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Linear stability analyses are performed to investigate the boundary layer instabilities
developing in an incompressible flow around the whole leading-edge of swept ONERA-D
and Joukowski airfoils of infinite span. The stability analyses conducted in our study
are global in the chordwise direction and local in the spanwise direction. A neutral
curve is drawn at a given leading-edge Reynolds number ReR and several overlapping
regions, called ‘lobes’, are identified on a physical basis. A detailed study of the
marginal modes reveals the presence of attachment-line and cross-flow instabilities,
as well as modes whose features do not fall within the standards of a specific type.
Connected cross-flow/Tollmien–Schlichting modes, that show a dominant spatial structure
reminiscent of Tollmien–Schlichting waves but whose destabilization is linked to a
cross-flow mechanism, have been identified. The comparison of several neutral curves at
different ReR values reveals the greater stabilizing effect of the increase of ReR on the
cross-flow instability compared with the attachment-line instability. The influence of
the airfoil shape is also studied by comparing the neutral curves of the ONERA-D with
the neutral curves of the Joukowski airfoil. These curves reveal similar characteristics
with the presence of distinct lobes and their comparison at constant sweep angle shows
that, under the conditions studied, the ONERA-D airfoil is more stable than the Joukowski
airfoil, even for cross-flow instabilities. The absolutely or convectively unstable nature of
the flow in the spanwise direction is also tackled and our results suggest that the flow is
only convectively unstable.
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1. Introduction

The understanding of the laminar-to-turbulent transition process on swept wings is
a crucial issue both from a theoretical and practical point of view for aerodynamic
optimization and transition control. This is why, over the last decades, many studies
have been conducted to better understand this phenomenon. When the environmental
disturbances have a sufficiently small amplitude, as often occurs in flight conditions,
instabilities growing following a linear mechanism can develop within the boundary layer.
It is then important to identify the physical mechanism involved and the spatial structure
of the instability in order to control it and thus delay the transition. In the case of swept
wings, and in the absence of contamination by the turbulence of the fuselage, three types
of instabilities are mainly responsible for the transition: attachment-line (AL); cross-flow
(CF); and Tollmien–Schlichting (TS) instabilities.

The TS instability is related to the streamwise component of the flow and takes the form
of vortices almost perpendicular to the streamwise direction. As mentioned by Reed &
Saric (1989), TS instabilities are destabilized by an adverse pressure gradient and arise
in regions with no or weak positive pressure gradient. In the case of a Blasius boundary
layer flow, the value of the critical Reynolds number based on the free stream velocity
and the boundary layer displacement thickness is Recrit = 520 and the phase speed of the
corresponding marginal mode is 0.397 (Schmid & Henningson 2001).

Attachment-line instabilities are characterized by counter-rotating vortices developing
in the attachment line region and aligned with the chordwise direction. The mechanism
responsible for these instabilities is similar to that of the two-dimensional (2-D) TS
instabilities in the (z, η) plane, where z and η are, respectively, the spanwise and
wall-normal directions. This instability has long been studied through the analysis of a
flow impinging on a flat swept plate with the chordwise velocity linear in the chordwise
coordinate x, representative of the attachment line of a swept cylinder. This model is called
the swept Hiemenz flow (SHF) and was comprehensively studied in Hall, Malik & Poll
(1984) where Görtler–Hammerlin perturbations with a linear dependency in the chordwise
direction cause the flow to be linearly unstable above a critical sweep Reynolds number
ReS = 583. The sweep Reynolds number ReS, based on the spanwise velocity and a typical
length scale of the boundary layer at the attachment line, is commonly used in studies
dealing with attachment line flows. In order to remove the assumption about chordwise
linear dependency of the perturbation, Lin & Malik (1996) considered more general 2-D
perturbations. They validated the threshold value of Hall et al. (1984) and noted the
observation of symmetric and antisymmetric modes, the symmetric Görtler–Hammerlin
mode described by Hall et al. (1984) remaining the most unstable. Following on from
this study, Lin & Malik (1997) studied the influence of leading-edge curvature using
second-order boundary-layer theory, which made it possible to show the stabilizing effect
of leading-edge curvature on AL instabilities.

Unlike AL and TS instabilities, CF instabilities are inflectional and are caused by the
combined effect of sweep and wall curvature farther downstream. Indeed, the centripetal
force and the favourable pressure gradient create a deflection of the flow outside the
boundary layer. Within the boundary layer, the centripetal force decreases while the
pressure gradient is conserved, creating a velocity profile with an inflection point, which
is the source of CF instability. As described in the review by Saric, Reed & White (2003),
CF instability can be either steady or travelling. It is characterized by corotating vortices
almost aligned with the streamwise direction, especially for the steady modes. Contrary to
the TS instabilities, CF instabilities are often destabilized by a negative pressure gradient.
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Instabilities on swept airfoils

They are sufficiently strong (inviscid instability) to trigger absolute instability in the
chordwise direction, see Lingwood (1997).

During the 20th century, all these instabilities were mainly studied independently from
simplified models with assumptions on the flow or a perturbation form depending on the
type of instability sought. However, the origin of this independence mostly comes from
practical limitations rather than physical considerations and a realistic instability may be a
superposition of different types. By investigating the interaction of oblique waves with 2-D
waves for the SHF case, Hall & Seddougui (1990) suggested a connection between AL and
CF instabilities. Then, Bertolotti (2000) found modes connecting AL to CF in the SHF case
using confluent hypergeometric functions. To study the diversity of the instabilities, the
need to perform stability analyses which are global in the chordwise direction on domains
that extend over the whole leading edge was perceived. These chordwise-global analyses,
contrary to chordwise-local analyses, allow us to directly conclude on the absolute nature
of the instability in the chordwise direction (Huerre & Monkewitz 1990) but also to have
access to its wavemaker, as well as to its whole spatial structure. The concept of wavemaker
was introduced by Gianetti & Luchini (2007) and is relevant for the identification of
the physical mechanisms at play. The increase of computational capacities has made
this type of global analysis possible, but the difficulty lies in the possibly very high
sensitivity of the computed eigenvalues to numerical parameters such as domain size or
eigenvalue shift (Alizard & Robinet 2007; Garnaud et al. 2013; Brynjell-Rahkola et al.
2017). Cerqueira & Sipp (2014) have shown that this issue is linked to the modification
of the ε-pseudospectrum with the extension of the domain. To date, only a few studies
deal with chordwise-global stability analyses using a domain covering the entire leading
edge (Mack, Schmid & Sesterhenn 2008; Mack & Schmid 2011; Meneghello, Schmid &
Huerre 2015). In Mack et al. (2008), a first temporal chordwise-global stability analysis
was conducted on a parabolic leading-edge in supersonic flow. The authors reported
‘connected modes’ with features of both AL and CF. In Mack & Schmid (2011), a neutral
curve was established, still in supersonic condition. Their study was done at a constant
sweep angle, which implies a simultaneous variation of the sweep and leading-edge
Reynolds numbers ReS and ReR. Meneghello et al. (2015) dealt with the incompressible
flow around the leading-edge of a Joukowski airfoil. Only strongly stable modes were
analysed. One of their observations is the appearance of an AL/CF connected mode with
a first spatial growth of the direct mode close to the attachment line and a second spatial
amplification farther downstream, where the direct mode has characteristics reminiscent of
a CF type instability. They used the wavemaker to conclude that the observed mode is fed
by the AL instability. This last result additionally implied that effective open-loop control
strategies should focus on baseflow modifications in the region where the AL instability
prevails. Thus, chordwise-global analyses provide important information about the spatial
structure of the modes and their sensitivity, and the previous studies of leading-edge
instabilities have highlighted the complexity of the modes involved. Yet, only a strongly
stable configuration around a Joukowski profile has been studied for the case of an
incompressible flow and studies of unstable or marginally stable flows have been limited
to a narrow field of the parameter space in a compressible case around a parabolic body.

The first objective of this paper is to extend the study of boundary layer instabilities that
develop in an incompressible flow around the leading-edge of swept realistic airfoils, here
the ONERA-D and Joukowski airfoils with infinite span. In particular, we are interested in
studying the neutral curves in extended parameter space and in characterizing the physical
nature of the chordwise-global modes along them. By studying in depth the features of
the marginal modes, including the study of the wavemaker position, we would like to
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further the study of the diversity of the modes developing on the leading-edge and improve
our understanding of the connection between the different types of instabilities. We also
want to investigate the impact of the streamwise pressure gradient on the instabilities by
comparing the results between a ONERA-D airfoil and a Joukowski airfoil, which exhibit
strongly different pressure gradients.

The chordwise-global analyses used in our study remain local in the spanwise direction.
Therefore, the convective or absolute nature in the spanwise direction of the studied
instabilities is still to be explored. This problem aims at determining whether an instability
in the flow has a chance to sustain the perturbation so as to grow temporally at a given
spanwise position and contaminate the whole airfoil, or whether it will be convected away
along the span. Studies addressing this issue were conducted at the end of the 20th century.
Indeed, Türkylmazoglu & Gajjar (1999) and Lingwood (1997), respectively, dealt with the
incompressible SHF and Falkner–Skan–Cooke boundary layer and found that they are
absolutely unstable in the chordwise direction, but may still be only convectively unstable
in the spanwise direction. Taylor & Peake have also been interested in this problem for
genuine airfoils in incompressible (Taylor & Peake 1998) and compressible (Taylor &
Peake 1999) regimes. In both cases, they also found convectively unstable flows without
absolute instabilities in both streamwise and CF directions. Similarly, (Piot & Casalis
2009) studied the absolute instability mechanisms on a swept cylinder with imposed
spanwise periodic conditions. All previously mentioned absolute stability analyses were
conducted using stability analyses that are local both in the spanwise and chordwise
directions.

The second objective of this paper is to study the absolute/convective nature in
the spanwise direction of the instabilities developing in the boundary layer of the
incompressible flow around the leading-edge of the ONERA-D airfoil. To the authors’
knowledge, this is the first study of this nature using chordwise-global stability analyses.

The outline of the paper is the following. In § 2 the methodology that will be used in
this paper is described. The flow configurations as well as the governing equations and
the computational domain are introduced. The numerical methods and the procedure for
finding modes with zero-group velocity are also detailed. In § 3 the results and discussions
are presented. In § 3.1, some results of the baseflow are described. In § 3.2, a neutral curve
for the swept ONERA-D airfoil is drawn and a detailed analysis of its structure and its
marginal modes is provided. The convective/absolute nature of the instabilities is tackled
in § 3.3. Then, a parametric study of the influence of ReR is performed by comparing
neutral curves in the case of the ONERA-D in § 3.4. Finally, in § 3.5, the neutral curves
for the swept ONERA-D and Joukowski airfoils are compared with assess the influence of
the airfoil shape.

2. Methodology

2.1. Flow configurations
We consider the swept ONERA-D and Joukowski airfoils of infinite span at 0◦ angle
of attack, the Joukowski airfoil having a thickness parameter ε = 0.1. The ONERA-D
is a reference airfoil for the study of the boundary layer transition and has a shape
designed specifically to stabilize TS waves. We pick an orthonormal coordinate system
(x, y, z) whose origin is located on the leading-edge, the x direction being along the
chord orthogonal to the leading-edge, the z direction along the span and the y direction
orthogonal to the symmetry plane (see figure 1).
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Figure 1. (a) Schematic of the mesh and flow configuration with the ONERA-D airfoil. (b) Angles and
coordinate systems are indicated. An external streamline is illustrated in green. The blue lines correspond
to the leading/trailing edges.

The leading-edge radius of curvature of the airfoils in the (x, y) plane is noted rc and the
sweep angle Λ = angle(U∞, x) with the inflow velocity U∞ which may be decomposed
as a sweep velocity U∞

z = U∞ sinΛ and a chordwise velocity U∞
x = U∞ cosΛ (with

U∞
y = 0). The chord in the direction of the free stream velocity is noted C, while Cn =

C cosΛ is the chord normal to the leading-edge of the airfoil.
We will consider two local orthonormal coordinate systems:

(i) (s, η, z), where s is the curvilinear abscissa along the surface of the airfoil in a (z =
cst) plane and η is the wall-normal direction (η = 0 corresponds to the surface);

(ii) (χ, η, b), where χ is a curvilinear abscissa along a streamline of the external
baseflow velocity field, just outside of the boundary layer (see § 3.1) – again η is
the wall-normal direction and b is normal to the plane (χ, η).

Two non-dimensional parameters are needed to describe the flow configuration. A
natural parameterization is the one based on the sweep angle and the streamwise Reynolds
number, (

Λ, ReQ = U∞C
ν

)
, (2.1)

where ν denotes the kinematic viscosity. These two parameters, commonly used in wind
tunnel experiments, will be used in the result § 3.5 to compare the stability of the
Joukowski and ONERA-D airfoils.

In our study, we will mainly use a parameterization more representative of the physics
of the flow at the leading-edge by defining the ‘leading-edge Reynolds number’ ReR and
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the ‘sweep Reynolds number’ ReS:(
ReR = U∞

x rc

ν
, ReS = U∞

z Δ

ν

)
. (2.2)

Here Δ is a typical length scale of the boundary layer thickness at the attachment line and
is based on the potential flow,

Δ =
√
ν

S0
, S0 = ∂Upot

s

∂s

∣∣∣∣∣
x=0,y=0

, (2.3a,b)

where Upot
s denotes the s-component of the potential velocity. The detail of the calculation

of the potential flow will be given in § 2.2.1. Here S0 is then the strain rate of the potential
flow around the profile at the AL.

This parameterization has been used intensively in the study of transition in simplified
leading-edge configurations. The sweep Reynolds number ReS, often used for the study
of attachment line flows, and sometimes also denoted R̄, drives the instability mechanism
along the attachment line (Hall et al. 1984; Lin & Malik 1996). The leading-edge Reynolds
number ReR can be seen as a scaling of the boundary layer thickness with respect to the
radius of curvature at the AL since

Δ

rc
= 1√

K ReR
, (2.4)

where K = S0rc/U∞
x .

Lin & Malik (1997) used this Reynolds number to measure the influence of the
leading-edge curvature on the AL instabilities. Here K is the ratio between two length
scales: the leading-edge radius of curvature rc and the characteristic length scale U∞

x /S0
of variation of the potential flow in the vicinity of the leading edge.

For the ONERA-D and Joukowski airfoils, we have (rc/Cn,K) = (0.0180, 1.37484) and
(rc/Cn,K) = (0.016129, 1.2669), respectively (for comparison, (rc/Cn,K) = (0.5, 2) in
the case of the cylinder).

Both sets of parameters (ReQ,Λ) and (ReR,ReS) may be linked through(
tanΛ =

√
K

ReR
ReS,ReQ = ReR

1 + tan2Λ

rc/Cn

)
. (2.5)

2.2. Governing equations and computational domain
In the context of our study, we seek to determine the stability of a perturbation
q(x, y, z, t) = (u, p)(x, y, z, t) of small amplitude which emerges within a baseflow
Q(x, y, z, t) = (U,P)(x, y, z, t). The baseflow being steady and homogeneous in z, then
we simply have Q(x, y, z, t) = Q(x, y).

The total flow Qtot is expressed as the sum of the baseflow and the perturbation,

Qtot(x, y, z, t) = Q(x, y)+ εq(x, y, z, t), (2.6)

with ε � 1.
We want to study the temporal stability of the perturbations by expressing them in

the form q(x, y, z, t) = q̃(x, y, z)e−iωt with ω ∈ C. The real part ωr and imaginary part
ωi represent, respectively, the frequency and the amplification rate. A perturbation with
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ωi > 0 will be said to be ‘unstable’ while a perturbation with ωi < 0 will be said to
be ‘stable’. Considering the homogeneity of the configuration in the z direction, any
perturbation can be decomposed as a sum of perturbations of the form q(x, y, z, t) =
q̂(x, y)eiβze−iωt. The stability analysis being linear, we can reduce our study to instabilities
of this form. We are then dealing with a temporal analysis that is global in the chordwise
x direction but local in the spanwise z direction. These analyses will then be referred
to as chordwise-global/spanwise-local. In the present study, except for the § 3.3, we will
consider the case β ∈ R. This assumption allows us to tackle the question of the temporal
stability of spanwise periodic perturbations. However, it tells us nothing of the absolute or
convective nature of the instability. In other words, it does not allow us to predict whether
a perturbation would temporally grow at a given location along the span, or if it would
be washed away downstream along the span as it grows in time. To tackle this last point,
the one of absolute stability in the z direction, it is necessary to consider β ∈ C. The
methodology used to deal with this problem will be described in § 2.2.4.

2.2.1. Baseflow
The velocity and pressure fields of the baseflow, respectively, U = (Ux,Uy,Uz) and P,
are governed by the steady incompressible Navier–Stokes equations. As a result of the
homogeneity in the z direction, ∂zQ = 0 and the governing equations of U2D = (Ux,Uy)
and Uz are decoupled. All variables are made non-dimensional with the length of the chord
Cn (normal to the leading-edge) and the velocity U∞

x . We then introduce the chordwise
Reynolds number ReCn = ReRCn/rc and we get the following system of equations:

⎧⎨
⎩

∇U2D · U2D + ∇P − Re−1
Cn
�U2D = 0,

∇Uz · U2D − Re−1
Cn
�Uz = 0,

∇ · U2D = 0.
(2.7)

Using the symmetry of the airfoil in y = 0, we can consider a domain defined only
on the upper half of the airfoil, as shown in figure 1(a), and we then have the following
boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩

U = 0 on Γw,(
Ux,Uy,Uz

) =
(

Upot
x ,Upot

y ,U∞
z

)
on Γin,

∂yUx = ∂yUz = Uy = 0 on Γsym,
∇U · n = 0 and P = Ppot on Γout,

(2.8)

where Γw, Γin, Γsym and Γout are defined in figure 1. Here n denotes the vector normal to
the boundary and the superscript pot corresponds to the 2-D potential solution around the
airfoil.

In the far field, we have (Upot
x = 1,Upot

y = 0,Upot
z = U∞

z ,Ppot = 0). For the
ONERA-D, the potential solution is computed by solving a Laplace equation for the
stream functionψ with appropriate Dirichlet boundary conditions on a domain comprising
the full airfoil and extending sufficiently far so that uniform flow field conditions hold.
The potential velocity field is obtained by computing Upot

x = ∂yψ and Upot
y = −∂xψ . The

potential pressure is computed as Ppot = (1 − (Upot
x )2 − (Upot

y )2)/2.
In the case of the Joukowski airfoil, which is defined from a Joukowski transform of a

cylinder, the potential solution is computed analytically.
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2.2.2. Direct modes: temporal chordwise-global/spanwise-local stability analysis
As previously introduced, the small amplitude unsteady perturbations q are sought in the
form

q = q̂(x, y) exp(i(βz − ωt)), (2.9)

where q̂ = (û, p̂) = (ûx, ûy, ûz, p̂) is the complex spatial distribution of the mode, β ∈ R

is the real spanwise wavenumber and ω ∈ C is the complex pulsation of the perturbation.
The equation governing the couple (ω, q̂) corresponds to the following linear

eigenvalue–eigenvector problem:

Lq̂ = ωBq̂, (2.10)

where L and B are defined as

L =

⎡
⎢⎣
∂xUx + Cβ − Dβ ∂yUx 0 ∂x

∂xUy ∂yUy + Cβ − Dβ 0 ∂y
∂xUz ∂yUz Cβ − Dβ iβ
∂x ∂y iβ 0

⎤
⎥⎦ ,

and

B =

⎡
⎢⎣

i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0

⎤
⎥⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11a,b)

with Cβ = Ux∂x + Uy∂y + iβUz and Dβ = Re−1
Cn
(∂x2 + ∂y2 − β2). The following boundary

conditions hold: ⎧⎪⎪⎨
⎪⎪⎩

û = 0 on Γw,
û = 0 on Γin,
∂yûx = ∂yûz = ûy = 0 on Γsym,

p̂n − Re−1
Cn

∇û · n = 0 on Γout,

(2.12)

which corresponds to a symmetric boundary condition at the symmetry plane. Although
antisymmetric modes also exist, the present study focuses on symmetric modes because
they are expected to be the most unstable. Indeed, the modes most likely to be affected
by the boundary condition at Γsym are the modes with a spatial structure close to the
attachment line, and for these, the literature indicates that symmetric modes are the most
unstable (Joslin 1996; Lin & Malik 1996; Meneghello et al. 2015).

In this study, the direct modes are normalized such that

(û, û) = 1, (2.13)

with the inner product (·, ·) defined as

(q1, q2) =
∫
Ω

q∗
1q2 dΩ, (2.14)

the superscripts ∗ referring to the transconjugate and Ω being the computational domain.
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2.2.3. Adjoint modes and wavemaker
We now briefly introduce adjoint operators, adjoint modes and the wavemaker. The adjoint
operator L† of L is the operator such that for any q1 and q2:

(q1,Lq2) = (L†q1, q2). (2.15)

The definition of L† is provided in Appendix A. The adjoint eigenvalue ω† and adjoint
mode q̂† = (û†, p̂†) are then solution of the following eigenvalue–eigenvector problem:

L†q̂† = ω†B†q̂†. (2.16)

Since each eigenvalue ω† of the adjoint problem is the conjugate of an eigenvalue ω of the
direct problem, it is possible to associate every direct mode with an adjoint mode. In this
study, the adjoint modes are normalized such that

(û†, û†) = 1. (2.17)

The knowledge of the adjoint mode is of particular interest since it is linked to the notion
of wavemaker λ(x, y) of the direct eigenvector q̂ (Gianetti & Luchini 2007). It is defined
as the local product of the norms of the direct and the associated adjoint mode,

λ(x, y) = ‖û(x, y)‖ × ‖û†(x, y)‖, (2.18)

where ‖u(x, y)‖2 = u∗(x, y)u(x, y) is the pointwise squared norm of the velocity vector.
In regions where the wavemaker is strong, the eigenvalue is very sensitive to a local
modification of the structure of the governing equations. Consideration of the wavemaker
is important for the identification of mode instability types (Meneghello et al. 2015).

The consideration of the wavemaker is also important from a numerical point of view
since it is necessary to verify that this region is located inside the computational domain.

2.2.4. Absolute/convective stability analysis in the spanwise z direction
We are interested here in the search for absolute instabilities. The results on this point will
be presented in § 3.3.

For given parameters (ReR,ReS)where the flow is temporally unstable, i.e. there is a real
β such that there exists a mode with ωi(β) > 0, we look for a complex spatial wavenumber
β0 such that the mode exhibits a zero spanwise group velocity:

∂βω(β0) = 0. (2.19)

The flow is absolutely unstable if ω0,i > 0 where ω0 = ω(β0).
To find such values, we follow the strategy described in Meliga, Sipp & Chomaz (2008).

We first perform a temporal stability analysis, as described in § 2.2.2, and compute the
most unstable eigenvalue for varying real wavenumbers β and look for all wavenumbers
βpeak where ωi(β) is maximal, i.e. ∂βωi(β

peak) = 0. Then, at these points, the spanwise
group velocity is real: Vpeak

g = ∂βω(β
peak) = ∂βωr(β

peak).
We then allow both β and ω = ω(β) to be complex and monitor the values of

wavenumbers βVg and frequencies ωVg for which we have a branch point,

ω(β) ≈ ωVg + Vg
[
β − βVg

]+ l
[
β − βVg

]2
, (2.20)

where Vg is the control variable and l is a term to determine. Note that for Vpeak
g , the

branch point is reached for (βpeak, ω(βpeak)). We then decrease Vg, follow the solution
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by continuity and identify (β0, ω0,Vg = 0). This may yield multiple branch points at
zero spanwise group velocity. The transition from convective to absolute instability is
determined by the branch point that exhibits largest growth rate ω0,i.

In this way, we should be able to evaluate ω0 for all (ReR,ReS) couples and determine
where the flow is absolutely unstable (ω0,i > 0), or convectively unstable (ω0,i < 0). It
should be noted, though, that the presence of modes with ω0,i > 0 is only a necessary
but not sufficient condition for absolute instability. However, the absence of modes with
ω0,i > 0 is therefore a sufficient condition to conclude that the flow is only convectively
stable.

2.3. Numerical methods
The airfoils being symmetric, we choose to restrict the study to symmetric flow fields. The
computational domain is restricted to the y � 0 domain, and symmetry conditions will be
used at the axis of symmetry y = 0, as defined in (2.12).

As shown in figure 1, we consider a 2-D domain Ω covering the upper half of the
airfoil and which extends up to typically 15 % and 35 % in the chordwise direction for
the ONERA-D and Joukowski airfoils, respectively. The domain size in the chordwise
direction has been chosen small enough so that the non-normality effects described by
Cerqueira & Sipp (2014) and Brynjell-Rahkola et al. (2017) do not affect the accuracy of
the results, but large enough to include the entire region of the wavemaker of the modes.
Validation of the stability analysis results with respect to the chordwise extension of the
mesh is presented in § 2.4.2.

For the ONERA-D, the body-fitted mesh for the baseflow solution is made up of an
internal Mi (in red in figure 1) and an external Me (in blue) part. The external mesh is
obtained with successive automatic mesh adaptations, based on criteria pertaining to the
computed baseflow velocities. The mesh extends to approximately 50Cn in the η direction,
contrary to what is shown in figure 1 for clarity. On the other hand, the internal mesh
remains fixed and consists of the superposition of several layers, each layer extending
over the whole chord and being one rectangle thick (each rectangle is divided into two
triangles). There is a scale factor of 1.04 between the wall-normal length of successive
layers, the layer attached to the wall having an aspect ratio of 10 and the external layer an
aspect ratio of 1. For (ReR,ReS) = (25 000, 652), we then get 59 layers, the internal mesh
extending up to 45Δ in the η direction and being composed of 101 418 triangles. The total
number of triangles in the complete mesh is 120 901.

For the Joukowski airfoil, the baseflow solution is also made up of an internal and an
external part. In the case of the Joukowski profile, the mesh is constructed analytically
using the Joukowski transform. For our study, the parameters are chosen such that the
internal mesh has a thickness that increases along the chord so that it is approximately 5δ99
with half the points within the boundary layer δ99. The boundary layer thickness δ99 will
be properly introduced in the § 3.1. The mesh has a chordwise extension of XΓout = 0.35.
The internal and external meshes are made of 60 000 and 90 000 triangles, respectively.
The external mesh extends to approximately 50δ99 in the η direction.

For the stability computations, we have considered only the internal mesh Mi, the inflow
boundary being sufficiently far from the airfoil so that homogeneous boundary conditions
hold for the perturbations.

All numerical details are handled with FreeFem++ (Hecht 2012). The baseflow
nonlinear system is solved with Newton’s iterative method using the MUMPS solver
(multifrontal massively parallel sparse direct solver) (Amestoy et al. 2001) for the inversion
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Figure 2. Validation of baseflow for the ONERA-D at (ReR = 25 000,ReS = 652), which corresponds to
(ReQ = 3.38 × 107,Λ = 78.31◦). (a) Streamwise velocity profile at s = 0.07 and (b) corresponding CF
velocity profile, the solid blue line refers to the present computation and the dashed red line to the solution
of the Prandtl equations.

of the Jacobian (Sipp & Lebedev 2007). The algorithm is initialized with the potential
solution.

To allow coarsening of the ONERA-D mesh in the free stream by mesh adaptation,
we used a streamline-upwind Petrov–Galerkin method associated with a grad–div
stabilization for solving the baseflow equations (Franca, Frey & Hughes 1992; Ahmed
& Rubino 2019).

For both the baseflow computation and the stability analysis, the spatial discretizations
are handled with second-order finite elements. We use Lagrange type elements (P2, P2,
P2, P1). The eigenvalues and associated eigenmodes are computed using a Krylov–Schur
algorithm associated with a shift–invert method (the matrix inversions are handled by the
direct LU MUMPS solver). We rely on the SLEPc solver (Hernandez, Roman & Vidal
2005) with a basis of 100 Krylov vectors.

2.4. Validation

2.4.1. Baseflow
The baseflow solution was validated by comparing the streamwise velocity component Uχ
and CF component Ub within the boundary layer with those obtained by using an ONERA
in-house boundary layer code which solves the Prandtl’s equations (Houdeville 1992). A
comparison along the wall-normal direction η for (ReR,ReS) = (25 000, 652) is shown in
figure 2 for the chordwise coordinate s = 0.07. We observe a close agreement between the
results obtained with the two methods with a growth of the Uχ component up to a value
of approximately 5 for η > 10−3. For the Ub component, we observe with both methods, a
maximum of 0.028 for η = 3 × 10−4 and a minimum around −0.012 for η = 8.5 × 10−4.

2.4.2. Stability analysis
Validation of the convergence of our results with respect to the chordwise extension of the
domain and the refinement of the mesh for the ONERA-D airfoil was done.

Three sets of parameters (ReR,ReS, βΔ) have been considered: (25 000, 652, 0.32);
(25 000, 652, 0.126); and (25 000, 527, 0.057). This choice was made because for each
of these three sets of parameters, the most unstable mode is a marginal mode with very
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XΓout Nlayer Nt SF

Mref 0.15 59 101 418 1.04
M12 0.12 59 83 349 1.04
M20 0.20 59 132 050 1.04
Mfin 0.15 78 178 423 1.03

Table 1. Properties of the meshes Mref , M12, M20 and Mfin. Here XΓout , Nlayer , Nt and SF correspond,
respectively, to the chordwise extension of the mesh, the number of layers, the total number of triangles and
the scale factor between the thickness of the different layers. All meshes have the same wall-normal extension
(close to 45Δ) and triangles at the wall with a similar aspect ratio (formed by splitting a rectangle of aspect
ratio 10).

distinct features. These three modes will be investigated in detail in § 3.2.2 and exhibit
characteristics close to AL, CF and TS instabilities, respectively.

For the refinement validation, we compare the results obtained with the internal mesh
used in our study (XΓout = 15 % and 101 418 triangles) to a finer mesh (XΓout = 15 % and
178 423 triangles). These two meshes are labelled as ‘Mref ’ and ‘Mfin’, respectively. The
finer mesh has a scale factor of 1.03 (instead of 1.04), the total thickness of the mesh and
the aspect ratio of the first layer remaining the same, thus increasing the number of layers
and the number of triangles in each layer. The information concerning the different meshes
compared are listed in the table 1.

Concerning the chordwise extension, the comparison is done between meshes with
domains extending up to XΓout = 12 % (M12), XΓout = 15 % (Mref ) and XΓout = 20 %
(M20), keeping the mesh density constant.

We focus the comparison on the eigenvalues and the normalized magnitude dû(s) of the
most unstable eigenvector. dû(s) is defined as

dû(s) =

√∫ Lη

0
‖û(s, η)‖2 dη√∫ Ls

0

∫ Lη

0
‖û(s, η)‖2 dη ds

(2.21)

with Lη and Ls, respectively, the wall-normal and chordwise extension of the internal mesh.
The most unstable eigenvalue computed with the different meshes are given in table 2 for

the three sets of parameters (ReR,ReS, βΔ) = (25 000, 652, 0.32), (25 000, 652, 0.126)
and (25 000, 527, 0.057). The differences between the meshes result in a relative error of
approximately 10−3 for the most unstable eigenvalues and an absolute error of the order
of unity. These deviations are acceptable in the context of our study because they do not
significantly affect the neutral curves positions and do not change the conclusions that can
be drawn from them.

In figure 3(a,c,e), we compare the spectra calculated with the meshes M12 (in red), Mref
(in black), M20 (in blue) and Mfin (in green) for (ReR,ReS, βΔ) = (25 000, 652, 0.32),
(25 000, 652, 0.126) and (25 000, 527, 0.057), respectively. Significant differences are
observed for the highly stable eigenvalues but good agreement is found for the most
unstable eigenvalue, which are the ones of interest. This strong disparity for very stable
eigenvalues between the meshes with domains of different chordwise extension is related
to the dependency of the ε-pseudospectrum on the domain sizes (Cerqueira & Sipp 2014).
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(ReR,ReS, βΔ) (25 000, 652, 0.32) (25 000, 652, 0.126) (25 000, 527, 0.057)

Mref 6074.79 − 0.367388i 1771.52 + 1.16744i 706.780 + 1.62710i
M12 6075.88 − 1.71778i 1771.91 + 1.07461i 707.122 + 1.62300i
M20 6075.84 − 1.50948i 1770.63 + 0.487658i 706.958 + 1.45661i
Mfin 6074.63 − 3.92335i 1771.34 + 1.04354i 707.397 + 1.28739i

Table 2. Most unstable eigenvalue for the three validation cases computed with several meshes.
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Figure 3. Comparison for the ONERA-D airfoil of the spectra (a,c,e) and the magnitudes (b,d, f ), as a
function of s, of the most unstable mode for sets of parameter (ReR,ReS, βΔ): (25 000, 652, 0.32) (a,b);
(25 000, 652, 0.126) (c,d); and (25 000, 527, 0.057) (e, f ) calculated with four different meshes. The mesh Mref
used in our study (in black) is compared with a shorter mesh (M12, in red), a longer mesh (M20, in blue) and a
finer mesh (Mfin, in green).

957 A29-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.38


E. Kitzinger, T. Leclercq, O. Marquet, E. Piot and D. Sipp

In figure 3(b,d, f ), the magnitude of the most unstable mode according to the chordwise
coordinate s for the meshes M12 (in red), Mref (in black), M20 (in blue) and Mfin (in green)
are compared in a logarithmic scale, with a zoomed-in linear scale in the high magnitude
area. Since the normalization of the amplitude depends on the extension of the domain,
for a better comparison, all the magnitude maxima have been set to the value obtained in
the Mref mesh. In the case of the AL mode represented in figure 3(b), a gap is seen for
s > 0.03. However, this gap occurs in the low magnitude region while in the region where
the mode is strongest (s < 0.03), we find a good agreement. Indeed, although there is a
slight difference in magnitude on the zoomed window, we observe for the four meshes
that the maximum magnitude is in the close vicinity of the attachment line, at s ≈ 0.005,
and that the spatial structure of the mode is sufficiently similar that its analysis and the
identification of the instability mechanism at play are not impacted. In the cases of the
other two modes (figure 3d, f ), we observe a good superposition of the four curves. For
the CF mode, we have an increase in magnitude up to a value of 60 at s = 0.04 and then
a decrease until the end of the domain. For the mode exhibiting TS features, we note two
magnitude maxima of 0.5 and 26 for abscissas s = 0.06 and s = 0.127, respectively.

Whether with respect to the extension of the mesh in the chordwise direction or
the refinement of the internal mesh, the results are converged, both in terms of mode
magnitude and eigenvalue. The same kind of validation was done for the Joukowski airfoil
case with a reference mesh with XΓout = 35 % and 60 000 triangles. The need for a higher
chordwise extension of the mesh in the Joukowski case is explained by the location of the
marginal modes farther downstream compared with the ONERA-D case.

Appendix B gives, for a few marginal modes, a comparison of the spatial structure
obtained with the present chordwise-global approach and that obtained by chordwise-local
stability analysis.

As a validation in the Joukowski case, we compared our stability results with
those obtained by Meneghello et al. (2015) for the parameter set (ReR,ReS, βΔ) =
(16 129, 113, 0.45) (corresponding to (ReCn,Λ, β) = (106, 45◦, 4000) in their paper). The
three least stable symmetric eigenvalues and the spatial structure of the least stable
eigenmode are presented in Appendix C. A very close agreement is observed.

3. Results

3.1. Baseflow
The baseflow for (ReR,ReS) = (25 000, 652) is presented in figures 4 and 5. This choice
of set of parameters corresponds to a sweep angle Λ = 78.31◦ for the ONERA-D airfoil,
and Λ = 77.84◦ for the Joukowski airfoil. These particularly high values compared
with realistic configurations are explained by the fact that drawing neutral curves with
lower sweep angles would require increasing ReR, which would make the numerical
computations too expensive for our current capabilities. However, the results and
conclusions drawn from our theoretical study remain insightful as to the physical
mechanisms involved, regardless of the value of the sweep angle. In figure 4, potential
streamlines, δ99, and the wall-pressure coefficient Cp = 2P are represented in the case of
ONERA-D and Joukowski airfoils. In this figure, the two represented airfoils have the same
spanwise extension, but the radial and chordwise extensions of the domains are different,
as described in the § 2.3.

In figure 5, the NACA0012 profile is used as a reference to help the reader compare
and identify the properties of the two profiles studied in the paper. The three profiles
are superimposed in figure 5(a). The deflection angle γ (s) = angle(Ue(s),U∞) is the
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Figure 4. Baseflow for (ReR = 25 000,ReS = 652), which corresponds to (ReQ = 3.38 × 107,Λ = 78.31◦)
for the ONERA-D airfoil (a) and (ReQ = 3.49 × 107,Λ = 77.84◦) for the Joukowski airfoil (b). Potential
streamlines (black arrow lines) are shown. Pressure coefficient Cp and boundary layer thickness δ99 (black
line) are represented on a slice corresponding to the respective internal mesh.

angle between the direction of the external streamline (Ue = (Ue
s ,Ue

z )) and the free stream
velocity U∞. It is represented in figure 5(b). Close to the attachment line, the flow is along
the direction of the span z, so that γ = 90◦ −Λ ≈ 12◦. Then, in the ONERA-D case, as s
increases, the γ angle reaches a minimum of −2.9◦ at s = 0.35 before increasing again to
−1.4◦ at s = 0.15. For the Joukowski airfoil, the γ angle decreases on the whole domain
to a value of −2.7◦ in a way similar to the case of NACA0012.

In figure 5(c) is displayed the ratio, for each s-coordinate, of the CF velocity maximum
Ub(η) over the η direction and the external streamwise velocity Ue

χ . This ratio shows
that the CF component is overall weak (less than ≈4 %) for all airfoils and justifies
an analysis in the (χ, η, b) orthonormal system. It also indicates where CF modes are
likely to develop (high values of the ratio). In all cases, the maximum is reached around
s = 0.02. The sharp change in variation around s = 0.05 in the case of the ONERA-D
airfoil is related to the presence of two maxima of the CF velocity in the η direction,
as shown in figure 2(b). It can be noted that the presence of these two maxima leads
to the presence of two inflection points, which has an impact on the destabilization of
CF waves, as will be discussed in § 3.2.2. Figure 5(d) represents, as a function of s,
the pressure gradient scaled using Uτ = (ν∂ηUχ(η = 0))0.5. In the ONERA-D case, the
streamwise pressure gradient is close to that of the NACA0012 airfoil and is negative
up to s = 0.035, then positive until the limit of the domain, with a flattening around
s = 0.09. This pressure-gradient changeover is typical of a flow on a swept wing and
explains the existence of two inflection points in the CF velocity profile Ub for some
values of s, as shown in figure 2(b) (Arnal & Casalis 2000; Wassermann & Kloker
2005). This indicates schematically that CF instabilities should be favoured for s < 0.035
and TS instabilities after. In the case of the Joukowski airfoil, the streamwise pressure
gradient remains negative up to s = 0.14. The scaled streamwise pressure gradient reaches
values of approximately 2 × 10−3, which indicates that the gradients are only moderate.
Boundary layer thickness values (Δ, δ99(s), displacement δ∗(s), momentum Θ(s)) and
Reynolds number Reδ∗ = Ue

χδ
∗/ν of the ONERA-D and Joukowski airfoils are shown

in figure 5(e, f ). All thicknesses δ(s) are defined from the streamwise velocity profile
Uχ (η), for example Uχ(δ99) = 0.99Ue

χ . The external velocity Ue
χ may be evaluated in the
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Figure 5. (a) Comparison of airfoil shapes. (b– f ) Baseflow for (ReR = 25 000,ReS = 652). (b) Deflection
angle γ . (c) Chordwise evolution of the ratio of maxη |Ub(s, η)| to Ue

χ and (d) streamwise pressure gradient
made non-dimensional with friction velocity Uτ = (ν∂ηUχ (η = 0))0.5 and kinematic viscosity ν. (e, f ) HereΔ
(green), chordwise evolution of the boundary layer thicknesses, δ99 (red), displacement thickness δ∗ (orange),
momentum thickness θ (black) and Reynolds number Reδ∗ (blue) based on external streamwise velocity and
displacement thickness for the (e) ONERA-D and ( f ) Joukowski airfoils.

(s, η, z) coordinate system according to Ue
χ =

√
(Ue

s )
2 + (Ue

z )
2 with Ue

s = − ∫ Lη
0 ω̃z dη

(close to Upot
s (η = 0)) and Ue

z = ∫ Lη
0 ω̃s dη (equal to U∞

z ), ω̃z and ω̃s being the vorticity
components of the baseflow along z and s. Lη is a distance to the wall sufficiently large to
reach the potential region where the vorticity components are zero.

The Reynolds number Reδ∗ exhibits values between 700 and 3900 in the domain,
which allows spatial amplification of TS instabilities for zero-pressure gradient or adverse
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pressure gradient boundary layers (we recall that Recrit ≈ 520 in the case of the Blasius
boundary layer flow (Schmid & Henningson 2001)).

3.2. Temporal chordwise-global/spanwise-local stability analysis for the ONERA-D
airfoil

In order to determine the physical mechanisms involved, a classification of the types of
modes studied is commonly made. The classification is based on the study of several
features specific to each type of mode. As stated in the introduction, the main instabilities
developing in the configurations studied here are related to AL, CF and TS types.

To help discern the type of instability, as commonly done in chordwise-local stability
approaches (Arnal & Casalis 2000), we introduce the Ψ angle between the local
planar wavevector k(s) = [ks(s), kz] of the mode and the direction of the external
streamline: Ψ = angle(k(s),Ue(s)). In the context of chordwise-global instability, we
may approximate such a planar wavevector as follows: if û(x, y)eiβz is a component of the
mode, then (ks, kz) = (∂sφ, β) where φ(s, η) = arg û(s, η). The choice of the component
and wall-normal distance η does not matter as long as the flow is weakly non-parallel
(condition for the existence of such a local wavevector). Here we used the ûy-component
and η = δ99/2. From the literature, the following observations can be made for each of the
instabilities.

(i) Attachment-line instabilities: low value of Ψ angle, location of the direct mode and
wavemaker close to the attachment line, normalized phase speed cz/U∞

z around 0.39
where cz = ωr/β.

(ii) Cross-flow instabilities: Ψ ∈ [80◦–90◦], location of the direct mode away from
the attachment line, position of the wavemaker in the region where the pressure
gradient is negative and the cross-stream component of the baseflow is strong (see
figure 5c,d).

(iii) Tollmien–Schlichting instabilities: Ψ ∈ [0◦–40◦], location of the direct mode farther
downstream, position of the wavemaker in the positive pressure gradient area.

We will try to use those criteria to distinguish the physical nature of each mode in the
following. The following relation holds β = ks(s) tan(Λ+ γ (s)+ Ψ (s)).

3.2.1. Neutral curve in the (ReS, βΔ) plane at ReR = 25 000
The search for the eigenmodes of a flow characterized by (ReR,ReS) is done by computing
the spectrum at a given β (examples of obtained spectra are plotted in figure 3a,c,e).
By setting one of these three parameters, neutral curves can be drawn varying the two
remaining ones. The neutral curve is the limit between configurations where all modes
of the spectrum are stable and configurations where at least one mode is unstable. By
studying the characteristics of the modes along the neutral curve, called ‘marginal modes’,
one can determine the types of instability responsible for the destabilization of the flow
and the physical mechanisms involved.

We have represented (solid line) in figure 6(a) the neutral curve in the
(ReS, βΔ) parameter space for ReR = 25 000. Black dots indicate 10 specific marginal
eigenvalue/eigenvectors, labelled (i) (largest spanwise wavenumber) to (x) (smallest
wavenumber). These modes are listed in table 3. Their spatial structure will be analysed
in detail in the next section, and more specifically the modes (i), (vi) and (ix) noted with
an asterisk in table 3 and in red in figure 6. The presence of kinks along the neutral curve
indicates that marginal modes with different features may be responsible for instability,
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Figure 6. (a) Neutral curve (solid line) of ONERA-D airfoil in (ReS, βΔ) plane at ReR = 25 000 and SHF
neutral curve (orange dotted line) from Obrist & Schmid (2003). The six different ‘lobes’ composing the full
neutral curve are displayed in different colours. (b) Phase speed in the spanwise direction of marginal modes
of ONERA-D airfoil at ReR = 25 000. The coloured lines indicate the lobes to which the modes belong to. In
(a,b), dashed lines refer to the prolongation of the solid line in the ‘unstable’ domain. Modes from table 3 are
indicated with black dots, modes (i), (vi) and (ix) being circled in red.

depending on the spanwise wavenumber. A detailed study (not shown here) of regions
in the vicinity of the kinks confirms the presence of several unstable modes. The neutral
curve is composed of the overlapping of six distinct curves (which will be called ‘lobes’)
in the present case, each represented by a different colour in figure 6. The prolongation of
each partial neutral curve in the ‘unstable’ region is indicated by dashed lines.

The critical sweep Reynolds number is ReS,crit = 527 and is reached for βcritΔ = 0.057.
We notice that the upper lobe (in dark blue) fits relatively well with the upper part of

the neutral curve of the SHF (Obrist & Schmid 2003), shown with an orange dotted line.
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ReS βΔ cz/U∞
z

(i)∗ 652 0.32 0.381
(ii) 610 0.295 0.379
(iii) 603 0.261 0.366
(iv) 585 0.231 0.350
(v) 588 0.187 0.322
(vi)∗ 652 0.126 0.285
(vii) 688 0.089 0.314
(viii) 652 0.080 0.317
(ix)∗ 527 0.057 0.308
(x) 652 0.038 0.279

Table 3. The (ReS, βΔ) value of 10 marginal modes, listed in decreasing order of β, for ReR = 25 000. The
phase speed in the spanwise direction cz/U∞

z is also shown. Asterisk-noted modes will be analysed in detail in
the next part.

As we will see in the § 3.2.3, the modes associated with this lobe are of AL type. They are
thus located close to the attachment line and are almost invariant in the CF b direction. At
the attachment line, we have (χ, η, b) = (z,−x, y) and s = y. This lobe also corresponds
to large values of β. The high value of β implies a large variation in the z direction, but also
in the x direction due to the continuity equation and the invariance in y direction. The small
structures of the modes in the (x = η, z) plane imply that they will be less impacted by the
variation of the curvature in the s direction. Therefore, the less dependent they are on the
radius of curvature rc of the leading edge. The limit corresponds to the SHF configuration
for which rc = ∞. For the other lobes at lower values of β, the leading-edge radius of
curvature rc and therefore ReR must have a greater influence. Yet, the curvature explains
why the critical value of the Reynolds number of the upper lobe (dark blue), ReS,crit ≈ 621,
is different from the one given in Obrist & Schmid (2003) and Lin & Malik (1996) for the
SHF, which is ReS,crit ≈ 582. This is confirmed by Lin & Malik (1997) who studied the
effect of ReR on attachment line instabilities and determined the values ReS,crit = 637.6
and ReS,crit = 599.5 for ReR = 10 000 and ReR = 100 000, respectively. An interpolation
for ReR = 25 000 yield a value ReS,crit ≈ 620, which is close to the value we find.

The associated phase speed cz = ωr/β normalized by the spanwise baseflow velocity
U∞

z is represented in figure 6(b) as a function of the spanwise wavenumber βΔ. The
lobe changes result in discontinuities of the phase speed, which confirm that the marginal
modes of the different lobes have distinct features. The same colour code as in figure 6(a)
has been used to ease the correspondence of the lobes. The upper lobe (dark blue) is
characteristic of AL instabilities with phase speeds close to those of TS waves in Blasius
boundary layer cχ/U∞

χ ≈ 0.39 where cχ = ωr/kχ (see Schmid & Henningson (2001)).
In the close vicinity of the attachment line, the values obtained in the case of the Blasius
boundary layer are comparable to those of cz/U∞

z insofar as χ and z directions are equal
and the streamwise pressure gradient is zero (see figure 5d). As the spanwise wavenumber
decreases, the phase speed of the marginal modes decreases until values around cz/U∞

z ≈
0.27 reached for βΔ ≈ 0.1. The phase speed on the two lowest lobes (red and purple) is
in strong contrast with the phase speed of the previous ones since it jumps up to cz/U∞

z ≈
0.32 at βΔ ≈ 0.1. We also note that except for the upper (dark blue) and lower (purple)
lobes, the phase speed of the lobes decreases almost linearly with the decrease of β. The
change in variation for the lower lobe, around βΔ = 0.07 may indicate a change in the
nature of the modes.
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3.2.2. Study of modes (i), (vi) and (ix) at ReR = 25 000
We now analyse the spatial structure of marginal modes, and in particular modes (i),
(vi) and (ix) in table 3. Figure 7(a) shows, for each of these three marginal modes, two
isosurfaces of the real part of the vertical velocity perturbation Re(ûy(x, y)eiβz) at ±0.01
times the absolute maximum (red and blue), the wavemaker region (green), the pressure
coefficient Cp of the baseflow (shown on the vertical planes) and the boundary layer
thickness δ99 (black solid line on the vertical planes). An example of Ψ angle is drawn
for mode (vi), with k designating the local planar wave vector of the mode. For mode (i),
the wavemaker is not seen because it is covered by the isosurfaces of the direct mode. With
this display, the perturbations seem also strong outside the boundary layer (η > δ99). In
fact, the extremal values are found at positions around δ99/2 in the η direction, as shown
in figures 7(b)–7(d) where δ99 and the real part of the vertical velocity perturbation in
the (s, η) plane are drawn. In figures 7(e)–7(g) are plotted the normalized magnitude as
a function of s of the wavemaker (green line), direct mode (blue line) and adjoint mode
(red line). The Ψ angle at altitude η = δ99/2 of the vertical velocity component of the
perturbation is represented in figures 7(h)–7( j). The oscillations observed in figure 7(h, j)
occur when the mode magnitude is low or the orientation changes abruptly. We have
checked that they are not due to insufficient refinement of the mesh since automatic
adaptations based on the modes and their wavemaker have been tried, without removing
these oscillations.

Concerning mode (i), we notice in figure 7(a,e) that the direct mode and the wavemaker
are located close to the attachment line, the magnitude being vanishingly small for s >
0.03. Moreover, figure 7(a,h) reveals that the Ψ angle is low (0◦–15◦) in the vicinity of
the attachment line zone, where the mode is strongest. In the low-magnitude region, it is
seen that the Ψ angle is greater than 80◦. These features are common to all the upper lobe
modes (dark blue lobe) that have been calculated. Unlike reported in Meneghello et al.
(2015) for a stable mode of the flow around a Joukowski airfoil, we do not find a second
high magnitude region where the modes have CF characteristics.

Even if the change of Ψ angle at s ≈ 0.05 is reminiscent of the ‘connected modes’
described by Mack et al. (2008) in the case of a compressible supersonic swept flow around
a parabolic body, the low amplitude and high damping of the mode where it exhibits CF
characteristics is such that we will not define it as a connected mode.

For mode (vi), we can see in figure 7(a, f ) that the mode is located farther downstream
but that the wavemaker remains localized in the negative pressure gradient zone. The
magnitude of the direct mode increases in the negative pressure gradient zone (s < 0.035)
and starts to decrease in the positive pressure gradient zone (s > 0.035). In figure 7(a,i),
we find that the Ψ angle increases with s from 30◦ to 60◦ in the area where the wavemaker
is maximum. The Ψ angle at the maximum magnitude of the direct mode is greater than
80◦. From these observations, we can conclude that this mode is of the CF type.

In figure 7(a,g), we observe that the direct mode and the wavemaker are located farther
along the chord, where the pressure gradient is positive. Moreover, the direct mode
extends over a significantly greater range and admits two local maxima (at s = 0.06 and
s = 0.127). In figure 7(a, j), we find a Ψ angle of 60◦ at the location where the magnitude
of the wavemaker is maximum and the direct mode reaches its first local maximum of
magnitude. However, at the location of the global maximum of the direct mode, the Ψ
angle is equal to 23◦.

Thus, we have the presence of two distinct spatial amplifications where the spatial
structure of the direct mode exhibits features corresponding to distinct types of instability
at the two amplitude maxima: CF for the first and TS for the second. We can then define
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Figure 7. Spatial structure of the real part of the vertical velocity perturbation Re(ûy(x, y)eiβz) of modes:
(i), (b,e,h); (vi), (c, f,i); and (ix), (d,g, j). (a). For each mode two isosurfaces at ±0.01 times the absolute
maximum are represented in red and blue. The baseflow pressure field Cp (red and blue isocontours with
the same colourbar as in figure 4a) and boundary layer thickness δ99 (black line) are shown in the vertical
planes separating the modes. The wavemaker region is sketched by a green isosurface at 95 % of its maximum
value. Several external streamlines of the baseflow are shown (black arrow lines). An example of wavevector
and Ψ angle is also displayed for mode (vi). (b–d) The plot in the (s, η) plane as a proportion of the absolute
maximum. Here δ99 is displayed (black line). (e–g) The normalized magnitude of direct mode (blue), adjoint
mode (red) and wavemaker (green). Position of the zero pressure gradient (red dashed line) and of the maximum
of the ratio maxη |Ub(s, η)| to Ue

χ (black dashed line) are indicated. (h– j) The chordwise evolution of the Ψ
angle.
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Figure 8. (a) Evolution according to s of ∂Ub/∂η at the inflection points of the CF velocity wall-normal
profile. The inflection point farthest from the wall corresponds to the black solid line and the second (when
it exists) to the black dashed line. The positions of the pressure-gradient changeover (blue dotted line at
s = 0.035) and of the maximum of the wavemaker magnitude of the mode (ix) (green dotted line at s = 0.053)
are shown. Wall-normal profiles of the CF velocity (b) and the wavemaker (c) at s = 0.053 are plotted. The
inflection points farthest and closest from the wall are represented by solid and empty dashed black circles,
respectively. The maximum of the wavemaker in the wall- normal direction coincides with the inflection point
closest to the wall, which is the most critical.

this as a CF/TS connected mode, the existence of which, to the authors’ knowledge, had
not yet been documented.

To better characterize this mode and understand the interplay between both mechanisms,
figure 8(a) represents the evolution with s of ∂Ub/∂η at the level of the inflection points
of the velocity profile Ub. We observe that for s > 0.35, i.e. near the change of sign of
the pressure gradient (represented in figure 5d), a second inflection point appears. The
solid line corresponds to the inflection point farthest from the wall, while the dashed
line corresponds to the one close to it. This quantity is related to the strength of the
CF instability mechanism, and we notice that the inflection point closest to the wall is
the most critical one when it exists. These two inflection points are represented on the
profile of Ub plotted in figure 8(b) for the coordinate s = 0.053, which corresponds to the
position where the wavemaker of the mode (ix) is maximal. The wavemaker profile at the
position s = 0.053 is also shown in figure 8(c). At this position, the wavemaker reaches
its maximum for η = 2.6 × 10−4, which coincides with the position of the most critical
inflection point.

Therefore, although the dominant spatial structure is that corresponding to the TS
type, the location of the wavemaker at an inflection point of the CF velocity with high
values of ∂Ub/∂η suggests that the physical mechanism responsible for the initial spatial
amplification and overall destabilization of the mode is related to the CF instability.
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Moreover, the position of the wavemaker in a zone where the pressure gradient is positive
justifies that the TS-like spatial structure develops. The presence of such CF/TS connected
modes is related to the pressure-gradient changeover typical of a swept wing. Indeed,
this configuration allows for CF velocity profiles with strong enough shear to trigger
CF instabilities, located in strongly positive pressure gradient regions that allow TS type
spatial amplification. This type of flow had not been studied in previous chordwise-global
stability analyses (Mack et al. 2008; Meneghello et al. 2015). The stability of a profile
with a pressure-gradient changeover had only been studied in a chordwise-local context by
Wassermann & Kloker (2005) and although CF and TS modes were observed, no mode
with both features was found. This can be partly explained by the fact that modes with such
abrupt spatial structure changes are particularly difficult to identify in a chordwise-local
framework.

3.2.3. Modes between modes (i), (vi) and (ix) at ReR = 25 000
We have seen through the analysis of modes (i), (vi) and (ix), that there is a great diversity
of marginal modes in our configuration. In order to better understand how the different
instabilities are related along the neutral curve, the whole set of marginal modes is studied
in this part. Figure 9 shows all the modes referenced in table 3, similarly to figure 7(a).

In figure 10 the magnitude of the direct and adjoint marginal modes are plotted, as well
as their wavemaker and the Ψ angle as a function of s with βΔ ranging from 0.034 to
0.33, in increments of 0.01. The delimitations between the different lobes introduced in
figure 6 are indicated with black horizontal lines, and the wavenumber βΔ of the different
modes of table 3 are indicated by green ticks on the right. The chordwise coordinate of the
maximum magnitude of the direct mode (red circles) and adjoint modes (yellow circles),
as well as the position where the pressure gradient is zero (red vertical dotted line) are
indicated. In figure 10(d), only the Ψ angles for locations where the magnitude of the
direct mode is greater than 10−2 have been shown.

The first comment in figures 9 and 10 is that, in addition to the modes described in
§ 3.2.2, we observe modes with more diverse features. Moreover, we notice in figure 10
that these characteristics are closely related to the belonging to particular lobes. For all
lobes, except between the last two, abrupt changes in the magnitude and/or Ψ angle are
noted. This observation confirms once again the presence of distinct instabilities between
lobes. The last two lobes have been distinguished only from discontinuities in the phase
speed curve in figure 6(b).

Concerning the upper lobe (dark blue), we see, with figure 10 and modes (i) and (ii) of
figure 9, that its marginal modes fall into the characteristics of AL modes with a direct
mode and a wavemaker located close to the attachment line and isophases perpendicular
to the streamwise direction (low Ψ angle).

For the grey and green lobes of figure 6, figure 10 and modes (iii) and (iv) of figure 9
show that their marginal modes are still close to the attachment line but with a location
(as well as the wavemaker one) slightly shifted in the chordwise direction and the Ψ
angle at the maximum magnitude of the direct mode starting to increase: the modes start
transitioning to CF-like modes.

In the case of the light blue lobe, as illustrated by modes (v) and (vi), marginal
modes are located even farther downstream and their maxima are now close to the
region of minimal Cp. Mode (v) exhibits a highly localized distribution in the chordwise
direction, with a strong increase of the perturbation magnitude in the accelerated region
before a sharp decrease in the decelerated one. Yet, contrary to before, the wavemaker
region is now located fully in the accelerated region and in the area where the ratio
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(i)(a)
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(iii)
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(vii)
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Figure 9. Spatial structure of the marginal modes identified in table 3 with the same representation as
figure 7(a).

of the CF velocity to the streamwise velocity is highest, as shown in figure 5(c). The
isophases of the perturbations are nearly aligned with the streamlines of the external
flow (Ψ angle close to 90◦). These modes are fully of CF type. Contrary to the stable
mode described in Meneghello et al. (2015), the CF marginal modes observed here have
wavemakers that are not localized at the attachment line, thus indicating that efficient
control of these instabilities in the considered case cannot be restricted to the attachment
line area.

Figure 10(a,c) show that direct modes and wavemakers of the last two lobes are fully
localized in the decelerated region. As shown in figure 9, for modes (vii) and (viii), the
chordwise magnitude distribution exhibits a strong amplification before the maximum
magnitude and weak damping afterward. The Ψ angle is very close to 90◦. These
are modes which have CF characteristics even if the wavemaker is in the decelerated
region.

For the last two modes (ix) and (x), we notice a sharp change, both in the orientation
of the modes and their location. Indeed, the Ψ angle is close to 10◦ (as for modes (i)
and (ii)) and their location is even more downstream and more extended in the chordwise
direction than before. On the other hand, the wavemaker region has nearly not moved
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Figure 10. Normalized magnitude of direct mode (a), adjoint mode (b) and wavemaker (c) and Ψ angle (in
degrees) (d), as a function of s for marginal modes with βΔ ranging from 0.034 to 0.33 in increments of 0.01.
The βΔ ordinate of the delimitation between lobes (black horizontal lines), chordwise position of zero pressure
gradient (red dotted line) and chordwise position of maximum magnitude of wavemakers (green circles) and
direct (red circles) and adjoint (yellow circles) modes are indicated.

and is still at the beginning of the decelerated region. As revealed in figure 10, along
the lower lobe, we switch from a situation with a single magnitude maximum for the
direct mode and a Ψ angle relatively high (CF type mode) to a direct mode with two
local magnitude maxima, the first still of CF type (large angle) but the second (the global
one) being much farther away and corresponding to a location where the Ψ angle is low
(reminiscent of TS type). For β < 0.05, although the direct modes could continue to grow
downstream, the maximum magnitude is located at s = 0.165, which corresponds to the
end of the domain. Contrary to the direct mode, we observe that the magnitude of the
adjoint mode evolves very weakly as a function of βΔ and reaches the location of positive
pressure gradient around βΔ ≈ 0.073, which is the βΔ value where the magnitude and
orientation of direct modes vary abruptly. This value of βΔ ≈ 0.073 also corresponds to
the value at which the phase speed curve of the lower lobe in figure 6(b) starts to decrease
again.

In the case of very stable modes, we observe even more varied features. In Appendix C
the spatial structure of the mode studied by Meneghello in the case of a Joukowski airfoil
is represented (Meneghello et al. 2015) and, by considering the orientation of the direct
mode, we note a mode mainly of CF type but with a double amplification and a wavemaker
contained in the attachment line.
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Figure 11. Imaginary part of the most unstable eigenvalue at (ReR,ReS) = (25 000, 652) for βΔ ranging from
0.03 to 0.35 in increments of 0.1. Points where ωi reaches a maximum is depicted (red dots) and corresponding
spanwise group velocity is shown. The marginal modes (i), (vi) and (x) referenced in the table 3 are marked
with black dots circled in red.

3.3. Absolute/convective stability analysis in the spanwise z direction
We will now follow the methodology described in the § 2.2.4 to study the convective or
absolute nature in the spanwise direction of some instabilities.

In the case (ReR,ReS) = (25 000, 652), figure 11 shows the imaginary part of the most
unstable eigenvalue with respect to βΔ. We notice the presence of several parabolas
similar to those noted in Mack et al. (2008), Mack & Schmid (2011) and which are
related to the crossing of the different lobes. A maximum of ωi is reached for three
values of βpeakΔ: 0.285, 0.187 and 0.062, with respective spanwise group velocities
Vpeak

g = ∂ωr/∂β|β=βpeak : 2.147, 2.065 and 1.736. The marginally stable modes (i), (vi)
and (x) introduced in the table 3 are indicated with black dots circled in red.

In figure 12 are represented the evolutions of (ωVg, βVgΔ) with the decrease of Vg

values from the three initial couples (βpeakΔ,Vpeak
g ): (βinit,1Δ,Vg,init,1) = (0.28, 2.147),

(βinit,2Δ,Vg,init,2) = (0.19, 2.065) and (βinit,3Δ,Vg,init,3) = (0.06, 1.736). For each case,
we made steps in Vg of size Vg,init/300. The variation of ωVg,i as a function of Vg is
specifically shown in figure 13 for the three initial configurations considered. Note that
the ‘steps’ that can be observed for (βinit,1Δ,Vg,init,1) have no physical meaning and are
rather related to the definition of the stopping criteria. The spanwise group velocities are
only decreased down to 1.934, 1.837 and 1.644 for (βinit,1Δ,Vg,init,1), (βinit,2Δ,Vg,init,2)
and (βinit,3Δ,Vg,init,3), respectively. As the modes to be computed move away in chord
with the decrease of Vg, the chord extension of the mesh used was not sufficient when the
value of Vg was too low. However, the ωVg,i values being negative and ωVg,i decreasing
with the Vg values (Huerre 2000), we assume that no unstable modes would have been
found at Vg = 0 in the studied flow conditions. Furthermore, we can note that according
to the starting couple (βinitΔ,Vg,init), ωVg decreases more or less slowly with the value of
Vg. Thus, as in the present case, the initial couple to investigate to find the unstable mode
at Vg = 0 is not necessarily the most unstable one for β ∈ R.

The flow at (ReR,ReS) = (25 000, 652) is, a priori, only convectively unstable in
the spanwise direction. An identical study for (ReR,ReS) = (25 000, 800) gave an equal
conclusion. To be more conclusive about the convective or absolute nature of the boundary
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Figure 12. (a) Here ωVg and (b) βVgΔ at several Vg for the three (βΔ,Vg) inital values: (0.28, 2.147) (in
blue); (0.19, 2.065) (in indigo); and (0.06, 1.736) (in black). The initial values are represented in green and the
spanwise group velocity Vg of some (ωVg , βVgΔ) displayed in red are indicated.
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Figure 13. Here ωVg,i as a function of Vg for the three (βΔ,Vg) initial values: (0.28, 2.147) (in blue);
(0.19, 2.065) (in indigo); and (0.06, 1.736) (in black).

layer instabilities of the flow around ONERA-D, it would be necessary to evaluate a large
number of values of (ReR,ReS). However, these first results and those reported by previous
studies in the literature (Lingwood 1997; Taylor & Peake 1998, 1999; Türkylmazoglu &
Gajjar 1999), indicate that no absolute instability in (x, y, z) is expected to be found.

3.4. Effect of ReR for the ONERA-D airfoil
In figure 14 are superimposed the neutral curves corresponding to different values of ReR,
as well as the neutral curve of the SHF from Obrist & Schmid (2003). The number of lobes
of the neutral curves tends to increase as ReR increases: for ReR = 10 000, only two lobes
are observed, while for ReR = 25 000, six can be seen, and around 10 for ReR = 50 000.

We can see that the upper lobe, linked to AL instabilities, fits better with the neutral
curve of the SHF as ReR increases. As described by Lin & Malik (1997), the increase in
ReR leads to a slight increase in β of the upper part of the lobe and to a slight decrease
of its critical Reynolds number, ReS,crit,AL going from 609 to 601 for ReR = 25 000 and
ReR = 50 000, respectively. Overall, the upper lobe is only weakly impacted by the value
of ReR.
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Figure 14. Comparison of neutral curves of ONERA-D at various ReR values and SHF neutral curve from
Obrist & Schmid (2003). The SHF neutral curve is plotted in dashed orange line and ONERA-D neutral curves
for ReR = 10 000, ReR = 25 000 and ReR = 50 000 are drawn, respectively, in blue, green and black.

On the other hand, all the other lobes are strongly stabilized with the increase of ReR and
shifted to larger ReS values. For values of ReR lower than ReR ≈ 30 000, the most critical
marginal mode belongs to the lower lobe, bringing the critical value of ReS to values lower
than 595. For ReR = 25 000 and ReR = 10 000, we have values of ReS,crit at 521 and 429,
respectively. For values of ReR > 50 000, we can presume that non-AL instabilities are
stabilized enough to find thresholds close to the ones predicted by Lin & Malik (1996), i.e.
around ReS = 600. For ReR = 50 000, we find ReS,crit = 601, which is close to ReS ≈ 610
that we can expect for SHF at ReR = 50 000 by interpolating the values given by Lin &
Malik (1997) for ReR = 104 and 105.

The parametric study based on the value of the parameter ReR was not pursued for
larger values because this would lead to numerical difficulties, including the need to use
a significantly finer mesh. Moreover, as previously mentioned, the consideration of a high
ReR makes the structure of the neutral curve more complex, with an increase in the number
of lobes, and its detailed study would be difficult. However, it can be noted that for ReR =
100 000, a study at ReS = 620 confirmed that the unstable modes are only of AL type with
high values of βΔ.

In conclusion, from these observations and from the study of the instabilities associated
with the different lobes, we can deduce that the parameter ReR has a more or less
significant influence according to the nature of the instabilities involved, the AL ones being
the least stabilized with the increase of ReR.

3.5. Comparison of neutral curve with a Joukowski airfoil as a function of ReS at
ReR = 25 000 and as a function of ReQ at Λ = 80.03◦

In order to study the influence of the airfoil, we compare the neutral curves of the
ONERA-D airfoil and the Joukowski airfoil of thickness parameter ε = 0.1. Neutral
curves at ReR = 25 000 are drawn in figure 15(a). A comparison of some characteristic
of both baseflow at ReS = 652 is shown in figure 5. In both cases, we observe a neutral
curve composed of several lobes. For the Joukowski airfoil, the lower lobe reaches its
critical value at a smaller β. The critical Reynolds number is reached at βΔ ≈ 0.20 and
ReS,c,Jouk = 517, thus the Joukowski airfoil is less stable than the ONERA-D in these
conditions. The study of some marginal modes (not shown here), in particular on the
lower lobe shows important differences in the spatial structure between the Joukowski and
ONERA-D cases. Indeed, due to the negative pressure gradient extending farther in the
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Figure 15. Comparison between neutral curves of ONERA-D (blue line) and Joukowski airfoils (red line):
(a) as a function of ReS at ReR = 25 000; (b) a function of ReQ at Λ = 80.03◦. The latter case describes the
stability characteristics of a wing at sweep 80.03◦ when, for example, the inflow velocity is increased.

chord in the Joukowski case, the observed marginal modes are located farther downstream
and do not show TS features.

In order to assess the differences between the two airfoils with an applied point of
view, we now compare the neutral curves using the flow parameters (ReQ,Λ) introduced
in § 2.1, since the two simplest parameters that can be varied independently in a wind
tunnel are the upstream infinite velocity U∞ and the sweep angle Λ. In figure 15(b) are
superimposed the neutral curves of the ONERA-D and Joukowski airfoils in the (ReQ, βΔ)
plane by setting Λ = 80.03◦; this implies a joint variation of ReR and ReS. The critical
Reynolds numbers are ReQ,c,ONERA−D = 1.34 × 107 (corresponding to (ReR,c,ReS,c) =
(7229, 413)) and ReQ,c,Jouk = 1.12 × 107 (corresponding to (ReR,c,ReS,c) = (5414, 372))
and the neutral curve of ONERA-D is included in the Joukowski curve. We can conclude
that for Λ = 80.03◦, the ONERA-D airfoil is more stable than the Joukowski airfoil. This
conclusion was expected for instabilities with TS features since ONERA-D was designed
to stabilize them, but it was more difficult to make an early opinion on CF instabilities.
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The lesser stability of the Joukowski airfoil compared with the ONERA-D at low β may
be related to the fact that it also corresponds to low kχ and modes with kχ = 0 correspond
to TS instabilities.

Such a neutral curve was drawn according to (β,ReS) by Mack & Schmid (2011) for a
compressible flow around a parabolic body with a radius of curvature of 0.1 at a swept
angle of Λ = 72.38◦. The authors observed the presence of a single lobe with a critical
value ReS,c ≈ 375. This difference can be explained by the fact that the neutral curve was
computed in a supersonic regime with MaS = W∞/c∞ = 1.25 where c∞ corresponds to
the speed of sound, and by the difference in the value of the radius of curvature of the
studied airfoils.

4. Conclusion

In this paper, we investigated the boundary-layer instabilities of an incompressible flow
around a swept ONERA-D and Joukowski airfoils with infinite span and no incidence.
Temporal chordwise-global stability analyses have been performed on a domain covering
the whole leading-edge. We first focused on the case of the ONERA-D airfoil at ReR =
25 000 by computing the neutral curve according to the sweep Reynolds number ReS and
the spanwise wavenumber β. The composite nature of the neutral curve has been evidenced
and several overlapping regions, or ‘lobes’, have been identified. A justification for the
existence of different lobes constituting the total neutral curve could be made on a physical
basis by considering the kinks of the neutral curve, the presence of multiple unstable
modes at the overlap of the lobes as well as the changes in phase speed and spatial structure
of the marginal modes between the different lobes. A detailed study of the marginal modes
was conducted based on the spatial structure of the direct and adjoint modes in addition
to the position of the wavemaker, in connection with the streamwise pressure gradient and
the three-dimensionality of the baseflow. This study revealed the presence of marginal
modes of AL and CF type, as well as modes that do not fall into standard classifications
of one particular type. We identified modes with two distinct spatial amplifications, the
first amplification being related to a CF-like spatial structure of the direct mode while the
second amplification is associated with a spatial structure reminiscent of TS instabilities.
These modes have been defined as connected CF/TS mode where the dominant spatial
structure is close to TS waves but the physical mechanism responsible for the instability is
related to a CF mechanism. To the authors’ knowledge, a mode with a connection of this
nature has not been previously reported. However, no clear connected AL/CF modes have
been identified.

The absolutely or convectively unstable nature of the flow in the spanwise direction was
also tackled, by using chordwise-global stability analyses. Our results suggest that the flow
is only convectively unstable in the spanwise direction. To the authors’ knowledge, this is
the first study to address this issue in a chordwise-global framework.

We then did a parametric study by comparing neutral curves of ONERA-D at three
values of ReR. It reveals that the increase of ReR has a greater stabilizing effect on CF
and TS modes than AL ones. The increase of ReR also implies an increasing number of
lobes, as well as a neutral curve that tends to be closer to that of the SHF. Therefore, for
ReR > 30 000, the AL instabilities lobe becomes the most critical ones.

A measure of the influence of the airfoil geometry was made by comparing two neutral
curves of the Joukowski (with parameter thickness ε = 0.1) and ONERA-D airfoils at
given ReR and sweep Λ. For ReR = 25 000, for both airfoils, several lobes are noticed
and the critical sweep Reynolds number is close but the critical spanwise wavenumber is
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significantly higher for the Joukowski case than for the ONERA-D case. The comparison
at Λ = 80.03◦ reveals that, under the conditions studied, the ONERA-D airfoil is more
stable than the Joukowski airfoil for every spanwise wavenumber.
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Appendix A. Adjoint operators

The adjoint eigenvalue–eigenvector problem is the following:

L†q̂† = ω†B†q̂†. (A1)

By using the definition of the adjoint operator presented in (2.15) and integration by
parts, we get B† = −B and the adjoint operator L†:

L†=

⎡
⎢⎣
∂xU − Cβ − Dβ ∂xV ∂xW −∂x

∂yU ∂yV − Cβ − Dβ ∂yW −∂y
0 0 −Cβ − Dβ −iβ

−∂x −∂y −iβ 0

⎤
⎥⎦ . (A2)

Appendix B. Comparison with chordwise-local stability analyses

In our study, we used chordwise-global perturbations of the form q = q̂(x, y)
exp(i(βz − ωt)). Most of the stability analyses done to date have been done using
chordwise-local analyses with chordwise-local eigenmodes sought in the (s, η, z) reference
frame in the form q = q̂(η) exp(i(αs + βz − ωt)). Their spatial amplification rate is
defined as ln(A/A0) = ∫ s

s0
−Im(α) ds (see for instance Arnal & Casalis (2000) or Reed,

Saric & Arnal (1996) for reviews on chordwise-local stability approach). We can mention
that the presence of chordwise-globally unstable modes implies a chordwise-local absolute
unstable flow (Huerre & Monkewitz 1990). In order to validate the results obtained
with our chordwise-global method, we compare the spatial structures obtained with a
chordwise-local stability analysis for β and ω provided by the chordwise-global stability
analysis. We conducted such an analysis for the marginal modes (vi) and (viii), so that
both ω and β are real. The spatial stability analysis in the s direction is solved for these
fixed β and ω real values. The chordwise-local stability code solves the one-dimensional
differential eigenvalue problem with a high-order scheme. The parallel flow assumption
is used, and the flow computed by the boundary-layer solver is used as the baseflow, to
avoid interpolation errors from the finite element method mesh. In the chordwise-local
stability analysis framework, the Ψ angle is directly derived from the real parts of α and
β and the knowledge of the inviscid streamwise direction at each chordwise location.
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Figure 16. Comparison of magnitude (a,b) and Ψ (c,d) between chordwise-local (in red) and
chordwise-global (in blue) analyses for modes (vi) (a,c) and (viii) (b,d).

The comparison between chordwise-global and chordwise-local stability results is
displayed in figure 16.

An agreement of the Ψ vectors is observed for chordwise-local and chordwise-global
analyses in both cases. The magnitude is also close with magnitude maxima at
almost identical positions. Thus, we obtain close results, which validate the use of the
chordwise-global stability analysis. The latter method has the advantage of being able to
identify the whole structure of the modes at once, without parallel flow assumptions, and
to directly identify the absolute/convective nature in the chordwise direction.

Appendix C. Stability results at (ReR, ReS, βΔ) = (16 129, 113, 0.45) for a Joukowski
airfoil

We report here the results we obtain in a case similar to Meneghello et al. (2015), i.e. under
the conditions (ReR,ReS, βΔ) = (16 129, 113, 0.45) with a Joukowski airfoil of thickness
parameter ε = 0.1, with no incidence and of infinite span. These conditions correspond to
a highly stable case.

In table 4, ω/(βU∞
z ) of the three least stable symmetric eigenvalues are presented. We

observe a relative error lower than 0.5 % for the three eigenvalues.
In figure 17(a) is drawn the magnitude of the direct and adjoint modes, as well as the

wavemaker, as a function of s. We note a first growth of the magnitude of the direct mode
until s = 0.02, then a decrease until s = 0.05, followed by a second growth from s = 0.05
until the end of the domain. The wavemaker is located at the attachment line. These two
observations are in good agreement with those of Meneghello et al. (2015).
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S1 S2 S3

Meneghello et al. (2015) 0.50303 − 0.05782i 0.49844 − 0.07867i 0.49425 − 0.09932i
Our study 0.50287 − 0.05678i 0.49835 − 0.07874i 0.49415 − 0.09962

Table 4. The ω/(βU∞
z ) of the three least stable symmetric eigenvalues.
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Figure 17. Stability results at (ReR,ReS, βΔ) = (16 129, 113, 0.45) for the Joukowski airfoil: (a) normalized
magnitude of direct mode (blue), adjoint mode (red) and wavemaker (green); (b) Ψ angle.

Concerning the orientation of the least stable mode, its Ψ angle is represented in
figure 17(b) as a function of s. We observe a growth until s = 0.02 up to a value ofΨ = 45◦
then a decrease until s = 0.05 reaching Ψ = 30◦. At s = 0.05, we observe a discontinuity
and the Ψ angle remains at a plateau around 70◦ until the end of the domain.

REFERENCES

AHMED, N. & RUBINO, S. 2019 Numerical comparisons of finite element stabilized methods for a 2D vortex
dynamics simulation at high Reynolds number. Comput. Meth. Appl. Mech. Engng 349, 191–212.

ALIZARD, F. & ROBINET, J.-C. 2007 Spatially convective global modes in a boundary layer. Phys. Fluids
19 (11), 114105.

AMESTOY, P., DUFF, I., L’EXCELLENT, J.-Y. & KOSTER, J. 2001 A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. Applics 23 (1), 15–41.

ARNAL, D. & CASALIS, G. 2000 Laminar-turbulent transition prediction in three-dimensional flows. Prog.
Aerosp. Sci. 36 (2), 173–191.

BERTOLOTTI, F. 2000 On the connection between cross-flow vortices and attachment-line instabilities.
In Laminar-Turbulent Transition: IUTAM Symposium, Sedona, AZ, pp. 625–630. Springer.

BRYNJELL-RAHKOLA, M., SHAHRIARI, N., SCHLATTER, P., HANIFI, A. & HENNINGSON, D.S. 2017
Stability and sensitivity of a cross-flow-dominated Falkner–Skan–Cooke boundary layer with discrete
surface roughness. J. Fluid Mech. 826, 830–850.

957 A29-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.38


E. Kitzinger, T. Leclercq, O. Marquet, E. Piot and D. Sipp

CERQUEIRA, S. & SIPP, D. 2014 Eigenvalue sensitivity, singular values and discrete frequency selection
mechanism in noise amplifiers: the case of flow induced by radial wall injection. J. Fluid Mech.
757, 770–799.

FRANCA, L.P., FREY, S.L. & HUGHES, T.J.R. 1992 Stabilized finite element methods: I. Application to the
advective-diffusive model. Comput. Meth. Appl. Mech. Engng 95 (2), 253–276.

GARNAUD, X., LESSHAFFT, L., SCHMID, P.J. & HUERRE, P. 2013 Modal and transient dynamics of jet
flows. Phys. Fluids 25 (4), 044103.

GIANETTI, F. & LUCHINI, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid
Mech. 581, 167–197.

HALL, P., MALIK, M. & POLL, I. 1984 On the stability of an infinite swept attachment line boundary layer.
Proc. R. Soc. Lond. A 395, 229–245.

HALL, P. & SEDDOUGUI, S. 1990 Wave interactions in a three-dimensional attachment-line boundary layer.
J. Fluid Mech. 217, 367–390.

HECHT, F. 2012 New development in FreeFem++. J. Numer. Maths 20 (3–4), 1–14.
HERNANDEZ, V., ROMAN, J. & VIDAL, V. 2005 SLEPc: a scalable and flexible toolkit for the solution of

eigenvalue problems. ACM Trans. Math. Softw. 31 (3), 351–362.
HOUDEVILLE, R. 1992 Three-dimensional boundary layer calculation by a characteristic method. In Fifth

Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, CA, USA. NTRS -
NASA.

HUERRE, P. 2000 Open shear flow instabilities. In Perspectives in Fluid Dynamics (ed. G.K. Batchelor,
H.K. Moffatt & M.G. Worster), pp. 159–229. Cambridge University Press.

HUERRE, P. & MONKEWITZ, P. 1990 Local and global instabilities in spatially developing flows. Annu. Rev.
Fluid Mech. 22 (1), 473–537.

JOSLIN, R.D. 1996 Simulation of three-dimensional symmetric and asymmetric instabilities in attachment-line
boundary layers. AIAA J. 34 (11), 2432–2434.

LIN, R.-S. & MALIK, M. 1996 On the stability of attachment-line boundary layers. Part 1. The incompressible
swept Hiemenz flow. J. Fluid Mech. 311, 239–255.

LIN, R.-S. & MALIK, M. 1997 On the stability of attachment-line boundary layers. Part 2. The effect of
leading-edge curvature. J. Fluid Mech. 333, 125–137.

LINGWOOD, R. 1997 On the impulse response for swept boundary-layer flows. J. Fluid Mech. 344, 317–334.
MACK, C. & SCHMID, P. 2011 Global stability of swept flow around a parabolic body: the neutral curve.

J. Fluid Mech. 678, 589–599.
MACK, C., SCHMID, P. & SESTERHENN, J. 2008 Global stability of swept flow around a parabolic body:

connecting attachment-line and crossflow modes. J. Fluid Mech. 611, 205–214.
MELIGA, P., SIPP, D. & CHOMAZ, J.-M. 2008 Absolute instability in axisymmetric wakes: compressible and

density variation effects. J. Fluid Mech. 600, 373–401.
MENEGHELLO, G., SCHMID, P.J. & HUERRE, P. 2015 Receptivity and sensitivity of the leading-edge

boundary layer of a swept wing. J. Fluid Mech. 775, R1.
OBRIST, D. & SCHMID, P. 2003 On the linear stability of swept abttachment-line boundary layer flow. Part 1.

Spectrum and asymptotic behaviour. J. Fluid Mech. 493, 1–29.
PIOT, E. & CASALIS, G. 2009 Absolute stability mechanism of a swept cylinder laminar boundary layer with

imposed spanwise periodic conditions. Phys. Fluids 21 (6), 064103.
REED, H. & SARIC, W. 1989 Stability of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 21 (1),

235–284.
REED, H., SARIC, W. & ARNAL, D. 1996 Linear stability theory applied to boundary layers. Annu. Rev. Fluid

Mech. 28 (1), 389–428.
SARIC, W., REED, H. & WHITE, E. 2003 Stability and transition of three-dimensional boundary layers. Annu.

Rev. Fluid Mech. 35, 413–440.
SCHMID, P. & HENNINGSON, D. 2001 Transition to turbulence. In Stability and Transition in Shear Flows,

Applied Mathematical Sciences, vol. 142, pp. 401–475. Springer.
SIPP, D. & LEBEDEV, A. 2007 Global stability of base and mean flows: a general approach and its applications

to cylinder and open cavity flows. J. Fluid Mech. 593, 333–358.
TAYLOR, M.J. & PEAKE, N. 1998 The long-time behaviour of incompressible swept-wing boundary layers

subject to impulsive forcing. J. Fluid Mech. 355, 359–381.
TAYLOR, M.J. & PEAKE, N. 1999 The long-time impulse response of compressible swept-wing boundary

layers. J. Fluid Mech. 379, 333–350.
TÜRKYLMAZOGLU, M. & GAJJAR, J.S.B. 1999 On the absolute instability of the attachment-line and

swept-Hiemenz boundary. Theor. Comput. Fluid Dyn. 13 (1), 57–75.
WASSERMANN, P. & KLOKER, M. 2005 Transition mechanisms in a three-dimensional boundary-layer flow

with pressure-gradient changeover. J. Fluid Mech. 530, 265–293.

957 A29-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.38

	1 Introduction
	2 Methodology
	2.1 Flow configurations
	2.2 Governing equations and computational domain
	2.2.1 Baseflow
	2.2.2 Direct modes: temporal chordwise-global/spanwise-local stability analysis
	2.2.3 Adjoint modes and wavemaker
	2.2.4 Absolute/convective stability analysis in the spanwise z direction

	2.3 Numerical methods
	2.4 Validation
	2.4.1 Baseflow
	2.4.2 Stability analysis


	3 Results
	3.1 Baseflow
	3.2 Temporal chordwise-global/spanwise-local stability analysis for the ONERA-D airfoil
	3.2.1 Neutral curve in the (ReS,) plane at ReR=25 000
	3.2.2 Study of modes (i), (vi) and (ix) at ReR=25000
	3.2.3 Modes between modes (i), (vi) and (ix) at ReR=25000

	3.3 Absolute/convective stability analysis in the spanwise z direction
	3.4 Effect of ReR for the ONERA-D airfoil
	3.5 Comparison of neutral curve with a Joukowski airfoil as a function of ReS at ReR=25000 and as a function of ReQ at =80.03

	4 Conclusion
	Appendix A. Adjoint operators
	Appendix B. Comparison with chordwise-local stability analyses
	Appendix C. Stability results at (ReR,ReS,)=(16129,113,0.45) for a Joukowski airfoil
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


