tensor product is the quotient of the k-linear tensor product modulo the relations
𝑡 ( 𝑓 )𝑎 ⊗ 𝑏 ∼ 𝑎 ⊗ 𝑠( 𝑓 )𝑏 for 𝑎 ⊗ 𝑏 ∈ 𝐵𝛼𝛿 ⊗ 𝐵𝛿𝛽 and 𝑓 ∈ O(𝔥∗).

◦ The counit 𝜖 : 𝐵→ D(𝐻), a map of algebras compatible with the grading and quantum moment maps.

Remark 3.31. Essentially, this data is an 𝔥-bialgebroid in the sense of [37, Section 4.1]. The differences
are as follows:

◦ For an 𝔥-bialgebroid, the weights 𝛼, 𝛽 are not necessarily integral.
◦ The counit of an 𝔥-bialgebroid takes values in the algebra of difference operators on 𝔥∗. However, it

contains the subalgebra of difference operators with integral shifts (i.e., in Λ ⊂ 𝔥∗), which is
equivalent to D(𝐻) via the so-called Mellin transform; see, for instance, [10, Section 2.1].

So, a Harish-Chandra bialgebroid in HC(𝐻) is an 𝔥-bialgebroid with certain integrability assumptions.

Theorem 3.32. Suppose B is a Harish-Chandra bialgebroid. The functor ⊥ : HC→ HC given by

⊥(𝑀) = 𝐵 ×L 𝑀

defines a lax monoidal comonad. Conversely, let ⊥ : HC → HC be a colimit-preserving lax monoidal
comonad on HC. Then ⊥(−) � 𝐵 ×L (−) for some Harish-Chandra bialgebroid B.

Proof. Recall from [2, Definition 6.25] that a bimonoid in a duoidal category is an algebra with respect
to one monoidal structure and a coalgebra with respect to the other monoidal structure, both compatible
in a natural way. A coalgebra in (FunL(HC, HC), ◦) is a colimit-preserving comonad on HC, and a
bimonoid in FunL(HC, HC) is the same as lax monoidal comonad on HC.

A colimit-preserving lax monoidal comonad on HC is the same as a bimonoid in the duoidal
category FunL(HC, HC). By Theorem 2.20, we have an equivalence of duoidal categories HC ⊗ HC �
FunL(HC, HC). So, ⊥ corresponds to an object 𝐵 ∈ HC ⊗HC, which is both an algebra in HC ⊗HC⊗op

as well as a coalgebra in (HC ⊗ HC,×L), both in a compatible way.
By Theorem 3.6, we have an equivalence of monoidal categories

HC(C,L) ⊗ HC(C,L)⊗op � HC(C,L) ⊗ HC(C⊗op,Lop),

so by Theorem 3.10, the data of an algebra 𝐵 ∈ HC ⊗ HC⊗op boils down to an algebra 𝐵 ∈ C ⊗ C⊗op

equipped with a quantum moment map L � Lop → 𝐵.
The data of a comonad boils down to a coalgebra (𝐵,Δ , 𝜖) in (HC⊗HC,×L). The counit is given by

a map of algebras 𝜖 : 𝐵→ coev(𝑘) in HC ⊗ HC⊗op. Identifying algebras in HC ⊗ HC⊗op with algebras
in C ⊗ C⊗op equipped with quantum moment maps by Theorem 3.10, the counit is the same as a map
𝜀 : 𝐵→ 𝑇R (L) � D of algebras in C ⊗ C⊗op compatible with quantum moment maps from L�Lop. �

The definition of representations of Harish-Chandra bialgebroids is straightforward.
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Definition 3.33. Suppose 𝐵 ∈ HC ⊗ HC is a Harish-Chandra bialgebroid. A 𝑩-comodule is an object
𝑀 ∈ HC together with a coassociative and counital coaction 𝑀 → 𝐵 ×L 𝑀 .

Equivalently, by Theorem 3.32 a B-comodule is a coalgebra over the comonad ⊥(𝑀) = 𝐵 ×L 𝑀 .

Example 3.34. Consider the category of Harish-Chandra bimodules HC(𝐻) for a split torus H as in
Theorem 3.30, and let B be a Harish-Chandra bialgebroid in HC(𝐻). Then a B-comodule is a O(𝔥∗)-
module

𝑀 =
⊕
𝛼∈Λ

𝑀𝛼

together with a coaction map

𝑀𝛼 −→
⊕
𝛽∈Λ

𝐵𝛼𝛽 ⊗O (𝔥∗) 𝑀𝛽 ,

where B is considered a right O(𝔥∗)-module via the left action of 𝑡 : O(𝔥∗) → 𝐵. We require this
coaction map to be compatible with the O(𝔥∗)-actions on both sides, where the O(𝔥∗)-action on the
right is via the left multiplication by 𝑠 : O(𝔥∗) → 𝐵 and coassociative and counital in the obvious way.

We obtain a Tannaka recognition statement for Harish-Chandra bialgebroids.

Theorem 3.35. Suppose D is a monoidal category with a monoidal functor 𝐹 : D→ HC, which admits
a colimit-preserving right adjoint 𝐹R : HC → D. Then there is a Harish-Chandra bialgebroid B such
that (𝐹 ◦ 𝐹R) (−) � 𝐵 ×L (−) and F factors through a monoidal functor

D −→ CoMod𝐵 (HC).

If F is conservative and preserves equalisers, the above functor is an equivalence.

Proof. Since F is monoidal, 𝐹R is lax monoidal. Therefore, ⊥ = 𝐹𝐹R is a colimit-preserving lax
monoidal comonad on HC. By Theorem 3.32, there is a Harish-Chandra bialgebroid B such that
⊥(−) � 𝐵 ×L (−). By the standard monadic arguments, F factors through

D −→ CoMod⊥(HC) � CoMod𝐵 (HC),

which is monoidal (see [81, Proposition 3.5] for the dual statement). If F is conservative and preserves
equalisers, by the Barr–Beck theorem [65, Theorem VI.7.1] the above functor is an equivalence. �

4. Dynamical R-matrices

In this section, we explain how the dynamical twists and dynamical R-matrices arise from the categorical
formalism explained in this paper.

4.1. Dynamical twists

Consider a Hopf algebra H, a commutative algebra L ∈ ZDr (LMod𝐻 ) (see Theorem 3.3) with a coaction
map 𝛿 : L → 𝐻 ⊗ L (denoted by 𝑥 ↦→ 𝑥 (−1) ⊗ 𝑥 (0) ) and a cp-rigid monoidal category C together with
a forgetful functor 𝐹 : C → LMod𝐻 , which we assume sends compact projective objects in C to finite-
dimensional H-modules. It will be convenient to introduce the right H-coaction

𝛿𝑅 : L −→ L ⊗ 𝐻
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by

𝑥 ↦→ 𝑥 (0) ⊗ 𝑆−1(𝑥 (−1) ).

Proposition 4.1. A monoidal structure with a strict unit map on the composite

C −→ LMod𝐻
free
−−→ HC(LMod𝐻 ,L)

is the same as a natural collection of elements 𝐽𝑋,𝑌 ∈ L⊗Hom(𝐹 (𝑋) ⊗𝐹 (𝑌 ), 𝐹 (𝑋 ⊗𝑌 )) for 𝑋,𝑌 ∈ Ccp

satisfying

◦ The elements 𝐽𝑋,𝑌 are H-invariant.
◦ For a triple 𝑋,𝑌, 𝑍 ∈ Ccp, the equation

𝐽𝑋 ⊗𝑌 ,𝑍 ◦ (𝐽𝑋,𝑌 ⊗ id𝑍 ) = 𝐽𝑋,𝑌 ⊗𝑍 ◦ 𝛿𝑅𝑋 (𝐽𝑌 ,𝑍 )

holds, where 𝛿𝑅𝑋 means the H-factor in 𝛿𝑅 acts on X.
◦ For any 𝑋 ∈ Ccp, we have 𝐽1,𝑋 = 𝐽𝑋,1 = 1 ⊗ id𝐹 (𝑋 ) .

Proof. Recall that the monoidal structure on the functor free : LMod𝐻 → HC(LMod𝐻 ,L) is given by
the natural isomorphism

(L ⊗ 𝑋) ⊗L (L ⊗ 𝑌 )
∼
−→ L ⊗ 𝑋 ⊗ 𝑌

𝑎 ⊗ 𝑥 ⊗ 𝑏 ⊗ 𝑦 ↦→ 𝑎𝑏 (0) ⊗ 𝑆−1 (𝑏 (−1) ) ⊲ 𝑥 ⊗ 𝑦

for any 𝑋,𝑌 ∈ LMod𝐻 . So, the monoidal structure on C → HC(LMod𝐻 ,L) is given by

(L ⊗ 𝐹 (𝑋)) ⊗L (L ⊗ 𝐹 (𝑌 )) � L ⊗ 𝐹 (𝑋) ⊗ 𝐹 (𝑌 )
∼
−→ L ⊗ 𝐹 (𝑋 ⊗ 𝑌 ),

where the first isomorphism is given by the monoidal structure on free and the second isomorphism is

𝑙 ⊗ 𝑎 ⊗ 𝑏 ↦→ (𝑙 ⊗ id𝐹 (𝑋 ⊗𝑌 ) )𝐽𝑋,𝑌 (𝑎 ⊗ 𝑏).

The composite is automatically a map of L-modules, and the compatibility with the H-action is the
H-invariance condition on 𝐽𝑋,𝑌 .

The associativity condition for the monoidal structure on F is that for compact projective objects
𝑋,𝑌, 𝑍 ∈ Ccp, the diagram

((L ⊗ 𝐹 (𝑋)) ⊗L (L ⊗ 𝐹 (𝑌 ))) ⊗L (L ⊗ 𝐹 (𝑍))
∼ ��

𝐽𝑋,𝑌 ⊗id
��

(L ⊗ 𝐹 (𝑋)) ⊗L ((L ⊗ 𝐹 (𝑌 )) ⊗L (L ⊗ 𝐹 (𝑍)))

id⊗𝐽𝑌 ,𝑍

��
(L ⊗ 𝐹 (𝑋 ⊗ 𝑌 )) ⊗L (L ⊗ 𝐹 (𝑍))

𝐽𝑋⊗𝑌 ,𝑍 ��			
				

				
				

(L ⊗ 𝐹 (𝑋)) ⊗L (L ⊗ 𝐹 (𝑌 ⊗ 𝑍))

𝐽𝑋,𝑌⊗𝑍��




















L ⊗ 𝐹 (𝑋 ⊗ 𝑌 ⊗ 𝑍)

commutes. Considering the image of (1 ⊗ 𝑎) ⊗ (1 ⊗ 𝑏) ⊗ (1 ⊗ 𝑐) under these maps, we get the second
equation.

The unitality condition for the monoidal structure on F is equivalent to the last equation. �
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Let us now introduce a universal version of the previous statement. Suppose A is another Hopf algebra
with a map of algebras 𝐻 → 𝐴. We assume C = LMod𝐴, and the forgetful functor

𝐹 : LMod𝐴 −→ LMod𝐻

is given by restriction of modules. Denote by (𝐴,Δ , 𝜀) the coalgebra structure on A.

Definition 4.2. A dynamical twist is an invertible element

𝐽 = 𝐽0 ⊗ 𝐽1 ⊗ 𝐽2 ∈ L ⊗ 𝐴 ⊗ 𝐴

satisfying

1. The invariance condition

ℎ (1) ⊲ 𝐽0 ⊗ ℎ (2) 𝐽
1 ⊗ ℎ (3) 𝐽

2 = 𝐽0 ⊗ 𝐽1ℎ (1) ⊗ 𝐽2ℎ (2)

for every ℎ ∈ 𝐻;
2. The shifted cocycle equation

((id ⊗ Δ ⊗ id)𝐽) (𝐽 ⊗ 1) = ((id ⊗ id ⊗ Δ)𝐽) (𝐽0
(0) ⊗ 𝑆−1 (𝐽0

(−1) ) ⊗ 𝐽1 ⊗ 𝐽2);

3. The normalisation condition

(id ⊗ 𝜀 ⊗ id)𝐽 = 1 ⊗ 1 ⊗ 1 = (id ⊗ id ⊗ 𝜀)𝐽.

Example 4.3. Consider the trivial pair 𝐻 = L = 𝑘 given by the ground field. The invariance condition is
empty, while the cocycle equation and the normalisation condition imply that 𝐽 ∈ 𝐴 ⊗ 𝐴 is a (constant)
twist for the Hopf algebra in the sense of [21, Proposition 4.2.13].

Example 4.4. Suppose 𝔥 is an abelian Lie algebra, and consider 𝐻 = L = U𝔥 as in section 3.3. Then a
dynamical twist is a function 𝐽 : 𝔥∗ → 𝐴 ⊗ 𝐴. The invariance condition is that 𝐽 (𝜆) is 𝔥-invariant with
respect to the adjoint action (the zero-weight condition). The shifted cocycle equation is

((Δ ⊗ id)𝐽 (𝜆))𝐽12(𝜆) = ((id ⊗ Δ)𝐽 (𝜆))𝐽23(𝜆 − ℎ (1) ).

Proposition 4.5. The data of a dynamical twist is equivalent to the data of a monoidal structure on
LMod𝐴→ HC(LMod𝐻 ,L) with a strict unit map.

Proof. By Theorem 4.1, the monoidal structure is specified by a collection of elements

𝐽𝑋,𝑌 ∈ L ⊗ End(𝑋 ⊗ 𝑌 ), 𝑋,𝑌 ∈ LMod𝐴.

By naturality, these are uniquely determined by the elements

𝐽 = 𝐽𝐴,𝐴(1𝐴 ⊗ 1𝐴) ∈ L ⊗ 𝐴 ⊗ 𝐴.

�

Two dynamical twists may be related by a gauge transformation.

Definition 4.6. A gauge transformation is an invertible H-invariant element 𝐺 ∈ L ⊗ 𝐴 satisfying the
normalisation condition

(id ⊗ 𝜀) (𝐺) = 1 ⊗ 1.
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Given a dynamical twist J and a gauge transformation G, we obtain a new dynamical twist by the
formula

𝐽𝐺 = (id ⊗ Δ)𝐺 · 𝐽 · ((𝛿𝑅 ⊗ id)𝐺)−1(𝐺 ⊗ 1)−1. (31)

Example 4.7. Consider the pair 𝐻 = L = U𝔥, as in Theorem 4.4. Then a gauge transformation is a
zero-weight function 𝐺 : 𝔥∗ → 𝐴× satisfying 𝜀(𝐺 (𝜆)) = 1. Given a dynamical twist 𝐽 : 𝔥∗ → 𝐴 ⊗ 𝐴,
its gauge transformation is

𝐽𝐺 (𝜆) = (id ⊗ Δ)𝐺 (𝜆) · 𝐽 (𝜆) · (𝐺2(𝜆 − ℎ (1) ))−1(𝐺1 (𝜆))
−1.

Proposition 4.8. Suppose 𝐽1, 𝐽2 are two dynamical twists that give rise to monoidal structures on the
functor LMod𝐴→ HC(LMod𝐻 ,L) by Theorem 4.5. The data of a gauge transformation between them
is a monoidal natural isomorphism

LMod𝐴

𝐽1 

𝐽2

��
�� ��
�� HC(LMod𝐻 ,L)

4.2. Dynamical FRT and reflection equation algebras

Let us describe the Harish-Chandra bialgebroid B from Theorem 3.35 explicitly. Let D be a cp-rigid
monoidal category and 𝐹 : D → HC a monoidal functor that admits a colimit-preserving right adjoint
𝐹R.

By Theorem 2.5, the functor 𝐹𝐹R can be calculated as

𝐹𝐹R (𝑥) =
∫ 𝑦∈Dcp

HomHC (𝐹 (𝑦)
∨, 𝑥) ⊗ 𝐹 (𝑦)∨

�
∫ 𝑦∈Dcp

HomHC (L, 𝐹 (𝑦) ⊗L 𝑥) ⊗ 𝐹 (𝑦)∨.

Recalling the definition of the Takeuchi product from Theorem 3.27, we obtain that 𝐹𝐹R (𝑥) � 𝐵 ×L 𝑥,
where the Harish-Chandra bialgebroid B is

𝐵 �
∫ 𝑦∈Dcp

𝐹 (𝑦)∨ � 𝐹 (𝑦) ∈ HC ⊗ HC.

As in section 2.5, denote by

𝜋𝑦 : 𝐹 (𝑦)∨ � 𝐹 (𝑦) −→ 𝐵

the natural projections. The Harish-Chandra bialgebroid structure is given on generators as follows:

1. The coproduct

𝐵 −→ 𝐵 ×L 𝐵 �
∫ (𝑦,𝑧) ∈Dcp×Dcp

HomHC (L, 𝐹 (𝑦) ⊗L 𝐹 (𝑧)∨) ⊗ 𝐹 (𝑦)∨ � 𝐹 (𝑧)

is

𝐹 (𝑦)∨ � 𝐹 (𝑦)
coev⊗id
−−−−−−→ HomHC(L, 𝐹 (𝑦) ⊗L 𝐹 (𝑦)∨) ⊗ 𝐹 (𝑦)∨ � 𝐹 (𝑦)

𝜋𝑦,𝑦
−−−→ 𝐵 ×L 𝐵.
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2. The counit

𝐵 −→ 𝑇R
HC (L) =

∫ 𝑃∈HCcp

𝑃∨ � 𝑃

is the projection

𝐹 (𝑦)∨ � 𝐹 (𝑦) → 𝑇R
HC (L).

3. The product is the composite

(𝐹 (𝑦)∨ � 𝐹 (𝑦)) ⊗L⊗L (𝐹 (𝑧)
∨ � 𝐹 (𝑧)) = (𝐹 (𝑦)∨ ⊗L 𝐹 (𝑧)∨) � (𝐹 (𝑧) ⊗L 𝐹 (𝑦))

� (𝐹 (𝑧) ⊗L 𝐹 (𝑦))∨ � (𝐹 (𝑧) ⊗L 𝐹 (𝑦))

(𝐽−1
𝑧,𝑦 )

∨�𝐽𝑧,𝑦
−−−−−−−−−−→ 𝐹 (𝑧 ⊗ 𝑦)∨ � 𝐹 (𝑧 ⊗ 𝑦)
𝜋𝑧⊗𝑦
−−−−→ 𝐵.

4. The quantum moment map is

L � Lop � 𝐹 (1) � 𝐹 (1) 𝜋1
−−→ 𝐵.

We will now concentrate on the case C = Rep(𝐻) for H a split torus with weight latticeΛ andL = U𝔥,
so HC = HC(𝐻). Moreover, we assume that the functor 𝐹 : D→ HC(𝐻) factors as the composite

D −→ Rep(𝐻) free
−−→ HC(𝐻).

For an object 𝑦 ∈ D, we denote its image in Rep(𝐻) by the same letter. In this case, the monoidal
structure is given by a dynamical twist

𝐽𝑦,𝑧 (𝜆) : 𝔥∗ → End(𝑦 ⊗ 𝑧)

as in Theorem 4.1.
The projections

𝜋𝑦 : (U𝔥 ⊗ 𝑦∨) � (U𝔥 ⊗ 𝑦) −→ 𝐵

in HC(𝐻 × 𝐻) may be encoded in elements

𝑇𝑦 ∈ 𝐵 ⊗ End(𝑦).

Analogously to Theorem 2.26, we obtain the following explicit description of the bialgebroid B.

Theorem 4.9. The bialgebroid B is spanned, as an O(𝔥∗)-bimodule, by the matrix coefficients of 𝑇𝑦 for
𝑦 ∈ Dcp subject to the relation

𝐹 ( 𝑗) ◦ 𝑇𝑥 = 𝑇𝑦 ◦ 𝐹 ( 𝑗)

for every 𝑗 : 𝑥 → 𝑦. Moreover, we have:

1. Δ (𝑇𝑦) = 𝑇𝑦 ⊗ 𝑇𝑦 for every 𝑦 ∈ D𝑐𝑝 .
2. 𝜖 (𝑇𝑦) = 1 ⊗ id𝑦 ∈ D(𝐻) ⊗ End(𝑦) for every 𝑦 ∈ Dcp.
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3. For every 𝑓 ∈ O(𝔥∗) and 𝑦 ∈ Dcp,

𝑠( 𝑓 (𝜆))𝑇𝑦 = 𝑇𝑦𝑠( 𝑓 (𝜆 + ℎ))

𝑡 ( 𝑓 (𝜆 + ℎ))𝑇𝑦 = 𝑇𝑦𝑡 ( 𝑓 (𝜆)).

4. 𝐽𝑡𝑦,𝑧 (𝜆)
−1𝑇𝑦⊗𝑧𝐽

𝑠
𝑦,𝑧 (𝜆) = (𝑇𝑦 ⊗ id) (id⊗𝑇𝑧), where by the superscripts, we mean the left multiplication

with the O(𝔥∗)-part by either the source (𝑠) or the target (𝑡) map.
5. 𝑇1 ∈ 𝐵 is the unit.

Definition 4.10. Suppose D is a braided monoidal category together with a forgetful functor D →
Rep(𝐻) and a monoidal structure on the composite D → Rep(𝐻) free

−−→ HC(𝐻). For 𝑥, 𝑦 ∈ D, define
the morphism U𝔥 ⊗ 𝑥 ⊗ 𝑦 → U𝔥 ⊗ 𝑦 ⊗ 𝑥 by

�̌�𝑥,𝑦 : 𝐹 (𝑥) ⊗U𝔥 𝐹 (𝑦)
𝐽𝑥,𝑦
−−−→ 𝐹 (𝑥 ⊗ 𝑦)

𝐹 (𝜎𝑥,𝑦 )
−−−−−−−→ 𝐹 (𝑦 ⊗ 𝑥)

𝐽−1
𝑥,𝑦
−−−→ 𝐹 (𝑦) ⊗U𝔥 𝐹 (𝑥).

The dynamical 𝑹-matrix is the map 𝑅𝑥,𝑦 : 𝔥∗ → End(𝑥 ⊗ 𝑦) given by

𝑅𝑥,𝑦 = (idU𝔥 ⊗ 𝜎−1
𝑥,𝑦) ◦ �̌�𝑥,𝑦 .

As in section 2.5, we use the standard notation 𝑇1 = 𝑇𝑥 ⊗ id and 𝑇2 = id ⊗ 𝑇𝑦 and similarly for the
R-matrix.

Proposition 4.11. Let 𝑥, 𝑦, 𝑧 ∈ Dcp.

1. The dynamical R-matrix satisfies the dynamical Yang-Baxter equation

𝑅23 (𝜆)𝑅13(𝜆 − ℎ (2) )𝑅12(𝜆) = 𝑅12 (𝜆 − ℎ (3) )𝑅13(𝜆)𝑅23(𝜆 − ℎ (1) )

in End(𝑥 ⊗ 𝑦 ⊗ 𝑧).
2. The element T satisfies the dynamical FRT relation

𝑅𝑡 (𝜆)𝑇1𝑇2 = 𝑇2𝑇1𝑅
𝑠 (𝜆)

in 𝐵 ⊗ End(𝑥 ⊗ 𝑦).

Proof. As in the proof of Theorem 2.28, the element �̂� satisfies the braid relation

�̌�12 �̌�23 �̌�12 = �̌�23 �̌�12 �̌�23

in U𝔥 ⊗ End(𝑥 ⊗ 𝑦 ⊗ 𝑧). Observing that �̌� = 𝜎 ◦ 𝑅, we get the dynamical Yang–Baxter equation.
To show the second part, recall from Theorem 4.9 that

𝐹 (𝜎𝑥,𝑦)𝑇𝑥⊗𝑦 = 𝑇𝑦⊗𝑥𝐹 (𝜎𝑥,𝑦).

Decomposing𝑇𝑥⊗𝑦 and𝑇𝑦⊗𝑥 into𝑇𝑥 and𝑇𝑦 using property (4) of the same theorem, we get the result. �

5. Fusion of Verma modules

In this section, we construct standard dynamical twists for U𝔤 and U𝑞 (𝔤) using the so-called exchange
construction introduced in [31].
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5.1. Classical parabolic restriction

Let G be a reductive group over an algebraically closed field k of characteristic zero and 𝔤 its Lie algebra.
Fix a Borel subgroup 𝐵 ⊂ 𝐺 and denote 𝐻 = 𝐵/[𝐵, 𝐵]; their Lie algebras are denoted by 𝔟 and 𝔥. We
denote by N the kernel of 𝐵→ 𝐻 with Lie algebra 𝔫. Let W be the Weyl group.

We will later use the Harish-Chandra isomorphism; see [49, Theorem 1.10].

Theorem 5.1. There is a unique homomorphism of algebras

hc: Z(U𝔤) −→ U𝔥,

the Harish-Chandra homomorphism, such that for any 𝑧 ∈ Z(U𝔤) and 𝑚 ∈ 𝑀univ, we have

𝑧𝑚 = 𝑚hc(𝑧).

Definition 5.2. The universal category O is the category Ouniv of (U𝔤, U𝔥)-bimodules whose diagonal
𝔟-action integrates to a B-action. The universal Verma module is

𝑀univ = U𝔤 ⊗U𝔟 U𝔥 ∈ Ouniv.

Remark 5.3. Just like the usual category O is constructed to contain objects like Verma modules, we
define Ouniv to contain objects like universal Verma modules.

Remark 5.4. We may identify Ouniv with the category of U𝔤-modules in the category Rep(𝐻) whose
𝔫-action is locally nilpotent.

We will now define an important bimodule structure on Ouniv:

HC(𝐺) � Ouniv
� HC(𝐻). (32)

Both actions are given by the relative tensor products of bimodules. Given a U𝔤-bimodule 𝑋 ∈ HC(𝐺)
and a (U𝔤, U𝔥)-bimodule 𝑀 ∈ Ouniv, 𝑋 ⊗U𝔤 𝑀 is an (U𝔤, U𝔥)-bimodule. Since the diagonal 𝔤-action on
X is integrable, so is the diagonal 𝔟-action. Therefore, the diagonal 𝔟-action on 𝑋 ⊗U𝔤 𝑀 is integrable.
The HC(𝐻) action is defined similarly.

Let

act𝐺 : HC(𝐺) −→ Ouniv, act𝐻 : HC(𝐻) −→ Ouniv

be the actions of HC(𝐺) and HC(𝐻) on the universal Verma module 𝑀univ ∈ Ouniv. Using Theorem
2.21, we obtain the following lax monoidal functors.

Definition 5.5. The parabolic restriction is the lax monoidal functor

res = actR𝐻 ◦ act𝐺 : HC(𝐺) −→ HC(𝐻).

The parabolic induction is the lax monoidal functor

ind = actR𝐺 ◦ act𝐻 : HC(𝐻) −→ HC(𝐺).

Let us now make these functors more explicit. Consider the functor

(−)𝑁 : Ouniv −→ HC(𝐻),

which sends a (U𝔤, U𝔥)-bimodule to the subspace of highest-weight vectors with respect to the U𝔤-
action. It still has a remaining U𝔥-bimodule structure, so it defines an object of HC(𝐻).

Proposition 5.6. The functor (−)𝑁 : Ouniv → HC(𝐻) is right adjoint to act𝐻 : HC(𝐻) → Ouniv.
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Proof. Identify Ouniv with the highest-weight U𝔤-modules in the category Rep(𝐻) following Theorem
5.4. For 𝑀 ∈ Ouniv and 𝑋 ∈ HC(𝐻), we have

HomOuniv (act𝐻 (𝑋), 𝑀) = HomOuniv (U𝔤 ⊗U𝔟 𝑋, 𝑀)

� HomU𝔟BModU𝔥 (𝑋, 𝑀)

� HomHC(𝐻 ) (𝑋, 𝑀𝑁 ).

�

So,

res(𝑋) � (𝑋/𝑋𝔫)𝑁 .

The lax monoidal structure on res can be described explicitly as follows. For 𝑋,𝑌 ∈ HC(𝐺), the
morphism

(𝑋/𝑋𝔫)𝑁 ⊗U𝔥 (𝑌/𝑌/𝔫)
𝑁 −→ (𝑋 ⊗U𝔤 𝑌/(𝑋 ⊗U𝔤 𝑌 )𝔫)𝑁 (33)

is given by [𝑥] ⊗ [𝑦] ↦→ [𝑥 ⊗ 𝑦]. This assignment is independent of the choice of a representative of
[𝑥] since [𝑦] is N-invariant.

Remark 5.7. Since res : HC(𝐺) → HC(𝐻) is lax monoidal, it sends algebras in HC(𝐺) to algebras in
HC(𝐻). By Theorem 3.10, an algebra in HC(𝐺) is a G-algebra equipped with a quantum moment map
𝜇 : U𝔤 → 𝐴. It is easy to see that res(𝐴) is the quantum Hamiltonian reduction 𝐴//𝑁 . This algebra is
known as the Mickelsson algebra [67]; refer to [94] for more details.

Recall that the coinduction functor

coind𝐺𝐵 : Rep(𝐵) −→ Rep(𝐺)

is right adjoint to the obvious restriction functor Rep(𝐺) → Rep(𝐵). Denote in the same way the functor

coind𝐺𝐵 : Ouniv −→ HC(𝐺)

of coinduction from B to G using the diagonal B-action.

Proposition 5.8. The functor coind𝐺𝐵 : Ouniv → HC(𝐺) is right adjoint to act𝐺 : HC(𝐺) → Ouniv.

Proof. For 𝑀 ∈ Ouniv and 𝑋 ∈ HC(𝐺), we have

HomOuniv (act𝐺 (𝑋), 𝑀) = HomOuniv (𝑋 ⊗U𝔟 U𝔥, 𝑀)

� HomU𝔤BModU𝔟 (𝑋, 𝑀).

Both X and M are (U𝔤, U𝔟)-bimodules whose diagonal 𝔟-action integrates to a B-action: that is, they
are objects of LModU𝔤 (Rep 𝐵). Moreover, X lies in the image of the forgetful functor

HC(𝐺) = LModU𝔤 (Rep 𝐺) → LModU𝔤 (Rep 𝐵).

But by definition, coind𝐺𝐵 is the right adjoint to the forgetful functor Rep 𝐺 → Rep 𝐵. �

Let us now compute the values of res and ind on the units.

Proposition 5.9. The natural morphism U𝔥→ res(U𝔤) is an isomorphism.
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Proof. By Theorem 5.6, res(U𝔤) � (𝑀univ)𝑁 , and we have to show that

U𝔥 −→ (𝑀univ)𝑁

is an isomorphism. Let

𝑀univ,gen = U𝔤 ⊗U𝔟 Frac(U𝔥),

where Frac(U𝔥) is the fraction field of U𝔥. The map 𝑀univ → 𝑀univ,gen is injective, and (−)𝑁 is left
exact, so (𝑀univ)𝑁 −→ (𝑀univ,gen)𝑁 is injective. But the Verma module for generic highest weights is
irreducible (see [49, Theorem 4.4]), so

Frac(U𝔥) −→ (𝑀univ,gen)𝑁

is an isomorphism. This implies the claim. �

Corollary 5.10. The induced map

res : Z(U𝔤) = EndHC(𝐺) (U𝔤) −→ U𝔥 = EndHC(𝐻 ) (U𝔥)

coincides with the Harish-Chandra homomorphism hc: Z(U𝔤) → U𝔥.

Proof. The map

act𝐺 : Z(U𝔤) = EndHC(𝐺) (U𝔤) −→ EndOuniv (𝑀univ)

sends a central element 𝑧 ∈ Z(U𝔤) to the left action of 𝑧 ∈ Z(U𝔤) on 𝑀univ. By Theorem 5.1, it is equal
to the right action of hc(𝑧) ∈ U𝔥 on 𝑀univ. To conclude, observe that the map

U𝔥 −→ (𝑀univ)𝑁

is an isomorphism of right U𝔥-modules. �

Proposition 5.11. Suppose G is connected and simply connected. Then there is an isomorphism

ind(U𝔥) � U𝔤 ⊗Z(U𝔤) U𝔥,

where the Z(U𝔤)-action on U𝔥 is via the Harish-Chandra homomorphism hc.

Proof. By Theorem 5.8, ind(U𝔥) � coind𝐺𝐵 (𝑀
univ). Identifying B-representations with G-equivariant

quasi-coherent sheaves on 𝐺/𝐵, 𝑀univ is sent to (𝜋∗D𝐺/𝑁 )
𝐻 , where 𝜋 : 𝐺/𝑁 → 𝐺/𝐵. Therefore,

coind𝐺𝐵 (𝑀
univ) � D(𝐺/𝑁)𝐻 .

The claim then follows from [90, 87]; see also [68, Lemma 3.1]. �

Note that the functor res preserves neither limits nor colimits, and it is merely lax monoidal. We will
now show that after a localisation, it becomes exact and monoidal.

Definition 5.12. A weight 𝜆 ∈ 𝔥∗ is generic if 〈𝜆, 𝛼∨〉 ∉ Z for every root 𝛼. Denote by 𝔥∗,gen ⊂ 𝔥∗ the
subset of generic weights. Let HC(𝐻)gen ⊂ HC(𝐻) and Ouniv,gen ⊂ Ouniv be the full subcategories of
right U𝔥-modules supported on generic weights. Let (U𝔥)gen ⊂ Frac(U𝔥) be the subspace of rational
functions on 𝔥∗ regular on 𝔥∗,gen.

By construction,

HC(𝐻)gen = HC(Rep(𝐻), (U𝔥)gen)
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and similarly forOuniv,gen. Moreover, both HC(𝐻)gen ⊂ HC(𝐻) andOuniv,gen ⊂ Ouniv admit left adjoints
given by localisation. Let

𝑀univ,gen = U𝔤 ⊗U𝔟 (U𝔥)gen

be the universal Verma module with generic highest weights.
Choose a Borel subgroup 𝐵− ⊂ 𝐺 opposite to B, with Lie algebra 𝔟−. Let

𝑀univ
− = U𝔥 ⊗U𝔟− U𝔤

be the opposite universal Verma module.

Definition 5.13. The functor of 𝔫−-coinvariants

(−)𝔫− : Ouniv −→ HC(𝐻)

is 𝑀𝔫− = 𝑀univ
− ⊗U𝔤 𝑀 .

We will now recall the extremal projector introduced in [4]; see also [94].

Theorem 5.14. An extension 𝑇 (𝔤) of U𝔤 is obtained by replacing U𝔥 ⊂ U𝔤 with Frac(U𝔥) and
considering certain power series. There is an element 𝑃 ∈ 𝑇 (𝔤) satisfying the following properties:

1. 𝔫𝑃 = 𝑃𝔫− = 0.
2. 𝑃 − 1 ∈ 𝑇 (𝔤)𝔫 ∩ 𝔫−𝑇 (𝔤).

The action of P is well-defined on left U𝔤-modules whose 𝔫-action is locally nilpotent and that have
generic 𝔥-weights.

Example 5.15. Suppose 𝔤 = 𝔰𝔩2. The extremal projector in this case is (see, e.g., [53])

𝑃 =
∞∑
𝑛=0

(−1)𝑛

𝑛!
𝑔−1
𝑛 𝑓 𝑛𝑒𝑛,

where

𝑔𝑛 =
𝑛∏
𝑗=1
(ℎ + 𝑗 + 1).

We will now describe some applications of extremal projectors.

Proposition 5.16. There is a natural isomorphism of functors (−)𝔫− � (−)𝑁 : Ouniv,gen → HC(𝐻)gen.
In particular, they are exact.

Proof. Take 𝑀 ∈ Ouniv,gen, and consider the composite

𝜋 : 𝑀𝑁 −→ 𝑀 −→ 𝑀𝔫− .

We will prove that it is an isomorphism.
Since the weights of the right U𝔥-action on M are generic and the weights of the diagonal U𝔥-action

are integral, the weights of the left U𝔥-action are also generic. Moreover, the left U𝔫-action is locally
nilpotent. In particular, the action of the extremal projector from Theorem 5.14

𝑃 : 𝑀 −→ 𝑀
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is well-defined. It lands in N-invariants by the property 𝔫𝑃 = 0. It factors through 𝔫−-coinvariants by
the property 𝑃𝔫− = 0. So, it gives a map

𝑃 : 𝑀𝔫− −→ 𝑀𝑁 .

For 𝑚 ∈ 𝑀𝑁 , we have 𝑃𝑚 = 𝑚 since 𝑃 − 1 ∈ 𝑇 (𝔤)𝔫. In particular, 𝑃 ◦ 𝜋 = id. For 𝑚 ∈ 𝑀 , [𝑚] = [𝑃𝑚]
in 𝑀𝔫− since 𝑃 − 1 ∈ 𝔫−𝑇 (𝔤). In particular, 𝜋 ◦ 𝑃 = id. �

Theorem 5.17. The category Ouniv,gen is free of rank 1 as a HC(𝐻)gen-module category in the sense of
Theorem 2.22.

Proof. The unit of the adjunction act𝐻 � (−)𝑁 between HC(𝐻)gen and Ouniv,gen is

𝑋 −→ (act𝐻 (𝑋))𝑁
∼
−→ (𝑀univ ⊗U𝔥 𝑋)𝔫− .

By the PBW isomorphism, this map is an isomorphism. In particular, act𝐻 : HC(𝐻)gen → Ouniv,gen is
fully faithful.

Since the 𝔫-action on 𝑀 ∈ Ouniv,gen is locally nilpotent, 𝑀𝑁 = 0 if and only if 𝑀 = 0. But
(−)𝑁 : Ouniv,gen → HC(𝐻)gen is exact by Theorem 5.16. Therefore, it is conservative. Since its left
adjoint act𝐻 is fully faithful, it is an equivalence. �

Corollary 5.18. The composite

resgen : HC(𝐺) res
−−→ HC(𝐻) −→ HC(𝐻)gen

is strongly monoidal and colimit-preserving.

Proof. By Theorem 5.17, Ouniv,gen is free of rank 1 as a HC(𝐻)gen-module category. The claim then
follows from Theorem 2.23. �

Remark 5.19. Consider the morphism of stacks 𝑝 : [𝔟/𝐵] → [𝔥/𝐻]. It admits a section 𝑠 : [𝔥/𝐻] →
[𝔟/𝐵], so 𝑝 ◦ 𝑠 = id[𝔥/𝐻 ] . It is shown in [76] that, restricting to generic weights, there is a homotopy
𝑠 ◦ 𝑝 ∼ id[𝔟/𝐵] given by the classical limit of the extremal projector. The proof of Theorem 5.17 gives
an analogous interpretation of the extremal projector on the quantum level.

We will now show that resgen gives rise to a dynamical twist. For this, according to Theorem 4.1,
we have to show that resgen of a free Harish–Chandra bimodule is free: that is, we have to establish an
isomorphism between (𝑉 ⊗ 𝑀univ)𝑁 and 𝑉 ⊗ (U𝔥)gen in HC(𝐻)gen, for every 𝑉 ∈ Rep(𝐺).

Theorem 5.20. The morphism

(𝑉 ⊗ 𝑀univ,gen)𝑁 ⊂ 𝑉 ⊗ 𝑀univ,gen −→ 𝑉 ⊗ (U𝔥)gen,

where the second morphism is induced by the projection 𝑀univ,gen → (U𝔥)gen onto the highest weights,
defines a natural isomorphism witnessing commutativity of the diagram

Rep(𝐺)

��

free𝐺 �� HC(𝐺)

resgen

��
Rep(𝐻) free𝐻 �� HC(𝐻)gen

Proof. Let 𝑀𝜆 be the Verma module of a generic highest weight 𝜆 ∈ 𝔥∗, and denote by 𝑥𝜆 ∈ 𝑀𝜆 the
highest-weight vector. We have to show that the map (𝑉 ⊗ 𝑀𝜆)

𝑁 → 𝑉 given by

𝑣 ⊗ 𝑥𝜆 + · · · ↦→ 𝑣 ⊗ 1,
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where . . . contain elements of 𝑀𝜆 of weight less than 𝜆, is an isomorphism. This is the content of [31,
Theorem 8]. �

Remark 5.21. The (U𝔥)gen-module resgen(𝑉 ⊗ U𝔤) admits another natural basis constructed in [54].

Consider 𝑉,𝑊 ∈ Rep(𝐺). Let us recall that Etingof and Varchenko [31] have introduced the fusion
matrix

𝐽𝐸𝑉
𝑉 ,𝑊 (𝜆) : 𝑉 ⊗𝑊 → 𝑉 ⊗𝑊

depending rationally on a parameter 𝜆 ∈ 𝔥∗ as follows. Consider the Verma module 𝑀𝜆 with highest-
weight 𝜆 ∈ 𝔥∗. For 𝑉 ∈ Rep(𝐺) denote by 𝑉 = ⊕𝜆∈Λ𝑉 [𝜆] its weight decomposition. Consider a
morphism 𝑀𝜆 → 𝑀𝜇 ⊗ 𝑉 . The image of a highest-weight vector 𝑥𝜆 ∈ 𝑀𝜆 has the form

𝑥𝜇 ⊗ 𝑣 + . . . ,

where . . . denote terms containing elements of 𝑀𝜇 of lower weight. This determines a morphism

HomU𝔤 (𝑀𝜆, 𝑀𝜇 ⊗ 𝑉) −→ 𝑉 [𝜆 − 𝜇] . (34)

For generic 𝜇, it is an isomorphism, and for 𝑣 ∈ 𝑉 [𝜆 − 𝜇], we denote by Φ𝑣
𝜆 ∈ HomU𝔤 (𝑀𝜆, 𝑀𝜇 ⊗ 𝑉)

the preimage of v under this map.
For 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 of weights wt(𝑣) and wt(𝑤), consider the composite

𝑀𝜆

Φ𝑣
𝜆
−−→ 𝑀𝜆−wt(𝑣) ⊗ 𝑉

Φ𝑤
𝜆−wt(𝑣 ) ⊗id
−−−−−−−−−→ 𝑀𝜆−wt(𝑣)−wt(𝑤) ⊗𝑊 ⊗ 𝑉. (35)

The fusion matrix is defined so that this composite is Φ
𝐽𝐸𝑉
𝑊 ,𝑉 (𝜆) (𝑤⊗𝑣)

𝜆 . By [31, Theorem 48], 𝐽𝐸𝑉
𝑊 ,𝑉 (𝜆)

quantises the standard rational solution of the dynamical Yang–Baxter equation (see [36, Theorem 3.2]).
Combining Theorem 5.18 and Theorem 5.20, we obtain a monoidal structure on the composite

Rep(𝐺) −→ Rep(𝐻) −→ HC(𝐻)gen.

In particular, as in Theorem 4.1, this gives rise to linear maps

𝐽𝑉 ,𝑊 (𝜆) : 𝑉 ⊗𝑊 → 𝑉 ⊗𝑊

depending rationally on 𝜆 ∈ 𝔥∗.

Proposition 5.22. Let𝑉,𝑊 ∈ Rep(𝐺). The map 𝐽𝑉 ,𝑊 (𝜆) : 𝑉⊗𝑊 → 𝑉⊗𝑊 coincides with a permutation
of the fusion matrix

𝐽𝑉 ,𝑊 (𝜆) = 𝜏𝐽𝐸𝑉
𝑊 ,𝑉 (𝜆)𝜏,

where 𝜏 is the flip of tensor factors.

Proof. Let 𝑥univ ∈ 𝑀univ be the generator of the universal Verma module and 𝑥𝜆 ∈ 𝑀𝜆 be the generator
of the Verma module of highest weight 𝜆. Using the PBW identification 𝑀univ � U𝔫− ⊗U𝔥, we identify
elements of 𝑀univ with functions 𝔥∗ → U𝔫−.

For 𝑣 ∈ 𝑉 , we denote by
∑

𝑣𝑖 ⊗ 𝑎𝑖𝑥
univ the unique highest-weight element of 𝑉 ⊗ 𝑀univ, which has

an expansion 𝑣 ⊗ 𝑥univ + . . . . Similarly, for 𝑤 ∈ 𝑊 , we denote by
∑

𝑤𝑖 ⊗ 𝑏𝑖𝑥
univ = 𝑤 ⊗ 𝑥univ + . . . the

highest-weight element of 𝑊 ⊗ 𝑀univ.
Under the morphism given by equation (33)

(𝑉 ⊗ 𝑀univ)𝑁 ⊗U𝔥 (𝑊 ⊗ 𝑀univ)𝑁 −→ (𝑉 ⊗𝑊 ⊗ 𝑀univ)𝑁
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we have ∑
𝑖, 𝑗

(𝑣𝑖 ⊗ 𝑎𝑖𝑥
univ) ⊗ (𝑤 𝑗 ⊗ 𝑏 𝑗𝑥

univ) ↦→
∑
𝑖, 𝑗

𝑣𝑖 ⊗ (𝑎𝑖)(1)𝑤 𝑗 ⊗ (𝑎𝑖)(2)𝑏 𝑗𝑥
univ.

It is then easy to see that

𝐽𝑉 ,𝑊 (𝜆) (𝑣 ⊗ 𝑤) =
∑
𝑖

𝑣𝑖 ⊗ 𝑎𝑖 (𝜆 − wt(𝑣))𝑤.

Using the same notations, the map Φ𝑣
𝜆 : 𝑀𝜆 → 𝑀𝜆−wt(𝑣) ⊗ 𝑉 is

𝑥𝜆 ↦→
∑
𝑖

𝑎𝑖 (𝜆 − wt(𝑣))𝑥𝜆−wt(𝑣) ⊗ 𝑣𝑖 .

Therefore, the composite given by equation (35) is

𝑥𝜆 ↦→
∑
𝑖

𝑎𝑖 (𝜆 − wt(𝑣))𝑥𝜆−wt(𝑣) ⊗ 𝑣𝑖

↦→
∑
𝑖, 𝑗

𝑎𝑖 (𝜆 − wt(𝑣))(1)𝑏 𝑗 (𝜆 − wt(𝑣) − wt(𝑤))𝑥𝜆−wt(𝑣)−wt(𝑤) ⊗ 𝑎𝑖 (𝜆 − wt(𝑣))(2)𝑤 𝑗 ⊗ 𝑣𝑖 .

The resulting element of 𝑀𝜆−wt(𝑣)−wt(𝑤) ⊗𝑊 ⊗ 𝑉 is∑
𝑖

𝑥𝜆−wt(𝑣)−wt(𝑤) ⊗ 𝑎𝑖 (𝜆 − wt(𝑣))𝑤 ⊗ 𝑣𝑖 + . . . ,

which proves the claim. �

Moreover, in [31, Section 5], Etingof and Varchenko have introduced an 𝔥-bialgebroid 𝐹 (𝐺).

Theorem 5.23. Consider the monoidal functor

Rep(𝐺)
free𝐺
−−−−→ HC(𝐺) resgen

−−−−→ HC(𝐻)gen.

It admits a colimit-preserving right adjoint; denote by 𝐵 ∈ HC(𝐻)gen ⊗HC(𝐻)gen the Harish-Chandra
bialgebroid corresponding to this monoidal functor constructed in Theorem 3.35. Then we have an
isomorphism of 𝔥-bialgebroids

𝐵 ⊗(U𝔥)gen⊗(U𝔥)gen (Frac(U𝔥) ⊗ Frac(U𝔥)) � 𝐹 (𝐺).

Proof. By Theorem 5.20, the functor Rep(𝐺) → HC(𝐻)gen factors as

Rep(𝐺) −→ Rep(𝐻) −→ HC(𝐻)gen.

Under this composite, a finite-dimensional G-representation 𝑉 ∈ Rep(𝐺) is sent to a compact projective
object (U𝔥)gen ⊗ 𝑉 ∈ HC(𝐻)gen, so this functor admits a colimit-preserving right adjoint.

Since G is semisimple, by Theorem 4.9, the Harish-Chandra bialgebroid B is isomorphic to⊕
𝑉 ∈Irr(𝐺)

((U𝔥)gen ⊗ 𝑉∨) � ((U𝔥)gen ⊗ 𝑉) ∈ HC(𝐻)gen ⊗ HC(𝐻)gen,

where the sum is over isomorphism classes of irreducible finite-dimensional G-representations. In
particular, we get an isomorphism of (Frac(U𝔥), Frac(U𝔥))-bimodules

𝐵 ⊗(U𝔥)gen⊗(U𝔥)gen (Frac(U𝔥) ⊗ Frac(U𝔥)) � 𝐹 (𝐺).
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In the notations of Theorem 4.9 and [31, Section 5], the isomorphism is given by

𝑇𝑉 ↦→ 𝐿𝑉 ,

𝑡 ( 𝑓 (𝜆)) ↦→ 𝑓 (𝜆1),

𝑠( 𝑓 (𝜆)) ↦→ 𝑓 (𝜆2).

It is clear that this isomorphism preserves coproduct, counit and unit and the only nontrivial check is
that the product is preserved as well. The relations (18), (19) in 31 are clearly satisfied. For (20), the
claim follows from Theorem 5.22. �

5.2. Quantum parabolic restriction

In this section, we define a parabolic restriction in the setting of quantum groups; we use the notation
from section 3.4.

Definition 5.24. The universal quantum categoryO is the categoryOuniv
𝑞 of (U𝑞 (𝔤), U𝑞 (𝔥))-bimodules

whose diagonal U𝑞 (𝔟)-action is integrable. The universal quantum Verma module is the object

𝑀univ = U𝑞 (𝔤) ⊗U𝑞 (𝔟) U𝑞 (𝔥) ∈ Ouniv
𝑞 .

Remark 5.25. As in the classical case, we may identify Ouniv
𝑞 with the full subcategory of

LModU𝑞 (𝔤) (Rep𝑞 (𝐻)) of U𝑞 (𝔤)-modules whose U𝑞 (𝔫)-action is locally finite.

We will now define a quantum analogue of the bimodules given by equation (32):

HC𝑞 (𝐺) � Ouniv
𝑞 � HC𝑞 (𝐻). (36)

Lemma 5.26. Suppose 𝑋 ∈ HC𝑞 (𝐺). The left U𝑞 (𝔤)lf-module structure on 𝑋 ⊗U𝑞 (𝔤) lf U𝑞 (𝔤) has a
canonically extension to a U𝑞 (𝔤)-module structure. Moreover, the left U𝑞 (𝔫)-action on 𝑋 ⊗U𝑞 (𝔤) lf 𝑀univ

is locally finite.

Proof. Recall from Theorem 3.4 that the left action of 𝑎 ∈ U𝑞 (𝔤)lf on 𝑥 ∈ 𝑋 is

𝑎 ⊲ 𝑥 = (ad 𝑎 (1) ) (𝑥) ⊳ 𝑎 (2) ,

where ad refers to the diagonal U𝑞 (𝔤)-action on X. So, we may extend the left U𝑞 (𝔤)lf -action on the
relative tensor product 𝑋 ⊗U𝑞 (𝔤) lf U𝑞 (𝔤) to a U𝑞 (𝔤)-action by the formula

𝑎 ⊲ (𝑥 ⊗ ℎ) = (ad 𝑎 (1) ) (𝑥) ⊗ 𝑎 (2)ℎ

for 𝑎 ∈ U𝑞 (𝔤) an 𝑥 ⊗ ℎ ∈ 𝑋 ⊗U𝑞 (𝔤) lf U𝑞 (𝔤). It is well-defined (i.e., descends to the relative tensor
product) using the formula (ad 𝑎 (1) ) (𝑙)𝑎 (2) = 𝑎𝑙 for any 𝑎 ∈ U𝑞 (𝔤) and 𝑙 ∈ U𝑞 (𝔤)lf .

The diagonal U𝑞 (𝔫)-action on 𝑋 ⊗U𝑞 (𝔤) lf 𝑀univ is locally finite since it is so on X and 𝑀univ. �

A U𝑞 (𝔤)lf -bimodule 𝑋 ∈ HC𝑞 (𝐺) acts on a (U𝑞 (𝔤), U𝑞 (𝔥))-bimodule 𝑀 ∈ Ouniv
𝑞 via

𝑋, 𝑀 ↦→ 𝑋 ⊗U𝑞 (𝔤) lf 𝑀.

By construction, it is a (U𝑞 (𝔤), U𝑞 (𝔥))-bimodule. Since the diagonal U𝑞 (𝔫)-action on X and the left
U𝑞 (𝔫)-action on M are locally finite, so is the left U𝑞 (𝔫)-action on this bimodule. In particular, it lies
in Ouniv

𝑞 .

https://doi.org/10.1017/fms.2022.68 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.68


Forum of Mathematics, Sigma 43

For a U𝑞 (𝔥)-bimodule 𝑋 ∈ HC𝑞 (𝐻) and a (U𝑞 (𝔤), U𝑞 (𝔥))-bimodule 𝑀 ∈ Ouniv
𝑞 , the action is

𝑀, 𝑋 ↦→ 𝑀 ⊗U𝑞 (𝔥) 𝑋.

Let

act𝐺 : HC𝑞 (𝐺) −→ Ouniv
𝑞 , act𝐻 : HC𝑞 (𝐻) −→ Ouniv

𝑞

be the actions of HC𝑞 (𝐺) and HC𝑞 (𝐻) on the universal Verma module 𝑀univ.
Definition 5.27. The parabolic restriction and parabolic induction are the lax monoidal functors

res = actR𝐻 ◦ act𝐺 : HC𝑞 (𝐺) −→ HC𝑞 (𝐻)

ind = actR𝐺 ◦ act𝐻 : HC𝑞 (𝐻) −→ HC𝑞 (𝐺).

We have a functor

(−)U𝑞 (𝔫) : Ouniv
𝑞 −→ HC𝑞 (𝐻)

of U𝑞 (𝔫)-invariants.
Proposition 5.28. The functor (−)U𝑞 (𝔫) : Ouniv

𝑞 → HC𝑞 (𝐻) is right adjoint to act𝐻 : HC𝑞 (𝐻) → Ouniv
𝑞 .

Proof. For 𝑀 ∈ Ouniv
𝑞 and 𝑋 ∈ HC𝑞 (𝐻), we have

HomOuniv
𝑞
(act𝐻 (𝑋), 𝑀) = HomOuniv

𝑞
(U𝑞 (𝔤) ⊗U𝑞 (𝔟) 𝑋, 𝑀)

� HomU𝑞 (𝔟)BModU𝑞 (𝔥)
(𝑋, 𝑀)

� HomHC𝑞 (𝐻 ) (𝑋, 𝑀U𝑞 (𝑛) ).

�

Proposition 5.29. The natural morphism U𝑞 (𝔥) → res(U𝑞 (𝔤)lf) is an isomorphism.
Proof. The proof is similar to the proof of Theorem 5.9, where we again use the fact that the quantum
Verma module is irreducible for generic parameters [89, Theorem 4.15]. �

A weight for a U𝑞 (𝔤)-module is specified by an element of 𝐻 (𝑘) � Hom(Λ, 𝑘×). We will use an
additive notation for weights, so a vector v of weight 𝜆 satisfies 𝐾𝜇𝑣 = 𝑞 (𝜆,𝜇)𝑣. For a root 𝛼, we denote
𝑞𝛼 = 𝑞 (𝛼,𝛼)/2.
Definition 5.30. A weight 𝜆 is generic if 𝑞 (𝛼,𝜆) ∉ ±𝑞Z

𝛼 for every root 𝛼. Denote by 𝐻gen ⊂ 𝐻 the subset
of generic weights. We denote by HCgen

𝑞 (𝐻) ⊂ HC𝑞 (𝐻) and Ouniv,gen
𝑞 ⊂ Ouniv

𝑞 the full subcategories of
modules with generic U𝑞 (𝔥)-weights. Let U𝑞 (𝔥)gen ⊂ Frac(U𝑞 (𝔥)) be the subspace of rational functions
on H regular on 𝐻gen.

We denote by

𝑀univ,gen = U𝑞 (𝔤) ⊗U𝑞 (𝔟) U𝑞 (𝔥)
gen

the universal quantum Verma module with generic highest weights.
A generalisation of the extremal projector to quantum groups was introduced in [55].

Theorem 5.31. An extension 𝑇𝑞 (𝔤) of U𝑞 (𝔤) is obtained by replacing U𝑞 (𝔥) ⊂ U𝑞 (𝔤) with Frac(U𝑞 (𝔥))
and considering certain power series. There is an element 𝑃 ∈ 𝑇𝑞 (𝔤) satisfying the following properties:
1. U>0

𝑞 (𝔫)𝑃 = 𝑃U>0
𝑞 (𝔫−) = 0.

2. 𝑃 − 1 ∈ 𝑇𝑞 (𝔤)U>0
𝑞 (𝔫) ∩ U>0

𝑞 (𝔫−)𝑇𝑞 (𝔤).
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The action of P is well-defined on left U𝑞 (𝔤)-modules whose U𝑞 (𝔫)-action is locally nilpotent and that
have generic U𝑞 (𝔥)-weights.

Example 5.32. Consider U𝑞 (𝔰𝔩2) with generators 𝐸, 𝐾, 𝐹 as in Theorem 3.21. Let [𝑛] = 𝑞𝑛−𝑞−𝑛

𝑞−𝑞−1 be the
quantum integer, [𝑛]! =

∏𝑛
𝑗=1 [ 𝑗]! the quantum factorial and

[ℎ + 𝑛] =
𝐾𝑞𝑛 − 𝐾−1𝑞−𝑛

𝑞 − 𝑞−1 ∈ U𝑞 (𝔰𝔩2)

for 𝑛 ∈ Z. Then the extremal projector is (see, e.g., [53, Section 9])

𝑃 =
∞∑
𝑛=0

(−1)𝑛

[𝑛]!
𝑔−1
𝑛 𝐹𝑛𝐸𝑛,

where 𝑔𝑛 =
∏𝑛

𝑗=1 [ℎ + 𝑗 + 1].

Completely analogously to the proof of Theorem 5.17, one proves the following statement.

Theorem 5.33. The category Ouniv,gen
𝑞 is free of rank 1 as a HC𝑞 (𝐻)

gen-module category.

Corollary 5.34. The functor resgen : HC𝑞 (𝐺) → HC𝑞 (𝐻)
gen is strongly monoidal and colimit-

preserving.

Similar to the classical case, the parabolic restriction of a free Harish-Chandra bimodule is free.

Theorem 5.35. For every 𝑉 ∈ Rep𝑞 (𝐺), the morphism

(𝑉 ⊗ 𝑀univ,gen)U𝑞 (𝔫) ⊂ 𝑉 ⊗ 𝑀univ,gen −→ 𝑉 ⊗ U𝑞 (𝔥)
gen,

where the second morphism is induced by the projection 𝑀univ,gen → U𝑞 (𝔥)gen onto highest weights,
defines a natural isomorphism witnessing commutativity of the diagram

Rep𝑞 (𝐺)

��

free𝐺 �� HC𝑞 (𝐺)

resgen

��
Rep𝑞 (𝐻)

free𝐻 �� HC𝑞 (𝐻)
gen

Combining Theorem 5.34 and Theorem 5.35, we obtain a monoidal structure on the composite

Rep𝑞 (𝐺) −→ Rep𝑞 (𝐻) −→ HC𝑞 (𝐻)
gen.

In particular, by Theorem 4.1, this gives rise to linear maps

𝐽𝑉 ,𝑊 (𝜆) : 𝑉 ⊗𝑊 → 𝑉 ⊗𝑊,

rational functions on H.

Example 5.36. Consider 𝐺 = SL2 and 𝑉 ∈ Rep𝑞 (SL2) the irreducible two-dimensional representation
with the basis {𝑣+, 𝑣−} such that

𝐾𝑣+ = 𝑞𝑣+, 𝐾𝑣− = 𝑞−1𝑣+, 𝐹𝑣+ = 𝑣−.
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The isomorphism U𝑞 (𝔥)gen ⊗ 𝑉 → (𝑉 ⊗ 𝑀univ,gen)U𝑞 (𝔫) is given by

1 ⊗ 𝑣+ ↦→ 𝑣+ ⊗ 1,

1 ⊗ 𝑣− ↦→ 𝑣− ⊗ 1 − 𝑞−1𝑣+ ⊗ 𝐹 · [ℎ]−1𝑥univ.

Then the matrix of 𝐽𝑉 ,𝑉 (𝜆) in the basis {𝑣+ ⊗ 𝑣+, 𝑣+ ⊗ 𝑣−, 𝑣− ⊗ 𝑣+, 𝑣− ⊗ 𝑣−} is given by

����
1 0 0 0
0 1 −𝑞−𝜆−1 [𝜆 + 1]−1 0
0 0 1 0
0 0 0 1

�����
.

Our convention for the coproduct on U𝑞 (𝔤) follows [62, Lemma 3.1.4]. For two U𝑞 (𝔤)-modules
𝑉,𝑊 , we denote by 𝑉⊗𝑊 the vector space 𝑉 ⊗ 𝑊 equipped with the U𝑞 (𝔤)-module structure via the
opposite coproduct:

ℎ ⊲ (𝑣 ⊗ 𝑤) = ℎ (2) ⊲ 𝑣 ⊗ ℎ (1) ⊲ 𝑤.

Consider 𝑉,𝑊 ∈ Rep𝑞 (𝐺). Similarly to the classical case, Etingof and Varchenko [31] have intro-
duced the fusion matrix 𝐽𝐸𝑉

𝑉 ,𝑊 (𝜆) : 𝑉 ⊗ 𝑊 → 𝑉 ⊗ 𝑊 , a rational function on H, using intertwiners of
quantum Verma modules. Note, however, that in our notations, they are considering maps

Φ𝑣
𝜆 : 𝑀𝜆 −→ 𝑀𝜆−wt(𝑣) ⊗𝑉

with the property that Φ𝑣
𝜆 (𝑥𝜆) = 𝑥𝜆 ⊗ 𝑣 + . . . . Analogously to Theorem 5.22, we have the following

statement.

Proposition 5.37. Let 𝑉,𝑊 ∈ Rep𝑞 (𝐺). The maps 𝐽𝑉 ,𝑊 and 𝐽𝐸𝑉
𝑊 ,𝑉 are related as follows:

𝐽𝑉 ,𝑊 (𝜆) = 𝜏𝐽𝐸𝑉
𝑊 ,𝑉 𝜏.

In [31, Section 5], Etingof and Varchenko have introduced an 𝔥-bialgebroid 𝐹𝑞 (𝐺). Analogously to
Theorem 5.23, we obtain the following statement.

Theorem 5.38. Consider the monoidal functor

Rep𝑞 (𝐺)
free𝐺
−−−−→ HC𝑞 (𝐺)

resgen

−−−−→ HC𝑞 (𝐻)
gen.

It admits a colimit-preserving right adjoint; denote by 𝐵 ∈ HC𝑞 (𝐻)
gen ⊗ HC𝑞 (𝐻)

gen the Harish-
Chandra bialgebroid corresponding to this monoidal functor constructed in Theorem 3.35. Then we
have an isomorphism of 𝔥-algebroids

𝐵 ⊗U𝑞 (𝔥)gen⊗U𝑞 (𝔥)gen ⊗(Frac(U𝑞 (𝔥)) ⊗ Frac(U𝑞 (𝔥))) � 𝐹𝑞 (𝐺).

6. Dynamical Weyl groups

In this section, we introduce a Weyl symmetry of the parabolic restriction functors res : HC(𝐺) →
HC(𝐻) and res : HC𝑞 (𝐺) → HC𝑞 (𝐻) introduced in section 5 and relate it to dynamical Weyl groups.

6.1. Classical Zhelobenko operators

Fix a group G and its Lie algebra 𝔤 as in section 5.1. Recall that the Weyl group is

𝑊 = N(𝐻)/𝐻,
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where N(𝐻) is the normaliser of H in G. Denote by �̂� the corresponding braid group generated by
simple reflections 𝑠𝛼 ∈ 𝑊 with the relation (for 𝛼 ≠ 𝛽)

𝑠𝛼𝑠𝛽𝑠𝛼 . . .︸�������︷︷�������︸
𝑚𝛼𝛽

= 𝑠𝛽𝑠𝛼𝑠𝛽 . . .︸�������︷︷�������︸
𝑚𝛼𝛽

,

where 𝑚𝛼𝛽 is the Coxeter matrix. There is a canonical map 𝑊 → �̂� , which sends a reduced expression
𝑤 = 𝑠1 · · · · · 𝑠𝑛 ∈ 𝑊 to the corresponding element in �̂� .

We may lift 𝑤 ∈ 𝑊 to elements 𝑇𝑤 ∈ N(𝐻) satisfying the braid relations. Moreover, for a simple
reflection 𝑠𝛼 ∈ 𝑊 , the element 𝑇2

𝑠𝛼 ∈ 𝐻 has order at most 2 [84]. For concreteness, we assume that the
elements 𝑇𝑤 act via the 𝑞 = 1 version of Lusztig’s operators 𝑇 ′𝑤,1 as in [62, Section 5.2.1].

Denote by 𝜌 ∈ 𝔥∗ the half-sum of positive roots. For an element 𝑤 ∈ 𝑊 and 𝜆 ∈ 𝔥∗, denote by
𝑤 · 𝜆 ∈ 𝔥∗ the dot action:

𝑤 · 𝜆 = 𝑤(𝜆 + 𝜌) − 𝜌.

The induced action on ℎ ∈ 𝔥 ⊂ U𝔥 is denoted by

𝑤 · ℎ = 𝑤(ℎ) + 〈ℎ, 𝑤(𝜌) − 𝜌〉,

where the usual W action on U𝔥 is simply denoted by 𝑤(𝑑) for 𝑑 ∈ U𝔥.
Recall that for a right U𝔤-module X, 𝑋 ⊗U𝔤 𝑀univ � 𝑋/𝑋𝔫. In the study of Mickelsson algebras,

Zhelobenko [93] has introduced a collection of operators acting on U𝔤-bimodules for each element of
the Weyl group. Refer to [53, Section 6] for the proof of the following results.

Theorem 6.1. Suppose 𝑋 ∈ HC(𝐺). Suppose 𝛼 is a simple root, and denote by {𝑒𝛼, ℎ𝛼, 𝑓𝛼} the
standard generators of the corresponding 𝔰𝔩2 subalgebra 𝔤𝛼 ⊂ 𝔤. Consider the Zhelobenko operator
𝑞𝛼 : 𝑋 → 𝑋 given by an infinite series

𝑞𝛼 (𝑥) =
∞∑
𝑛=0

(−1)𝑛

𝑛!
(ad 𝑒𝛼)

𝑛 (𝑇𝑠𝛼 (𝑥)) 𝑓
𝑛
𝛼𝑔−1

𝑛,𝛼,

where

𝑔𝑛,𝛼 =
𝑛∏
𝑗=1
(ℎ𝛼 − 𝑗 + 1)

and ad 𝑒𝛼 refers to the diagonal 𝔤-action on X. Then the operators 𝑞𝛼 descend to well-defined linear
isomorphisms

𝑞𝛼 : (𝑋 ⊗U𝔤 𝑀univ,gen)𝑁 −→ (𝑋 ⊗U𝔤 𝑀univ,gen)𝑁 ,

which satisfy the following relations:

1. 𝑞𝛼 ((ad 𝑑) (𝑥)) = (ad 𝑠𝛼 (𝑑)) (𝑞𝛼 (𝑥)) for every 𝑑 ∈ 𝔥 and 𝑥 ∈ 𝑋 .
2. 𝑞𝛼 (𝑑𝑥) = (𝑠𝛼 · 𝑑)𝑞𝛼 (𝑥) for every 𝑑 ∈ 𝔥 and 𝑥 ∈ 𝑋 .
3. 𝑞𝛼𝑞𝛽𝑞𝛼 . . .︸��������︷︷��������︸

𝑚𝛼𝛽

= 𝑞𝛽𝑞𝛼𝑞𝛽 . . .︸��������︷︷��������︸
𝑚𝛼𝛽

for 𝛼 ≠ 𝛽.

4. 𝑞2
𝛼 (𝑥) = (ℎ𝛼 + 1)−1𝑇2

𝑠𝛼 (𝑥) (ℎ𝛼 + 1) for every 𝑥 ∈ 𝑋 .

For an element 𝑤 ∈ 𝑊 with a reduced decomposition 𝑤 = 𝑠𝛼1 . . . 𝑠𝛼𝑛 , we define

𝑞𝑤 = 𝑞𝛼𝑖1
. . . 𝑞𝛼𝑖𝑛

.

The third relation in Theorem 6.1 shows that 𝑞𝑤 is independent of the chosen decomposition.
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In addition, we have the following important multiplicativity property of the Zhelobenko operators
proven in [53, Theorem 3].

Theorem 6.2. Let 𝑋,𝑌 ∈ HC(𝐺), and take 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , where 𝔫𝑦 ∈ 𝑌𝔫. Then we have an equality

𝑞𝑤 (𝑥 ⊗ 𝑦) = 𝑞𝑤 (𝑥) ⊗ 𝑞𝑤 (𝑦)

in 𝑋 ⊗U𝔤 𝑌 ⊗U𝔤 𝑀univ,gen.

6.2. Classical dynamical Weyl group

Given a group G, we may regard it as a discrete monoidal category Cat(𝐺). Let us recall the notion of a
G-action on a monoidal category and the category of G-equivariant objects (see, e.g., [34, Section 2.7]).

Definition 6.3. Let C ∈ PrL be a monoidal category. A 𝑮-action on C is a monoidal functor

Cat(𝐺) −→ FunL,⊗ (C, C)

to the monoidal category of monoidal colimit-preserving endofunctors on C.

Explicitly, for every element 𝑔 ∈ 𝐺, we have a monoidal functor 𝑆𝑔 : C → C together with a natural
isomorphism 𝑆𝑒 � id and natural isomorphisms 𝑆𝑔ℎ � 𝑆𝑔 ◦𝑆ℎ for a pair of elements 𝑔, ℎ ∈ 𝐺 satisfying
an associativity axiom.

Definition 6.4. Suppose C is a monoidal category with a G-action. A 𝑮-equivariant object is an object
𝑥 ∈ C equipped with isomorphisms 𝑆𝑔 (𝑥) � 𝑥 compatible with the isomorphisms 𝑆𝑔ℎ � 𝑆𝑔 ◦ 𝑆ℎ and
𝑆𝑒 � id. We denote by C𝐺 the category of G-equivariant objects.

The category HC(𝐻) � LModU𝔥 (Rep 𝐻) carries a natural action of the Weyl group W defined as
follows. Let us regard 𝑋 ∈ HC(𝐻) as a U𝔥-bimodule. Then the action of 𝑤 ∈ 𝑊 twists the left and right
U𝔥-actions by the dot action: 𝑆𝑤 (𝑋) = 𝑋 as a plain vector space with the U𝔥-bimodule structure given
by

𝑑 ⊲𝑤 𝑥 = (𝑤 · 𝑑) ⊲ 𝑥, 𝑥 ⊳𝑤 𝑑 = 𝑥 ⊳ (𝑤 · 𝑑)

for 𝑥 ∈ 𝑋 and 𝑑 ∈ U𝔥. The dot action of W on 𝔥 is given by affine transformations, so the corresponding
diagonal 𝔥-action on 𝑆𝑤 (𝑋) is given by its linear part: that is, we twist the diagonal 𝔥-action on X by the
usual W-action. By construction, 𝑆𝑒 = id and 𝑆𝑤1𝑤2 = 𝑆𝑤1 ◦ 𝑆𝑤2 . Moreover, the identity map of vector
spaces

𝑆𝑤 (𝑋) ⊗U𝔥 𝑆𝑤 (𝑌 ) −→ 𝑆𝑤 (𝑋 ⊗U𝔥 𝑌 )

together with the dot action

U𝔥 −→ 𝑆𝑤 (U𝔥)

define a monoidal structure on the collection {𝑆𝑤 }𝑤 ∈𝑊 .
The functor

free : Rep(𝐻) −→ HC(𝐻)

is naturally W-equivariant, where the maps

U𝔥 ⊗ 𝑆𝑤 (𝑉) → 𝑆𝑤 (U𝔥 ⊗ 𝑉) (37)

are given by the dot action on the U𝔥 factor.
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Restricting the W-action on HC(𝐻) under the quotient map �̂� → 𝑊 from the braid group, we obtain
a natural action of �̂� on HC(𝐻).

Recall that by Theorem 5.18, the parabolic restriction functor

resgen : HC(𝐺) −→ HC(𝐻)gen

given by 𝑋 ↦→ (𝑋 ⊗U𝔤 𝑀univ)𝑁 is monoidal. We will now show that it factors through �̂�-invariants.

Theorem 6.5. The Zhelobenko operators define a factorisation

HC(𝐺) �����

resgen
��





HC(𝐻)gen,�̂�

��
HC(𝐻)gen

of resgen : HC(𝐺) → HC(𝐻)gen through a monoidal functor resgen : HC(𝐺) → HC(𝐻)gen,�̂� .

Proof. Let us first construct a factorisation of resgen through HC(𝐻)gen,�̂� → HC(𝐻)gen as a plain
(nonmonoidal) functor. Since the braid group �̂� is generated by simple reflections {𝑠𝛼}, for 𝑋 ∈ HC(𝐺),
we have to specify natural isomorphisms

resgen(𝑋)
∼
−→ 𝑆𝑠𝛼 (resgen(𝑋))

satisfying the braid relations. We define them to be the Zhelobenko operators 𝑞𝛼. The compatibility
with the U𝔥-bimodule action follows from parts (1) and (2) of Theorem 6.1. The braid relations follow
from part (3) of the same theorem.

Next, we have to construct a monoidal structure on HC(𝐺) → HC(𝐻)gen,�̂� compatible with the one
on resgen : HC(𝐺) → HC(𝐻)gen, which we recall is given by equation (33). The unit map is the natural
inclusion U𝔥 ↩→ (𝑀univ)𝑁 .

We begin by showing compatibility with the tensor products. By Theorem 5.16, the functor of N-
invariants Ouniv → HC(𝐻)gen is exact. In particular, we may exchange the order of left N-invariants
and right 𝔫-coinvariants in the definition of res(𝑋) = (𝑋/𝑋𝔫)𝑁 . But then the diagram

resgen(𝑋) ⊗(U𝔥)gen resgen(𝑌 ) ��

�̆�𝛼⊗�̆�𝛼

��

resgen(𝑋 ⊗U𝔤 𝑌 )

�̆�𝛼

��
𝑆𝑠𝛼 (resgen(𝑋)) ⊗(U𝔥)gen 𝑆𝑠𝛼 (resgen(𝑌 )) �� 𝑆𝑠𝛼 (resgen(𝑋 ⊗U𝔤 𝑌 ))

(38)

is commutative by Theorem 6.2.
Next, we have to show compatibility with the unit maps. Consider the diagram

U𝔥 ��

��

(𝑀univ)𝑁

�̆�𝛼

��
𝑆𝑠𝛼 (U𝔥) �� 𝑆𝑠𝛼 ((𝑀

univ)𝑁 )

To show that it is commutative, we have to compute the action of 𝑞𝛼 on U𝔥 ↩→ 𝑀univ. By part (2) of
Theorem 6.1, 𝑞𝛼 (𝑑 · 1) = (𝑠𝛼 · 𝑑)𝑞𝛼 (1), where 𝑑 ∈ U𝔥 and 1 ∈ U𝔤 is the unit. But it is obvious from
the explicit formula for 𝑞𝛼 that 𝑞𝛼 (1) = 1. �
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Let us now analyse the composite monoidal functor

Rep(𝐺)
free𝐺
−−−−→ HC(𝐺) resgen

−−−−→ HC(𝐻)gen,�̂� .

Recall that by Theorem 5.20, we have a commutative diagram

Rep(𝐺)
free𝐺 ��

��

HC(𝐺)

resgen

��
Rep(𝐻) free𝐻 �� HC(𝐻)gen

of plain (nonmonoidal) categories.
Consider 𝑉 ∈ Rep(𝐺). Using the natural isomorphism

resgen(U𝔤 ⊗ 𝑉) � (U𝔥)gen ⊗ 𝑉

in HC(𝐻)gen provided by the above diagram, we obtain that the �̂�-invariance of resgen(U𝔤 ⊗ 𝑉) boils
down to maps (U𝔥)gen ⊗ 𝑉 → (U𝔥)gen ⊗ 𝑆𝑤 (𝑉) obtained via the composite

(U𝔥)gen ⊗ 𝑉
∼
←− resgen(U𝔤 ⊗ 𝑉)

�̆�𝑤
−−→ 𝑆𝑤 (resgen(U𝔤 ⊗ 𝑉))

∼
−→ 𝑆𝑤 ((U𝔥)gen ⊗ 𝑉)

∼
−→ (U𝔥)gen ⊗ 𝑆𝑤 (𝑉).

Such maps are uniquely determined by their value on 1 ⊗ 𝑣, which gives linear maps

𝐴𝑤,𝑉 (𝜆) : 𝑉 −→ 𝑉

depending rationally on a parameter 𝜆 ∈ 𝔥∗.
Let 𝑉,𝑈 ∈ Rep(𝐺), and recall the matrix 𝐽𝑉 ,𝑈 (𝜆) : 𝑉 ⊗ 𝑈 → 𝑉 ⊗ 𝑈 defined in section 5.1, which

controls the monoidal structure on the composite Rep(𝐺) → Rep(𝐻)
free𝐻
−−−−→ HC(𝐻)gen.

Proposition 6.6. For any simple reflection 𝑠𝛼 and 𝑉,𝑈 ∈ Rep(𝐺), we have an equality

𝐴𝑠𝛼 ,𝑉 ⊗𝑈 (𝜆)𝐽𝑉 ,𝑈 (𝜆) = 𝐽𝑉 ,𝑈 (𝑠𝛼 · 𝜆)𝐴
(1)
𝑠𝛼 ,𝑈
(𝜆)𝐴(2)𝑠𝛼 ,𝑈

(𝜆 − ℎ (1) )

of rational functions 𝔥∗ → End(𝑉 ⊗ 𝑈), where 𝐴(1) denotes 𝐴 ⊗ 1 and 𝐴(2) denotes 1 ⊗ 𝐴.

Proof. Consider the diagram

((U𝔥)gen ⊗ 𝑉) ⊗(U𝔥)gen ((U𝔥)gen ⊗ 𝑈) ��

��

(U𝔥)gen ⊗ 𝑉 ⊗ 𝑈

��
resgen(U𝔤 ⊗ 𝑉) ⊗(U𝔥)gen resgen(U𝔤 ⊗ 𝑈) ��

�̆�𝛼⊗�̆�𝛼

��

resgen((U𝔤 ⊗ 𝑉) ⊗U𝔤 (U𝔤 ⊗ 𝑈))

�̆�𝛼

��
𝑆𝑠𝛼 (resgen(U𝔤 ⊗ 𝑉)) ⊗(U𝔥)gen 𝑆𝑠𝛼 (resgen(U𝔤 ⊗ 𝑈)) ��

��

𝑆𝑠𝛼 (resgen((U𝔤 ⊗ 𝑉) ⊗U𝔤 (U𝔤 ⊗ 𝑈)))

��
(U𝔥)gen ⊗ 𝑉 ⊗ 𝑈 �� (U𝔥)gen ⊗ 𝑉 ⊗ 𝑈

where the middle square is given by equation (38).
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The left vertical arrow is 𝐴(1)𝑠𝛼 ,𝑉
(𝜆)𝐴(2)𝑠𝛼 ,𝑈

(𝜆 − ℎ (1) ), and the right vertical arrow is 𝐴𝑠𝛼 ,𝑉 ⊗𝑈 (𝜆).
Using the isomorphism given by equation (37), the bottom horizontal arrow is 𝐽𝑉 ,𝑈 (𝑠𝛼 · 𝜆). �

Let us now compute a particular example of the operators 𝐴𝑤,𝑉 (𝜆). Consider 𝐺 = SL2, V the two-
dimensional irreducible representation, 𝐻 ⊂ 𝐺 the subgroup of diagonal matrices and w the unique
simple reflection. We can lift it to the matrix 𝑇 ∈ N(𝐻) given by

𝑇 =

(
0 −1
1 0

)
.

Let {𝑒, ℎ, 𝑓 } be the standard basis of 𝔰𝔩2. Let {𝑣+, 𝑣−} be the basis of V such that

ℎ𝑣+ = 𝑣+, ℎ𝑣− = −𝑣−, 𝑓 𝑣+ = 𝑣−.

Proposition 6.7. The action of 𝐴𝑤,𝑉 (𝜆) is given as follows:

𝐴𝑤,𝑉 (𝜆)𝑣+ = 𝑣−

𝐴𝑤,𝑉 (𝜆)𝑣− = −
𝜆 + 2
𝜆 + 1

𝑣+.

Proof. The isomorphism (U𝔥)gen ⊗ 𝑉 → (𝑉 ⊗ 𝑀univ,gen)𝑁 is given by

1 ⊗ 𝑣+ ↦→ 𝑣+ ⊗ 𝑥univ,

1 ⊗ 𝑣− ↦→ 𝑣− ⊗ 𝑥univ − 𝑣+ ⊗ 𝑓 ℎ−1𝑥univ,

where 𝑥univ ∈ 𝑀univ,gen is the generator. We have

𝑞𝑤 (𝑣+ ⊗ 1) =
∑
𝑛

(−1)𝑛

𝑛!
ad𝑛𝑒 (𝑣− ⊗ 1) 𝑓 𝑛𝑔−1

𝑛 = 𝑣− ⊗ 1 − 𝑣+ ⊗ 𝑓 ℎ−1,

hence 𝐴𝑤,𝑉 (𝜆) (𝑣+) = 𝑣−. To compute 𝐴𝑤,𝑉 (𝜆) (𝑣−), we use the property in (4) from Theorem 6.1,
namely,

𝑞𝑤 (𝑣− ⊗ 1 − 𝑣+ ⊗ 𝑓 ℎ−1) = 𝑞2
𝑤 (𝑣+ ⊗ 1) = −(ℎ + 1)−1(𝑣+ ⊗ 1) (ℎ + 1) = −ℎ(ℎ + 1)−1(𝑣+ ⊗ 1).

Under identification 𝑆𝑤 (resgen(𝑉 ⊗ U𝔤)) � (U𝔥)gen ⊗ 𝑆𝑤 (𝑉), we have

𝑞𝑤 (𝑣− ⊗ 1 − 𝑣+ ⊗ 𝑓 ℎ−1) ↦→ −
𝑤 · 𝜆

𝑤 · 𝜆 + 1
⊗ 𝑣+ = −

𝜆 + 2
𝜆 + 1

⊗ 𝑣+,

and the claim follows. �

We return to the case of arbitrary G. Recall that Tarasov and Varchenko [83] have introduced the
dynamical Weyl group: that is, a collection of operators 𝐴𝑇𝑉

𝑤,𝑉 (𝜆) : 𝑉 → 𝑉 for every finite-dimensional
𝔤-representation V and 𝑤 ∈ 𝑊 depending rationally on the parameter 𝜆 ∈ 𝔥∗. We will now prove that the
operators 𝐴𝑤,𝑉 constructed from the Zhelobenko operators coincide with the dynamical Weyl group.

Theorem 6.8. For any 𝑉 ∈ Rep(𝐺) and 𝑤 ∈ 𝑊 , we have an equality of rational functions

𝐴𝑇𝑉
𝑤,𝑉 (𝜆) = 𝐴𝑤,𝑉 (𝜆).

Proof. Both 𝐴𝑇𝑉
𝑤,𝑉 (𝜆) and 𝐴𝑤,𝑉 (𝜆) are given by products in terms of simple reflections, so it is enough

to establish the fact for a simple reflection 𝑤 = 𝑠𝛼 along a simple root 𝛼.
In turn, both 𝐴𝑇𝑉

𝑠𝛼 ,𝑉
(𝜆) and 𝐴𝑠𝛼 ,𝑉 (𝜆) are defined by considering the corresponding 𝔰𝔩2-subalgebra

𝔤𝛼 ⊂ 𝔤 generated by {𝑒𝛼, ℎ𝛼, 𝑓𝛼}. So, it is enough to prove the claim for 𝐺 = SL2.
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For a tensor product of representations, 𝐴𝑤,𝑉 (𝜆) satisfies a multiplicativity property given by
Theorem 6.6, and so does 𝐴𝑇𝑉

𝑤,𝑉 (𝜆) (see [83, Lemma 7], where the relationship between 𝐽𝑉 ,𝑈 (𝜆) and
𝐽𝐸𝑉
𝑉 ,𝑈 (𝜆) is given by Theorem 5.22). Therefore, it is enough to check the equality on the 2-dimensional

irreducible representation of 𝔰𝔩2, which follows by comparing the expressions given in Theorem 6.7 with
the explicit expressions given in [83, Section 2.5] (see also [32, Lemma 5] for an explicit description of
the dynamical Weyl group in the 2-dimensional representation of quantum 𝔰𝔩2). �

6.3. Quantum Zhelobenko operators

We continue to use notations for quantum groups from section 5.2. It was shown by Lusztig [62],
Soibelman [80] and Kirillov–Reshetikhin [57] that one can introduce an action of the braid group �̂�
on modules in Rep𝑞 (𝐺). For 𝑉 ∈ Rep𝑞 (𝐺) and 𝑤 ∈ 𝑊 , we denote by 𝑇𝑤 : 𝑉 → 𝑉 the corresponding
operator of the quantum Weyl group (for definitiveness, we consider 𝑇 ′𝑤,+1 in the notation of [62, Chapter
5]).

Example 6.9. Consider U𝑞 (𝔰𝔩2) with generators 𝐸, 𝐾, 𝐹, as in Theorem 3.21, 𝑉 ∈ Rep𝑞 (SL2) and
𝑣 ∈ 𝑉 a vector of weight n. Then

𝑇𝑤 (𝑣) =
∑

𝑎,𝑏,𝑐;𝑎−𝑏+𝑐=𝑛
(−1)𝑏𝑞−𝑎𝑐+𝑏

𝐹𝑎𝐸𝑏𝐹𝑐

[𝑎]![𝑏]![𝑐]!
𝑣

for the unique nontrivial element 𝑤 ∈ 𝑊 .

The Weyl group W acts in the standard way on the weight lattice Λ. We introduce the dot action of
W on U𝑞 (𝔥) = 𝑘 [Λ] by

𝑤 · 𝐾𝜇 = 𝐾𝑤 (𝜇)𝑞
(𝜇,𝑤 (𝜌)−𝜌)

for every 𝜇 ∈ Λ.
Recall that for a root 𝛼, we denote 𝑞𝛼 = 𝑞 (𝛼,𝛼)/2. The quantum integer is

[𝑛]𝛼 =
𝑞𝑛𝛼 − 𝑞−𝑛𝛼
𝑞𝛼 − 𝑞−1

𝛼

and the quantum factorial is defined similarly. The quantum Zhelobenko operators were introduced in
[53, Section 9]. For the following statement, recall Theorem 5.26, which explains that the infinite sums
in the quantum Zhelobenko operators are well-defined.

Theorem 6.10. Suppose 𝑋 ∈ HC𝑞 (𝐺). For a simple root 𝛼, we denote by {𝐸𝛼, 𝐾𝛼, 𝐹𝛼} the corre-
sponding subset of generators of U𝑞 (𝔤). Consider the quantum Zhelobenko operator on X given by

𝑞𝛼 (𝑥) =
∞∑
𝑛=0

(−1)𝑛

[𝑛]𝛼!
(ad(𝐾−1

𝛼 𝐸𝛼))
𝑛 ((ad𝑇𝑠𝛼 ) (𝑥))𝐹

𝑛
𝛼𝑔−1

𝑛,𝛼,

where

𝑔𝑛,𝛼 =
𝑛∏
𝑗=1
[ℎ𝛼 − 𝑗 + 1]𝛼

and ad(𝐾−1
𝛼 𝐸𝛼) refers to the diagonal U𝑞 (𝔤)-action. Then the operators 𝑞𝛼 descend to linear isomor-

phisms

(𝑋 ⊗U𝑞 (𝔤) lf 𝑀
univ,gen
𝑞 )U𝑞 (𝔫) −→ (𝑋 ⊗U𝑞 (𝔤) lf 𝑀

univ,gen
𝑞 )U𝑞 (𝔫) ,
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which satisfy the following relations:

1. 𝑞𝛼 ((ad 𝑑) (𝑥)) = (ad 𝑠𝛼 (𝑑)) (𝑞𝛼 (𝑥)) for every 𝑑 ∈ U𝑞 (𝔥) and 𝑥 ∈ 𝑋 .
2. 𝑞𝛼 (𝑑𝑥) = (𝑠𝛼 · 𝑑)𝑞𝛼 (𝑥) for every 𝑑 ∈ U𝑞 (𝔥) and 𝑥 ∈ 𝑋 .
3. 𝑞𝛼𝑞𝛽𝑞𝛼 . . .︸��������︷︷��������︸

𝑚𝛼𝛽

= 𝑞𝛽𝑞𝛼𝑞𝛽 . . .︸��������︷︷��������︸
𝑚𝛼𝛽

for 𝛼 ≠ 𝛽.

The third property allows us to define 𝑞𝑤 for any element 𝑤 ∈ �̂� . We also have a multiplicativity
property.

Theorem 6.11. Let 𝑋,𝑌 ∈ HC𝑞 (𝐺), and take 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , where U>0
𝑞 (𝔫)𝑦 ∈ 𝑌U>0

𝑞 (𝔫). Then we
have an equality

𝑞𝑤 (𝑥 ⊗ 𝑦) = 𝑞𝑤 (𝑥) ⊗ 𝑞𝑤 (𝑦)

in 𝑋 ⊗U𝑞 (𝔤) lf 𝑌 ⊗U𝑞 (𝔤) lf 𝑀
univ,gen
𝑞 .

6.4. Quantum dynamical Weyl group

As in section 6.2, quantum Zhelobenko operators define the Weyl symmetry of the parabolic restriction
functor resgen : HC𝑞 (𝐺) → HC𝑞 (𝐻)

gen.
The W-action on HC𝑞 (𝐻) is defined similarly to the W-action on HC(𝐻). An element 𝑤 ∈ 𝑊 gives

rise to a functor 𝑆𝑤 : HC𝑞 (𝐻) → HC𝑞 (𝐻) given as follows. For 𝑋 ∈ HC𝑞 (𝐻), we set 𝑆𝑤 (𝑋) = 𝑋 as a
vector space with the U𝑞 (𝔥)-bimodule structure given by

𝑑 ⊲𝑤 𝑥 = (𝑤 · 𝑑) ⊲ 𝑥, 𝑥 ⊳𝑤 𝑑 = 𝑥 ⊳ (𝑤 · 𝑑),

where 𝑑 ∈ U𝑞 (𝔥) and 𝑥 ∈ 𝑋 . The functors {𝑆𝑤 } have obvious monoidal structures.
Consider the action of the quantum Zhelobenko operators

𝑞𝛼 : resgen(𝑋)
∼
−→ 𝑆𝑠𝛼 (resgen(𝑋)).

Theorem 6.12. The quantum Zhelobenko operators define a factorisation

HC𝑞 (𝐺) �����

resgen
��





HC𝑞 (𝐻)

gen,�̂�

��
HC𝑞 (𝐻)

gen

of resgen
𝑞 : HC𝑞 (𝐺) → HC𝑞 (𝐻)

gen through a monoidal functor resgen : HC𝑞 (𝐺) → HC𝑞 (𝐻)
gen,�̂� .

By Theorem 5.35, we have a commutative diagram

Rep𝑞 (𝐺)

��

free𝐺 �� HC𝑞 (𝐺)

resgen

��
Rep𝑞 (𝐻)

free𝐻 �� HC𝑞 (𝐻)
gen

which gives rise to a monoidal structure on the composite

Rep𝑞 (𝐺) −→ Rep𝑞 (𝐻)
free𝐻
−−−−→ HC𝑞 (𝐻)

gen,�̂� .
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As in section 6.2, we obtain linear maps 𝐴𝑤,𝑉 (𝜆) : 𝑉 → 𝑉 for every 𝑉 ∈ Rep𝑞 (𝐺), which are rational
functions on H. For 𝑉,𝑈 ∈ Rep𝑞 (𝐺), recall the matrix 𝐽𝑉 ,𝑈 (𝜆) : 𝑉 ⊗𝑈 → 𝑉 ⊗𝑈 defined in section 5.2.

Proposition 6.13. For any simple reflection 𝑠𝛼 and 𝑉,𝑈 ∈ Rep𝑞 (𝐺), we have an equality

𝐴𝑠𝛼 ,𝑉 ⊗𝑈 (𝜆)𝐽𝑉 ,𝑈 (𝜆) = 𝐽𝑉 ,𝑈 (𝑠𝛼 · 𝜆)𝐴
(1)
𝑠𝛼 ,𝑉
(𝜆)𝐴(2)𝑠𝛼 ,𝑈

(𝜆 − ℎ (1) )

of rational functions 𝐻 → End(𝑉 ⊗ 𝑈).

Let us now compute the operators 𝐴𝑤,𝑉 for 𝐺 = SL2. Consider the irreducible two-dimensional
representation 𝑉 ∈ Rep𝑞 (𝐺) with the basis {𝑣+, 𝑣−} such that

𝐾𝑣+ = 𝑞𝑣+, 𝐾𝑣− = 𝑞−1𝑣+, 𝐹𝑣+ = 𝑣−.

Proposition 6.14. The action of 𝐴𝑤,𝑉 (𝜆) is given as follows:

𝐴𝑤,𝑉 (𝜆)𝑣+ = 𝑣−

𝐴𝑤,𝑉 (𝜆)𝑣− = −
[𝜆 + 2]
[𝜆 + 1]

𝑣+.

Proof. The isomorphism U𝑞 (𝔥)gen ⊗ 𝑉 → (𝑉 ⊗ 𝑀univ,gen)𝑁 is given by

1 ⊗ 𝑣+ ↦→ 𝑣+ ⊗ 𝑥univ,

1 ⊗ 𝑣− ↦→ 𝑣− ⊗ 1 − 𝑞−1𝑣+ ⊗ 𝐹 · [ℎ]−1 · 𝑥univ.

By [62, Proposition 5.2.2], we have

𝑇𝑤 (𝑣+) = 𝑣−, 𝑇𝑤 (𝑣−) = −𝑞𝑣+.

Therefore,

𝑞𝑤 (𝑣+ ⊗ 1) =
∞∑
𝑛=0

(−1)𝑛

[𝑛]!
(ad(𝐾−1𝐸))𝑛 (𝑣− ⊗ 1)𝐹𝑛𝑔−1

𝑛 = 𝑣− ⊗ 1 − 𝑞−1𝑣+ ⊗ 𝐹 [ℎ]−1,

which implies that

𝐴𝑤,𝑉 (𝜆)𝑣+ = 𝑣−.

Using the formula for the square of the quantum Zhelobenko operator [53, Corollary 9.6], we obtain

𝑞𝑤 (𝑣− ⊗ 1 − 𝑞−1𝑣+ ⊗ 𝐹 [ℎ]−1) = −[ℎ + 1]−1 (𝑣+ ⊗ 1) [ℎ + 1] = −
[ℎ]

[ℎ + 1]
(𝑣+ ⊗ 1),

which implies that

𝐴𝑤,𝑉 (𝜆)𝑣− = −
[𝜆 + 2]
[𝜆 + 1]

𝑣+.

�

Remark 6.15. The formulas (9.10) and (9.11) in [53] are missing a sign; see [62, Proposition 5.2.2].

Etingof and Varchenko [32] have introduced a quantum analogue of the dynamical Weyl group: that
is, a collection of rational functions 𝐴𝐸𝑉

𝑤,𝑉 (𝜆) : 𝑉 → 𝑉 for every 𝑉 ∈ Rep𝑞 (𝐺) and 𝑤 ∈ 𝑊 . We are now
ready to relate 𝐴𝑤,𝑉 and 𝐴𝐸𝑉

𝑤,𝑉 .
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Theorem 6.16. For any 𝑉 ∈ Rep𝑞 (𝐺) an 𝑤 ∈ 𝑊 , we have an equality of rational functions

𝐴𝐸𝑉
𝑤,𝑉 (𝜆) = 𝑞 (𝑤 (𝜌)−𝜌,ℎ) 𝐴𝑤,𝑉 (𝜆). (39)

Proof. The proof is analogous to the proof of Theorem 6.8. Both 𝐴𝐸𝑉
𝑤,𝑉 and 𝐴𝑤,𝑉 are given by a product

over simple reflections, so it is enough to establish this equality for a simple reflection 𝑤 = 𝑠𝛼.
We have 𝑠𝛼 (𝜌) = 𝜌 − 𝛼, so

𝑞 (𝑠𝛼 (𝜌)−𝜌,ℎ)𝐴𝑠𝛼 ,𝑉 (𝜆) = 𝑞−(𝛼,ℎ) 𝐴𝑠𝛼 ,𝑉 (𝜆) = 𝐾−1
𝛼 𝐴𝑠𝛼 ,𝑉 (𝜆).

In particular, both sides of the equality given by equation (39) are defined in terms of the corresponding
U𝑞 (𝔰𝔩2)-subalgebra, so it is enough to restrict our attention to 𝐺 = SL2. Using the multiplicativity
property of 𝐴𝐸𝑉

𝑤,𝑉 and 𝐴𝑤,𝑉 given by [32, Lemma 4] and Theorem 6.13, we reduce to the case of the
defining representation. The equality on the defining representation of SL2 follows from comparing the
formulas in [32, Lemma 5] and Theorem 6.14. �
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