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Permeability is a nonlinear and non-local function of the intimate coupling between pore
fluid flow and solid deformation in porous media. A class of related problems involves
the effect of fluid injection or withdrawal on the transport properties of geomaterials.
This paper presents an analytical solution for the nonlinear and non-local problem of
fluid flow through a disk-shaped porous elastic inclusion below the free surface of an
elastic half-space. The solution accounts for the following nonlinear mechanisms: (i)
variations in the permeability coefficient due to the flow-induced deformation of the
inclusion; (ii) the inertial losses of the pore fluid flow. The former and latter mechanisms
are formulated using the Green’s function for a dilatation centre in an elastic half-space
and the Darcy–Forchheimer equation for fluid flow through porous media, respectively.
An analytical perturbation solution to the considered problem is developed and validated
against the numerical finite element solution to the same problem. The described nonlinear
mechanisms are represented by two dimensionless parameter groups. The extreme values
of these dimensionless groups govern the solution asymptotic behaviours mimicking the
special-case solutions in which either mechanism is forced to vanish. The applied aspects
of the solution are demonstrated through the wellbore performance index parameter that
quantifies the subsurface rock ability to deliver the pore fluid toward or away from a
wellbore in a porous reservoir. Unlike the linear models, the presented nonlinear solution
captures the observed dependence of the performance index on the wellbore flow rate.
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1. Introduction

A broad range of anthropogenic processes such as groundwater withdrawal, underground
disposal of nuclear waste, CO2 geo-sequestration and geothermal energy extraction involve
fluid flow through the pore space of the subsurface rock toward or away from a wellbore
(Nordbotten & Celia 2006; Dudfield & Woods 2014). The inflow performance of the
host porous medium is often quantified by the well performance index, J. The index is
defined as the ratio of the production or injection flowrate Q to the magnitude of the
difference between the flowing boundary pressure pw and static pore fluid pressure of the
host medium pe (Evinger & Muskat 1942; Dietz 1965; Aulisa et al. 2009),

J = Q
�p

= Q
pe − pw

. (1.1)

The performance index offers a single scalar metric for evaluating the superposed effect of
rather numerous parameters which determine the producibility of the host porous medium
when subjected to a prescribed fluid flow rate at the boundary.

Linear Darcy’s law (Bear 1972) is known to fall short of predicting the correct flow
regime in porous media when the inertial forces of flow are sufficiently large. In such a
case, the relationship between the fluid flux velocity v̄ and the pore fluid pressure gradient
∇p is often described by the Darcy–Forchheimer equation (Bear 1972; Scheidegger 1960)

− ∇p = μ

k
v̄ + βγ |v̄|v̄ (1.2)

or, alternatively,

− ∇p = μ

k
(v̄ + Rev̄). (1.3)

The Reynolds number Re in (1.3) is expressed as

Re = βkγ |v̄|
μ

, (1.4)

where k is the solid phase permeability, μ is the fluid viscosity, γ is the fluid density and
β is the Forchheimer parameter that quantifies the additional pressure gradient due to the
inertial force through the quadratic velocity term in (1.2). The following empirical formula
in terms of the permeability k and porosity φ is suggested for β (Geertsma 1974):

β = 0.005
k0.5φ5.5 . (1.5)

For a steady-state, radial flow from or into a cavity of radius rw located at the
centre of a disk-shaped, homogenous, isotropic porous medium of radius re and
thickness h, with permeability k, pore fluid viscosity μ and negligible Forchheimer term,
i.e. β → 0, the performance index J that is defined in (1.1) can be conveniently obtained,
as follows (Evinger & Muskat 1942; Zimmerman 2018):

J = 2πkh
μ ln(re/rw)

. (1.6)

A key implication of (1.6) is the assumption of an invariant permeability coefficient
throughout the reservoir. A variety of processes, including inertial losses which are, herein,
described by the Forchheimer term in (1.2), are known to cause deviation of the real
performance index from the prediction made by (1.6). Also, flow-induced deformation of
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Figure 1. Permeability variation due to coupled fluid flow and solid deformation in a confined porous
medium.

the solid phase may cause significant changes in the pore structure and permeability of the
porous host medium. Figure 1 depicts the inherent coupling between disturbances in the
pore fluid pressure and solid phase deformation of a disk-shaped, fluid-producing reservoir
through the induced variations in the reservoir rock porosity and permeability. The effect is
reported by negative changes in the permeability coefficient in the case of fluid withdrawal
from the porous inclusion (Crowdy & Duchemin 2005; MacMinn, Dufresne & Wettlaufer
2016), and corresponding positive changes in permeability coefficient in the case of fluid
injection (Auton & MacMinn 2017; Wang et al. 2018). The described deformation-induced
variation in permeability is a commonly observed mechanism which undermines the
validity of linear solutions such as the one shown by (1.6) for fluid transport through
deformable porous rocks.

Modelling the change in permeability due to the interplay between fluid flow and solid
deformation of porous materials has been a vibrant subject of research. Empirical formulae
that relate the permeability coefficient to the local pore fluid pressure have been offered
for this purpose (Sommer & Mortensen 1996; Zhu, Du & Li 2018). Mechanistic
approaches include formulating porosity as a function of both the local pore fluid pressure
and the local mean stress or volumetric strain while applying standard correlations
between permeability and porosity (Macminn et al. 2016; Sabet et al. 2019). The
permeability–pressure relationships that have been used in the related analytical solutions
often follow simple correlations between the permeability and pore fluid pressure (Zoback
& Byerlee 1975; Kikani & Pedrosa 1991) or volumetric strain (Shi & Durucan 2004).
However, the directional dependence of the permeability tensor on changes in the stress
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or strain tensors allows for and enables preferential orientation of the pore fluid flow in
response to pressure gradients (Wong 2003; Kang et al. 2019). A second drawback of
the existing permeability models is that the permeability coefficient change is formulated
as a function of the local pore pressure change (Zoback & Byerlee 1975; Kikani &
Pedrosa 1991). While permeability is particularly dependent on the local kinematic strain,
the strain of an arbitrary point in the porous medium is a non-local function of the
pore fluid pressure distribution throughout the entire disturbed volume (Geertsma 1973;
Segall 1992).

The motivation for the present study arises from the need for prediction of the
observed, yet less-studied, manifestations of the coupling between pore fluid flow and solid
deformation of subsurface reservoir rocks in their flow rate-dependent producibility or
injectivity (Aulisa et al. 2009; Dempsey et al. 2015). These reservoirs are often embedded
at a finite depth below the surface of the earth crust (Pegler et al. 2017; Szulczewski,
Hesse & Juanes 2013; Segall 1992). Therefore, they are quite commonly modelled as
porous, fluid-saturated inclusions in a semi-infinite medium representing the subsurface
(Rajapakse & Senjuntichai 1993; Segall 1992; Pan 2019).

This paper reports a nonlinear and non-local analytical solution for the steady-state
Darcy–Forchheimer fluid flow through a disk-shaped porous elastic inclusion embedded
within an elastic half-space. The solution accounts for the nonlinear variations in
the permeability coefficient due to deformation-induced permeability change while
integrating the inherent nonlinearity of the pore fluid pressure gradients due to the
considered non-Darcy fluid flow regime, represented by (1.2). The schematics of the fluid
flow problem are illustrated in figure 2. Injection or withdrawal of fluid takes place through
a cylindrical cavity at the centre of the reservoir, which hereafter is referred to as the
inclusion. The semi-infinite elastic medium, which hereafter is referred to as the matrix, is
in welded contact with the inclusion.

The considered model of figure 2 entails the following assumptions:

• The disk-shaped inclusion is porous and fluid saturated.
• The fluid flow rate Q at the inner cavity boundary, r = rw, is constant.
• The steady state of pore fluid flow throughout the inclusion is reached.
• The initial state of the porous inclusion is isotropic and homogeneous.
• The inclusion, as well as the surrounding half-space matrix, are both linearly elastic.
• The effect of cavity size on the deformation of the inclusion and matrix is negligible.
• Aside from permeability, all properties of the inclusion are invariant.
• The inclusion is in welded contact with the surrounding matrix. That is, the

boundary tractions and solid phase displacements at the interface of the inclusion
and matrix are identical.

• There is no fluid flow or disturbances of the pore fluid pressure in the semi-infinite
matrix outside of the inclusion.

The classical solution for a nucleus of strain (Mindlin & Cheng 1950a,b) is used as a
Green’s function to formulate the non-local relationship between the pore fluid pressure
distribution and elastic strain tensor of the inclusion in the semi-infinite elastic matrix.
A linear relationship between the principal components of the strain and permeability
coefficient tensors is considered. A perturbation solution technique is developed to
simultaneously treat the nonlinearities arising from the deformation-induced variations
in the inclusion permeability coefficient and the inertia-dominated component of the
pore fluid flow regime. The solution is applied to the problem of fluid injection into or
production from the centre of a disk-shaped reservoir embedded within the subsurface.
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Figure 2. Schematics of radial fluid flow through the porous inclusion in an elastic half-space.

Results are used to offer extended formulations for the commonly used performance index
of production or injection wells in deformable porous reservoirs. The significant departure
of the obtained performance index from the associated linear model is discussed. New
dimensionless groups of parameters are introduced to describe the nonlinear, non-local
and coupled nature of the pore fluid flow and solid deformation in the considered
poroelastic inclusion problem. By virtue of the insight gained from the definition of these
dimensionless groups, the sensitivity of the solution to the key problem parameters, as
well as its asymptotic behaviours in the limiting special cases when either or both of the
considered nonlinear mechanisms vanish, is discussed and rationalized.

2. The nonlinear permeability coefficient

This section elaborates on the nonlinearities involved in the permeability of the porous
inclusion in figure 2. Section 2.1 derives a formula for the apparent permeability coefficient
from the Darcy–Forchheimer equation for the pore fluid flow. Section 2.2 derives a
separate formula for the variation of the permeability coefficient due to elastic deformation
of the inclusion. Lastly, the obtained formulae are assimilated to describe the combined
impact of the two mechanisms in terms of a single expression for the effective permeability
of the deforming porous inclusion.

2.1. The Darcy–Forchheimer flow through the inclusion
The governing equation for steady-state, radial flow of the pore fluid through the inclusion
can be expressed as

1
r

d
dr
(rv) = 0. (2.1)
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Equation (2.1) is subjected to the following boundary conditions at the inner and outer
boundaries of the inclusion:

v = Q
2πrh

(r = rw), (2.2)

p = 0(r = re), (2.3)

where the symbol p refers to the change in pore fluid pressure from the initial pore pressure
of the inclusion at the undisturbed state and Q is the pore fluid flow rate across the inner
boundary of the inclusion at r = rw. It takes a positive value for fluid withdrawal from the
inclusion and a negative value for fluid injection into the inclusion.

The Darcy–Forchheimer equation shown in (1.2) can be rearranged into the scalar form

βγ v2 + μ

k
v − ‖∇p‖ = 0. (2.4)

Equation (2.4) can be solved for v to give

v = k
μ

2

1 +
√

1 + 4βγ k2

μ2 ‖∇p‖
‖∇p‖, (2.5)

where ‖∇p‖ is the norm of the pressure gradient vector. The following definition of the
apparent permeability ka is made in such a way that (2.5) mimics Darcy’s linear law of
fluid flow through porous media:

v̄ = −ka

μ
∇p, (2.6)

where

ka = kε
2

1 +
√

1 + 4βγ k2
ε

μ2 ‖∇p‖
; (2.7)

kε in (2.7) is the intrinsic material permeability after accounting for the solid deformation
effect, which will be discussed in the next section. Therefore, the mathematical model
shown in (2.1)–(2.3) can be rewritten as

1
r

d
dr

(
kar

dp
dr

)
= 0, (2.8)

ka
dp
dr

= Qμ
2πhr

(r = rw), (2.9)

p = 0(r = re). (2.10)

2.2. Deformation-induced permeability variation
A linear relationship between the permeability tensor and the local strain tensor is
considered, as follows (Wong 2003):⎡

⎣k1/k1,0
k2/k1,0
k3/k1,0

⎤
⎦ =

⎡
⎣ 1

k2,0/k1,0
k3,0/k1,0

⎤
⎦+

⎡
⎣a b b

b a b
b b a

⎤
⎦
⎡
⎣ε1
ε2
ε3

⎤
⎦ , (2.11)

where k1, k2 and k3 are the permeabilities in three principal strain directions, and ki,0
denotes the initial value of the permeability components; ε1, ε2 and ε3 are the induced
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principal strains, respectively; and a and b are two dimensionless coefficients which can be
determined through the simultaneous tri-axial compression and core flooding experiments
(Wong 2003; Lin, Chen & Jin 2017). The absolute value of parameter b is usually larger
than a, owing to stronger sensitivity of the permeability along an arbitrary direction to
the strain component in the other principal directions (Wong 2003; Bai et al. 1999). By
assuming an isotropic initial permeability k0 to the system, (2.11) can be rewritten as⎡

⎣k1/k0
k2/k0
k3/k0

⎤
⎦ =

⎡
⎣1

1
1

⎤
⎦+

⎡
⎣a b b

b a b
b b a

⎤
⎦
⎡
⎣ε1
ε2
ε3

⎤
⎦ . (2.12)

The axisymmetric Green’s function due to rings of pore fluid pressure change in
semi-infinite space is adopted to find the non-local function of the solid phase strain
during fluid injection or withdrawal. Detailed formulations of the Green’s functions and
the associated volume integrals are given in appendix A. The in-plane and anti-plane shear
strain components εrθ and εrz are assumed to be zero due to the symmetry and relatively
small thickness of the considered inclusion geometry compared to its burial depth, i.e.
(1 − d1/d2) � 1, with d1 and d2 being the top and bottom depths of the porous inclusion.
Therefore, the inclusion principal strains are aligned with the axes of the polar coordinate
system of figure 2. From (2.12), the following equation for radial permeability is derived
for both the fluid withdrawal and injection cases:

krrε = k0(1 + aεrr + bεθθ + bεzz), (2.13)

where krrε is the permeability along radial direction after accounting for the strain change,
and εrr, εθθ and εzz are the induced strain components along the radial, circumferential and
vertical directions.

Substituting the expressions for εrr, εθθ and εzz from (A10)–(A12) of appendix A into
(2.13) yields

krrε[p∀(r), z] = k0

{
1 +

∫ d2

d1

∫ re

0

[
∂p(ρ)
∂ρ

(
a
∂u(1)r (r, z; ρ, ζ )

∂r
+ b

u(1)r (r, z; ρ, ζ )
r

)

+ bp(ρ)
∂ ûz(r, z; ρ, ζ )

∂z

]
dρ dζ

}
, (2.14)

where r and z in (2.14) are the radius and depth of the observation point; ρ and ζ are the
radius and depth of the pressure source; and p is the magnitude of the pressure source.

The parameters u(1)r and ûz in (2.14) are Green’s functions for the radial and vertical
displacements. While detailed derivations of these functions are presented in appendix A,
the end results are presented here, as follows:

u(1)r = −ρcm

2
[I−θ(z−ζ )(1, 1; 0)+ (3 − 4v)I(z+ζ )(1, 1; 0)− 2zI(z+ζ )(1, 1; 1)], (2.15)

ûz = −ρcm

2
[θ I−θ(z−ζ )(0, 0; 1)+ (3 − 4v)I(z+ζ )(0, 0; 1)+ 2zI(z+ζ )(0, 0; 2)], (2.16)

where the poroelastic uniaxial compaction coefficient cm = α(1 − 2v)/2G(1 − v) is
defined in (A5); α and v are the Biot–Willis effective stress coefficient and Poisson’s
ratio; θ = −1 for z ≥ ζ and θ = 1 for z < ζ ; and G is the shear modulus of the material.
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The term Ic(n,m; t) in (2.15) and (2.16) denotes the Lipschitz–Hankel family of integrals,
which is defined as follows (Eason, Noble & Sneddon 1955):

Ic(n,m; t) =
∫ ∞

0
stJn(sρ)Jm(sr) e−cs ds, (2.17)

where Jn is the nth-order Bessel function of the first kind. For certain values of n,m and t,
the Lipschitz–Hankel integral Ic(n,m; t) can be written in terms of closed-form formulae.
The expressions for these integrals are given in appendix B.

For a disk-shaped inclusion with small thickness, i.e. (1 − d1/d2) � 1, the variation of
pore fluid pressure and permeability along the vertical direction can be neglected. This
assumption reduces (2.14) to the following equation:

krrε(r) = krrε[p∀(r), dm]

= k0

{
1 +

∫ d2

d1

∫ re

0

[
∂p(ρ)
∂ρ

(
a
∂u(1)r

∂r
(r, dm; ρ, ζ )+ b

u(1)r (r, dm; ρ, ζ )
r

)

+ bp(ρ)
∂ ûz

∂z
(r, dm; ρ, ζ )

]
dρ dζ

}
, (2.18)

where dm = (d1 + d2)/2 is the middle depth of the porous inclusion.
Subsequently, the permeability variation due to solid deformation will be coupled with

the Darcy–Forchheimer flow model. According to (2.7), the apparent permeability along
the radial direction for radial fluid flow into or away from the centre of a disk, considering
both the solid phase deformation and the Forchheimer flow, can be written as

krra = krrε
2

1 +
√

1 + 4βγ k2
rrε

μ2

∣∣∣dp
dr

∣∣∣
, (2.19)

β = 0.005
k0.5

rrεφ
5.5 , (2.20)

where krrε is the radial intrinsic permeability that accounts for the pore deformation.

3. Solution to the fluid flow problem

By substituting (2.19) into (2.8)–(2.10) the radial flow through the inclusion can be
formulated, as follows:

1
r

d
dr

{
krra[p∀(r)]r

dp
dr

}
= 0, (3.1)

krra[p∀(r)]r
dp
dr

= Qμ
2πh

(r = rw), (3.2)

p = 0(r = re), (3.3)

where the apparent permeability coefficient krra[p∀(r)] is given by (2.19) and incorporates
both the solid deformation and the inertial forces of the fluid flow. The subscript ∀ in this
context reiterates the non-local dependence of the permeability coefficient. That is, krra
is determined by the pore fluid pressure distribution throughout the entire volume of the
inclusion.
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By taking the first integral of (3.1) and applying the inner boundary condition of (3.2),
the considered mathematical problem is reduced to a first-order nonlinear differential
equation, as follows:

krra[p∀(r)]r
dp
dr

= Qμ
2πh

, (3.4)

p(re) = 0. (3.5)

Equation (3.4) is nonlinear due to the non-local and variant nature of the permeability
coefficient krra[p∀(r)]. A perturbation technique is implemented to mathematically treat
the involved nonlinearities. For this purpose, the left side of (3.4) is decomposed into a
linear part pertaining to the initial permeability of the inclusion, k0, and a nonlinear part,
as follows:

dp
dr

+ δk(p∀)
k0

dp
dr

= Qμ
2πhrk0

, (3.6)

where δk( p) in (3.6) is expressed as

δk(p∀) = krrε
2

1 +
√

1 + 4βγ k2
rrε

μ2

∣∣∣dp
dr

∣∣∣
− k0. (3.7)

A perturbation series expansion of the pore fluid pressure in terms of the small
parameter ε = 1/G is sought, as follows:

p(r; ε) = p0(r)+ εp1(r)+ ε2p2(r)+ · · · + εnpn(r)+ O(εn+1), (3.8)

where G is the shear modulus of the solid phase skeleton of the porous inclusion. The
zeroth-order perturbation solution p0(r) pertains to the familiar steady-state, radial Darcy
flow of the pore fluid through the inclusion when the permeability is assumed to be
constant and equal to the initial permeability of the system. The expression for p0(r) can
be conveniently obtained as

p0(r) = Qμ
2πhk0

ln
(

r
re

)
. (3.9)

Substitution of (3.8) into (3.6) decomposes the original nonlinear differential equation
into a sequence of linear equations, as shown in (3.10) through (3.13).

The zeroth-order differential equation is

dp0

dr
= Qμ

2πhrk0
. (3.10)

The first-order differential equation is

dp1

dr
+ ψ(p∀)

dp0

dr
= 0. (3.11)

The second-order differential equation is

dp2

dr
+ ψ(p∀)

dp1

dr
= 0. (3.12)
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The nth-order differential equation is

dpn

dr
+ ψ(p∀)

dpn−1

dr
= 0. (3.13)

The parameter ψ(p∀) in (3.10)–(3.13) is given by

ψ(p∀) = G

⎛
⎜⎜⎜⎜⎝

krrε

k0

2

1 +
√

1 + 4βγ k2
ε

μ2

∣∣∣∣dp
dr

∣∣∣∣
− 1

⎞
⎟⎟⎟⎟⎠ . (3.14)

Detailed mathematical derivations of the described decomposition are presented in
appendix C. Likewise, the following set of boundary conditions is obtained:

p0(re) = p1(re) = p2(re) = pn(re) = 0. (3.15)

Equations (3.10) through (3.13) are a set of linear first-order differential equations. The
analytical solution to these equations up to the desired order of accuracy can be obtained
through a sequential procedure. Detailed steps of deriving the perturbation solution are
demonstrated in appendix D. The result for the nth-order solution p∗

n(r) can be expressed
through a recursive equation of the following compact form:

p∗
n(r) = Qμ

2πhk0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln
(

r
re

)
+

n∑
i=1

(−1)i+1

ki
0

∫ re

r

i−1∏
j=0
δk[p∗

j∀(r)]

r
dr

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (3.16)

in which

δk[p∀(r)] = krrε[p∀(r)]
2

1 +
√

1 + 4βγ k2
rrε

μ2

∣∣∣∣dp
dr

∣∣∣∣
− k0. (3.17)

Once the general solution for the pore fluid pressure redistribution due to the considered
steady-state flow is found, the nth-order perturbation solution for the well performance
index is obtained from the following equation:

J∗
n = − Q

p∗
n(rw)

. (3.18)

4. Solution verification against finite element simulation results

The presented analytical solution is herein validated against the numerical, finite
element solution to the same problem. For this purpose, fluid production from
a disk-shaped inclusion within an elastic half-space is simulated in COMSOL®
Multiphysics (COMSOL® Multiphysics 2018). The semi-infinite matrix is represented
by an axisymmetric numerical model. The dimensions of the numerical model of
the semi-infinite matrix in the lateral and vertical directions are 100 and 30 times
larger than the inclusion radius and depth, respectively. The matrix and inclusion are
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Figure 3. The dimensions of the finite element model.
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Figure 4. Numerical mesh for the finite element analysis in COMSOL® Multiphysics.

discretized using an adaptive mesh of unstructured, triangular finite elements with
quadratic shape functions. Figure 3 shows the dimensions of the finite element solution
domain, while figure 4 gives a partial view of the numerical grid. Built-in linear elastic
finite elements are used for the numerical domain representing the matrix outside of
the inclusion (COMSOL® Multiphysics 2018). Built-in poroelastic finite elements are

911 A49-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
24

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1024


W. Zhang and A. Mehrabian

Parameter Value

Porosity 0.1
Initial permeability (mD) 100
Fluid viscosity (mPa s) 1.0
Fluid density (kg m−3) 1000
Thickness of the disk (m) 20
Depth of the disk (m) 1000
Outer radius (m) 300
Well radius (m) 0.15
Shear modulus (GPa) 1.5
Poisson’s ratio 0.20
Biot–Willis coefficient 0.85
Coefficient a 150
Coefficient b 250

Table 1. The parameters of the base case study.
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Figure 5. Comparison of the performance index calculated from the analytical and numerical solutions.

used to discretize the inclusion domain (COMSOL® Multiphysics 2018). These elements
account for the coupling between the pore fluid flow and solid phase deformation of the
porous inclusion. The apparent permeability model of the Darcy–Forchheimer flow in
COMSOL® Multiphysics is the same as the one shown in (2.19). This model is used
to describe the constitutive relation of the pore fluid flow through the inclusion in the
numerical model.

The well performance index parameter for the case of fluid withdrawal (Q > 0) is
calculated using both COMSOL® Multiphysics and the proposed analytical model.
The basic parameters of the test case are summarized in table 1. The first-order and
second-order perturbation solutions are compared with the numerical results in figure 5.
The following three cases are considered. The first case considers only the influence of
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Forchheimer flow while the effect of solid deformation is neglected (β /= 0 and a, b = 0).
The second case considers only the effect of solid deformation on material permeability
without accounting for the nonlinear term of Forchheimer flow (β = 0 and a, b /= 0). The
third case considers both the Forchheimer flow and solid deformation effects (β /= 0 and
a, b /= 0).

Owing to strong nonlinearity of the problem, the accuracy of the first-order perturbation
solution, particularly for higher production rates, is inadequate. However, in all of the
considered cases, the second-order perturbation solution closely follows the numerical
solution with a relative error not exceeding 1.0 %. Therefore, the second-order perturbation
solution is considered accurate and used in the following discussion of the results.

5. Discussion of results

5.1. Linear Darcy flow with nonlinear solid deformation effect
In this section, only the effect of solid deformation is considered in the analysis. That is,
β = 0 in (2.19) while a, b /= 0 in (2.18). The parameters shown in table 1 are used for
this purpose. The rate of contrast (%) in values of the well performance index between
the nonlinear, perturbation solution and the linear, flow-only solution is demonstrated
through the parameter �J, which is defined as follows:

�J = Jnl − Jl

Jl
× 100 %. (5.1)

Here, Jnl is obtained from (3.18) and accounts for the induced permeability variation; Jl is
the performance index obtained from the linear, flow-only solution that assumes a constant
permeability. The analytical expression for Jl is shown in (1.6).

Variations of �J versus well flow rate are presented in figure 6. Each panel in figure 6
is divided into two regions: the upper region pertains to fluid injection whereas the lower
region demonstrates the decline of �J resulting from fluid withdrawal.

The conventional linear solution in figure 6 returns a constant performance index against
the changes in flow rate. However, a continuous increase or decline of performance index
is observed via the nonlinear solution when increasing the injection or withdrawal flow
rates. For the fluid production case, the rate of increase in the magnitude of�J accelerates
with increasing well flow rate. Conversely, a reverse trend, i.e. decelerating deviation of
the nonlinear solution from the linear solution, is observed in the fluid injection case.
Consequently, the observed value of �J in the fluid withdrawal case is larger than that of
the injection case. The reason is that a higher withdrawal rate will cause a larger reduction
of permeability, as well as a larger decrease in the pore fluid pressure. In such a case, the
two effects enhance each other. Conversely, the induced permeability enhancement and
pore pressure build-up for the fluid injection case would induce opposite effects in such a
way that they negate each other. Therefore, the slope of the �J versus Q curve decreases
with the increase of well injection rate.

The effect of varying constitutive parameters of the porous reservoir on the performance
index is shown in each panel. Figure 6(a) indicates a more substantial change in
�J for smaller shear modulus. Figure 6(b) shows the effect of initial permeability
on the well performance index. The nonlinear effect is more pronounced for smaller
permeability coefficients. Figure 6(c) reveals that the change in well performance index
is more sensitive to flow rate in the case of larger Biot–Willis coefficients. The reason is
that a higher Biot coefficient results in a higher effect of pore fluid pressure changes on
the rock stress or strain. A larger Poisson’s ratio with the same shear modulus causes a
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Figure 6. The sensitivity of the nonlinear performance index to the problem parameters: (a) shear modulus;
(b) initial permeability; (c) Biot–Willis effective stress coefficient; (d) Poisson’s ratio; (e) the inclusion depth;
(f ) permeability–strain correlation coefficients.

larger bulk modulus and, therefore, a stiffer solid skeleton of the rock. For this reason,
figure 6(d) shows that the well performance index for a rock with smaller Poisson’s ratio
is more influenced by the increase in flow rate. From figure 6(e) it can be inferred that the
well performance index shows negligible sensitivity to depth change at large depth, while
a notable enhancement in �J is seen at extremely shallow depths. Figure 6(f ) shows the
impact of the stress-sensitive coefficients a and b on well performance; larger values of a
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Figure 7. The schematics showing variations of the well performance index for a fluid injection–production
cycle.

and b indicate a stronger dependence of material permeability on rock strain components,
and thus a more significant deviation of well performance index from the linear solution.

Practical implications of the observed trends in enhanced or impaired permeability upon
cyclic injection and production of the subsurface fluid are enumerated, as follows. An
isolated standpoint of the coupling between pore fluid pressure and rock solid deformation
advocates that, for an alternating sequence of fluid injection and production operations,
each cycle should be first started by fluid injection, so that an increased well performance
index is attained prior to the subsequent production phase. Figure 7 shows that each
complete injection–production cycle will conclude by a higher average well performance
index than the scenario in which the alternating cycles start with fluid production.

5.2. Darcy–Forchheimer flow without solid deformation effect
This section considers the nonlinear Forchheimer flow through the porous inclusion
without accounting for the effect of solid phase deformation on the permeability
coefficient. That is, β /= 0 in (2.19) while a, b = 0 in (2.18). The parameters shown
in table 1 are used in the analysis. Equation (1.2) demonstrates that the Forchheimer
flow is mainly affected by four parameters, namely, the intrinsic permeability, porosity,
fluid viscosity and fluid density. The effects of these parameters on the well performance
index for both fluid injection and production processes are presented in figure 8. In
addition, the Reynolds number for the fluid flow near the wellbore is plotted against the
well flow rate in figure 8.

Unlike the conclusions drawn for the solid deformation effects, the inertial-loss
component of fluid flow in the porous inclusion will reduce the well performance index
upon fluid injection or withdrawal. Further, the magnitudes of �J for both cases are
identical. The reason is that the Forchheimer term in (1.2) is not affected by the direction of
the flow velocity. Higher boundary flow rates Q will amplify the Forchheimer flow effect
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Figure 8. The effect of the parameters of Forchheimer flow on the well performance index. (a) Initial
permeability; (b) porosity; (c) fluid viscosity; (d) fluid density. The solid curves denote �J during fluid
production; the hollow circles denote �J during fluid injection; the dashed curves denote Reynolds number
of fluid flow near the inclusion inner boundary during fluid injection or production.

because the inertial losses would be more significant at the corresponding higher Reynolds
numbers.

Figure 8(a) further shows that an increase in intrinsic permeability would make the
effect of the Forchheimer flow more substantial, since a higher permeability will enhance
the fluid velocity, thus resulting in a more dominant effect of the inertial forces. The
opposite trend is the case in figure 8(b), where the Forchheimer flow effect is stronger
for smaller inclusion porosity. The reason can be inferred from the dependence of the
Forchheimer parameter β on porosity from (1.5). Likewise and for similar reasons,
figures 8(c) and 8(d) reveal that the Forchheimer flow becomes more pronounced with
the decrease of fluid viscosity and the increase of fluid density.

5.3. Darcy–Forchheimer flow with solid deformation effect
The combined effect of the two considered mechanisms is herein considered. That is,
β /= 0 in (2.19) and a, b /= 0 in (2.18). Figure 9 shows variations of the well performance
index using the parameter values shown in table 1 and for different values of the
initial permeability and shear modulus. Variation trends of �J are similar to those in
figures 6(a) and 6(b). However, the magnitudes of�J variation among the two sets of plots
are different. Compared to figure 6, figure 9 demonstrates a larger �J in the case of fluid
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Figure 9. Variations of �J versus flow rate for different values of the initial permeability and shear modulus:
(a) initial permeability; (b) shear modulus.

Δ
J (

%
)

0.10

0.05

–0.05

–0.10

–0.20

–0.15

0 100 200 300

Production

Injection

Forchheimer-only asymptote

400 500

0

Initial permeability (mD)

0.10

0.05

–0.05

–0.10

–0.20

–0.15

0 1 2 3 4 5

0

Shear modolus (GPa)

(a) (b)

Figure 10. Variations of �J versus initial permeability and shear modulus at a fixed well flow rate of
500 m3 day−1: (a) initial permeability; (b) shear modulus.

withdrawal from the inclusion and a smaller �J for fluid injection. The reason is that the
inertial effects impose further resistance to fluid transport against a given pressure gradient
regardless of the flow direction. Therefore, the Forchheimer flow hampers the favourable
effect of pore space dilation during fluid injection. Conversely, the combined effect of
Forchheimer flow and solid deformation would result in more significant reduction in the
performance index during fluid production from the inclusion.

The comparable effect of either mechanism on the overall performance index of
the inclusion is demonstrated in figure 10. For this purpose, a new set of parameters
is presented in table 2. These parameters are used to investigate the changes in the
performance index at a fixed flow rate of |Q| = 500 m3 day−1 against variations of the
inclusion initial permeability and shear modulus.

Figure 10(a) demonstrates different trends in variations of �J upon fluid injection
and production; the combined effect of solid deformation and Forchheimer flow will
always reduce the performance index when withdrawing fluid from the inclusion since
both mechanisms tend to enhance the resistance against fluid flow. However, the
solid deformation mechanism dominates the Forchheimer flow effect when the initial
permeability is small. Therefore, the absolute value of the deviation from the linear
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Parameter Value

Porosity 0.08
Initial permeability (mD) 50
Fluid viscosity (mPa s) 1.0
Fluid density (kg m−3) 1000
Thickness of the disk (m) 20
Depth of the disk (m) 1000
Outer radius (m) 300
Well radius (m) 0.15
Well rate (m3 day−1) 500
Shear modulus (GPa) 1.5
Poisson’s ratio 0.20
Biot–Willis coefficient 0.8
Coefficient a 60
Coefficient b 80

Table 2. Parameters of the case study with comparable effects of solid deformation and Forchheimer flow.

solution, �J, decreases when increasing the initial permeability. The trend reverses when
the initial permeability is higher because the effect of Forchheimer flow on �J is stronger
for the resulting higher flow velocities.

In the fluid injection case, figures 10(a) and 10(b) indicate a change in the sign of �J
from positive to negative when the inclusion initial permeability increases. Dilation of
the pore space in such a case dominates the effect of the Forchheimer flow, resulting in
a positive �J when the initial permeability is relatively small. However, the Forchheimer
flow transcends the solid deformation effect at larger initial permeabilities, thus causing
an injectivity index that is smaller than the injectivity index of the linear solution. It is also
found that, for higher values of the initial permeability and shear modulus, the �J curves
for production and injection will both asymptotically approach the �J of the solution
that only considers the Forchheimer flow mechanism. This is because the effect of solid
deformation diminishes for larger values of permeability or shear modulus. An analysis of
such asymptotic behaviour is further enumerated in § 5.4.

5.4. Dimensionless groups and spatial distributions of pore fluid pressure
The distributions of the pore fluid pressure change and the permeability change during
fluid production are plotted against radial distance from the inclusion centre point
in figure 11. The effects of both considered mechanisms, i.e. solid mechanics and
Forchheimer flow, are incorporated in the case study using the parameters listed in table 1.
The solid curves in figure 11 show the relative magnitude of the nonlinear portion of the
pore fluid pressure, through the parameter χ = (pnl − pl)/pl in which pnl and pl denote the
nonlinear and linear pressure solutions. The dashed curves represent the ratio of apparent
permeability reduction to initial permeability (ψ = δk/k0). Figure 11 shows a substantial
reduction in apparent radial permeability throughout the inclusion. The effect, however, is
more drastic in the general vicinity of the inclusion inner boundary, owing to the larger
pore fluid pressure decline within the same region.

The zeroth-order solution described by (3.9) can be rearranged in the following form:

p0D = ln(rD). (5.2)
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Figure 11. The profiles of the normalized, nonlinear proportion of pore fluid pressure, as well as the
normalized nonlinear change in the inclusion permeability.

Equation (5.2) adequately describes the radial Darcy flow of fluid through the inclusion by
the following general definitions of the dimensionless pressure pD and radius rD:

pD = 2πhk0p(r)
Qμ

, (5.3)

rD = r
re
. (5.4)

Discussion of (1.3) and (1.4) demonstrated that the Darcy–Forchheimer flow regime
involves the dimensionless Reynolds number Re. Likewise, the deformation-induced
component of the nonlinear flow is controlled by a dimensionless parameter CmD that
would scale the poroelastic uniaxial compaction coefficient of the inclusion porous
skeleton, appearing in (2.15) and (2.16), with the flow-induced pressure gradients. Since
this parameter has the dimensions of inverse pressure, a natural choice for the scaling factor
would be a coefficient similar to the case of pD in (5.3). The following dimensionless group
is thus suggested:

CmD = |Q|μcm

2πhk0
. (5.5)

A high Reynolds number implies that the effect of inertial losses on the fluid flow is
more significant. This conclusion was previously demonstrated in figure 8, where the
relative magnitude of reduction in the performance index parameter compared to the
linear solution, �J, was shown to increase with Re. Likewise, a large value of CmD would
enhance the deformation-induced effects. The matter is demonstrated through the series of
sensitivity analyses in figure 6, where smaller parameters G, ν and k0, or a larger value of
α, are shown to enhance the nonlinear deviation of the performance index parameter from
the linear solution.

Consequently, the ratio � = Rerw/CmD constitutes a new dimensionless group that
quantifies the relative magnitude of the inertial losses effect compared to the solid
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Figure 12. The distribution of normalized pressure deviation from the linear solution at the fixed flow rate of
500 m3 day−1: (a) � = 935 349; (b) � = 35 076; (c) � = 5916; (d) � = 555.

deformation effect on the deviation of pore fluid pressure from the linear solution
represented by (5.2). The value of � can be derived from (1.4) and (5.5), as follows:

� = k2
0βγ

cmμ2rw
. (5.6)

When� → 0, the general solution obtained in (3.16) is expected to render the special-case
solution of § 5.1 which incorporates only the solid deformation-induced effects (β = 0).
Conversely, the asymptotic behaviour of (3.16) when � → ∞ is expected to reduce the
general solution of (3.16) to the special-case solution which only includes the Forchheimer
term of (1.3), i.e. when a = b = 0. Figure 12 confirms this insight.

Figure 12(a–d) show the profiles of the nonlinear pressure deviation χ along the radial
distance r/re for a series of four successively descending � values. Figure 12(a) indicates
that at the highest� value, the pressure distribution considering both mechanisms mimics
the pressure distribution obtained from the solution which considers only the Forchheimer
flow effect. Conversely, when the value of � is small, figure 12(d) demonstrates that the
pressure solution incorporating both mechanisms closely follows the pressure solution
that considers only the solid deformation effect. Figures 12(b) and 12(c) demonstrate
the transition of the general pore pressure solution incorporating the combined nonlinear
effects from the Forchheimer-only asymptote to the solid deformation-only asymptote, for
intermediate values of �.
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6. Conclusions

An analytical perturbation solution for the nonlinear problem of Darcy–Forchheimer flow
in a disk-shaped, porous, elastic inclusion embedded in a semi-infinite, elastic medium is
presented. The solution captures the assimilated nonlinearities arising from the non-local
dependence of deformation-induced permeability throughout the inclusion volume, as well
as the local inertial losses of flow through the pore space of the inclusion. Results are used
to offer a flow rate-dependent extension of the linear, rate-independent formulations for
the performance index parameter that is commonly used to assess the ability of porous
rocks in delivering the pore fluids toward or away from a wellbore during the subsurface
production or injection of fluids.

Findings indicate that most significant changes in the apparent permeability coefficient
occur in close vicinity of the inclusion inner boundary. However, these variations are
large enough to cause a significant impact on the performance index. Further, the
deformation-induced nonlinearities in the considered problem do not affect the production
and injection cases symmetrically; deviation of the performance index from the prediction
of a constant-permeability, linear solution is larger in the case of fluid production than in
the injection case. Parametric analysis of the solution results shows that increases in shear
modulus, initial permeability and Poisson’s ratio of the inclusion will reduce the nonlinear
changes in the performance index. Conversely, an increase of the Biot–Willis coefficient
will enhance the effect. Darcy–Forchheimer flow without solid deformation will induce
equal impacts on the well performance index for fluid production and injection. The
combined effect of solid deformation and Forchheimer flow would always result in decline
of the performance index in the case of fluid production. However, the two mechanisms
would negate each other when fluid is injected into the inclusion, causing a positive or
negative deviation from the linear solution for the performance index depending on the
dominant mechanism.

The combined effect of the considered nonlinear mechanisms, i.e. elastic deformation of
the inclusion and inertial losses of the pore fluid flow, is represented by two dimensionless
groups that govern the magnitude of the deviation of the nonlinear solution from the linear
solution. The asymptotic behaviours of flow through porous inclusion for extremely small
or large values of the ratio of these dimensionless groups are shown to render the special
cases when the effect of either nonlinear mechanism in the solution is forced to vanish.
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Appendix A. Nucleus-of-strain solution in half-space

Nucleus of strain refers to the elastic singularity of an infinitesimally small cubic volume
subjected to three orthogonal double forces of the same magnitude. Figure 13 shows the
schematics of such a singularity. It can be shown that a point source of pore fluid pressure
change is mathematically equivalent to a nucleus of strain (Geertsma 1973; Wang 2000).
The analytical solution for the stress and displacements induced by a nucleus of strain in a
semi-infinite domain is derived in Mindlin & Cheng (1950a,b).
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Nucleus of strain

Line source/sink
Traction-free

boundary

Ring-shaped nucleus
of strain

Observation point

r

Constant-pressure
boundary

Semi-infinite elastic medium

F

FF
F

F
ρ

ζ

Figure 13. The schematics of a ring-shaped nucleus of strain in a semi-infinite domain.

The non-local strain and stress fields of the resulting elastic field imply that the point
source of pore fluid pressure change alters the solid stress/strain of an arbitrary point within
a porous elastic medium. Thus, the nucleus-of-strain solution can be used as the Green’s
function and integrated over the entire volume of inclusion.

The axisymmetric symmetry of the considered disk-shaped inclusion in figure 13
justifies the use of the axisymmetric Green’s function for the nucleus of strain given in
Segall (1992). The displacement field u(r, z) due to the distribution of pore fluid pressure
disturbances can be formulated as

ui(r, z) =
∫ d2

d1

∫ ∞

0
p(ρ, ζ ) ûi(r, z; ρ, ζ ) dρ dζ , (A1)

where u is the displacement at the observation point and ûi is the Green’s function for
the induced displacement along the i direction caused by a ring-shaped pressure source.
Green’s functions of the displacement components are obtained by Segall (1992), as
follows:

ûr = ρcm

2
[I−θ(z−ζ )(0, 1; 1)+ (3 − 4v)I(z+ζ )(0, 1; 1)− 2zI(z+ζ )(0, 1; 2)], (A2)

ûz = −ρcm

2
[θ I−θ(z−ζ )(0, 0; 1)+ (3 − 4v)I(z+ζ )(0, 0; 1)+ 2zI(z+ζ )(0, 0; 2)], (A3)

where θ = −1 for z ≥ ζ and θ = 1 for z < ζ . The notation Ic(n,m; t) is defined as

Ic(n,m; t) =
∫ ∞

0
stJn(sρ)Jm(sr) e−cs ds. (A4)

The parameter cm is known as the uniaxial compaction coefficient in the poromechanics
literature. It can be derived as follows:

cm = α(1 − 2v)
2G(1 − v)

. (A5)

For certain values of n, m and t, the infinite integral in (A4) can be expressed using
closed-form expressions so that significant computational cost can be saved. However, it is
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difficult to express Ic(0, 1; 1) and Ic(0, 1; 2) in (A2) in terms of such functions. Therefore,
(A1) is integrated by parts by defining u(1)r = ∫ ûr dρ and honouring ∫ ρJ0(sρ) dρ =
s−1ρJ1(sρ) (Segall 1992). As a result, the radial and vertical displacements can be
calculated by

ur(r, z) =
∫ d2

d1

∫ ∞

0

∂p(ρ, ζ )
∂ρ

u(1)r (r, z; ρ, ζ ) dρ dζ, (A6)

uz(r, z) =
∫ d2

d1

∫ ∞

0
p(ρ, ζ ) ûz(r, z; ρ, ζ ) dρ dζ , (A7)

u(1)r = −ρcm

2
[I−θ(z−ζ )(1, 1; 0)+ (3 − 4v)I(z+ζ )(1, 1; 0)− 2zI(z+ζ )(1, 1; 1)], (A8)

ûz = −ρcm

2
[θ I−θ(z−ζ )(0, 0; 1)+ (3 − 4v)I(z+ζ )(0, 0; 1)+ 2zI(z+ζ )(0, 0; 2)]. (A9)

Appendix B shows the analytical expressions of all the Lipschitz–Hankel integrals
involved in (A8) and (A9). After expressing u(1)r and ûz in terms of closed-form equations
by substituting (B1)–(B5) into (A8) and (A9), the strain solutions can be readily calculated
as

εrr = ∂ur

∂r
=
∫ d2

d1

∫ ∞

0

∂p(ρ, ζ )
∂ρ

∂u(1)r (r, z; ρ, ζ )
∂r

dρ dζ, (A10)

εθθ = ur

r
=
∫ d2

d1

∫ ∞

0

∂p(ρ, ζ )
∂ρ

u(1)r (r, z; ρ, ζ )
r

dρ dζ , (A11)

εzz = ∂uz

∂z
=
∫ d2

d1

∫ ∞

0
p(ρ, ζ )

∂ ûz(r, z; ρ, ζ )
∂z

dρ dζ. (A12)

Appendix B. Lipschitz–Hankel integrals

Calculation of the displacement solutions involves four integrals of the type shown
in (A4), namely, Ic(1, 1; 0), Ic(1, 1; 1), Ic(0, 0; 1) and Ic(0, 0; 2). These integrals can
be expressed using closed-form equations, as follows (Van Deun & Cools 2008;
Eason et al. 1955):

Ic(1, 1; 0) = 1
π

√
rρ

Q1/2

(
r2 + ρ2 + c2

2rρ

)
, (B1)

Ic(0, 0; 1) = cκ3E(κ)

4π(1 − κ2)(ρr)3/2
, (B2)

where

κ =
√

4rρ/[(ρ + r)2 + c2]. (B3)

Here, Qn in (B1) is the Legendre function of the second kind and degree n and E(κ) is the
complete elliptic integral of the second kind. The values of Ic(1, 1; 1) and Ic(0, 0; 2) are
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obtained via the following recursive differential formula (Eason et al. 1955):

Ic(1, 1; 1) = − ∂

∂c
Ic(1, 1; 0), (B4)

Ic(0, 0; 2) = − ∂

∂c
Ic(0, 0; 1). (B5)

Appendix C. Perturbation solution to the nonlinear flow equation

The steady-state fluid flow is governed by the following diffusion equation and boundary
conditions:

1
r

d
dr

{
krra[p∀(r)]r

dp
dr

}
= 0, (C1)

krra[p∀(r)]r
dp
dr

= Qμ
2πh

(r = rw), (C2)

p = 0(r = re). (C3)

Integration of (C1) yields

krra[p∀(r)]r
dp
dr

= C1. (C4)

From (C2) an expression for C1 is obtained as

C1 = Qμ
2πh

. (C5)

Therefore, (C1) is reduced to the first-order differential equation

krra[p∀(r)]r
dp(r)

dr
= Qμ

2πh
, (C6)

p(re) = 0. (C7)

Equation (C6) can be decomposed into a linear part and a nonlinear part, as follows:

krra(p∀) = k0 + δk(p∀), (C8)

where k0 denotes the initial permeability. The expression of δk(p∀) is derived as

δk(p∀) = krrε
2

1 +
√

1 + 4βγ k2
ε

μ2

∣∣∣∣dp
dr

∣∣∣∣
− k0. (C9)

Therefore, (C6) can be rearranged to give

dp
dr

+ δk(p∀)
k0

dp
dr

= Qμ
2πhrk0

. (C10)

A small parameter ε = 1/G is selected to apply the perturbation technique.
Consequently, (C10) is converted to the following form:

dp
dr

+ εψ(p∀)
dp
dr

= Qμ
2πhrk0

, (C11)
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Nonlinear and non-local analytical solution

where ψ( p) is defined as

ψ(p∀) = δk(p∀)
εk0

= Gδk(p∀)
k0

= G

⎛
⎜⎜⎜⎜⎝

krrε

k0

2

1 +
√

1 + 4βγ k2
ε

μ2

∣∣∣∣dp
dr

∣∣∣∣
− 1

⎞
⎟⎟⎟⎟⎠ . (C12)

A perturbation series expansion of the pore fluid pressure is sought, as follows:

p(r; ε) = p0(r)+ εp1(r)+ ε2p2(r)+ · · · + εnpn(r)+ O(εn+1). (C13)

Substitution in (C11) yields

dp0

dr
+ ε

[
dp1

dr
+ ψ(p∀)

dp0

dr

]
+ ε2

[
dp2

dr
+ ψ(p∀)

dp1

dr

]
+ · · · + εn

[
dpn

dr
+ ψ(p∀)

dpn−1

dr

]

+ εn+1ψ(p∀)
dpn

dr
+ O(εn+1) = Qμ

2πhrk0
. (C14)

By collecting like powers of ε while neglecting the higher-order terms, the following series
of (n + 1) linear differential equations is obtained.

The zeroth-order differential equation is

dp0

dr
= Qμ

2πhrk0
. (C15)

The first-order differential equation is

dp1

dr
+ ψ(p∀)

dp0

dr
= 0. (C16)

The second-order differential equation is

dp2

dr
+ ψ(p∀)

dp1

dr
= 0. (C17)

The nth-order differential equation is

dpn

dr
+ ψ(p∀)

dpn−1

dr
= 0, (C18)

with the following outer boundary conditions:

p0(re) = p1(re) = p2(re) = pn(re) = 0. (C19)

Appendix D. Analytical solution to the linear differential equations

The solution to the zeroth-order linear equation that is shown in (C15) recovers the
conventional, linear, steady-state flow and associated distribution of pore fluid pressure,
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as follows:

p0 = Qμ
2πhk0

ln
(

r
re

)
. (D1)

The solution for p1 can be obtained by substituting the p0 solution into the first-order
differential equation shown in (C16),

dp1

dr
+ ψ(p0∀)

Qμ
2πhrk0

= 0. (D2)

Equation (D2) can be integrated to give

∫ P1(re)

p1

dp1 = − Qμ
2πhk0

∫ re

r

ψ(p0∀)
r

dr = − Qμ

2πhεk2
0

∫ re

r

δk(p0∀)
r

dr. (D3)

Applying the boundary condition from (C19) yields

p1 = Qμ

2πhεk2
0

∫ re

r

δk(p0∀)
r

dr. (D4)

Hence, the first-order pore pressure solution can be obtained as

p∗
1(r) = p0(r)+ εp1(r) = Qμ

2πhk0
ln
(

r
re

)
+ Qμ

2πhk2
0

∫ re

r

δk[p0∀(r)]
r

dr. (D5)

For the second-order linear equation, the term dp1/dr can be obtained by taking the
derivative of p1. The term ψ(p∀) can be obtained by substituting p∗

1 into δk(p∀) in (C9).
Therefore, integration of the differential equation (C17) yields

∫ P2(re)

p2

dp2 = Qμ
2πhk0

∫ re

r

ψ[p0∀(r)]ψ[p∗
1∀(r)]

r
dr. (D6)

By using (C19), the solution of the second-order equation is obtained as

p2 = − Qμ

2πhk3
0ε

2

∫ re

r

δk[p0∀(r)]δk[p∗
1∀(r)]

r
dr. (D7)

Hence, the second-order perturbation solution can be expressed as

p∗
2 = p0 + εp1 + ε2p2 = Qμ

2πhk0
ln
(

r
re

)
+ Qμ

2πhk2
0

∫ re

r

δk[p0∀(r)]
r

dr

− Qμ

2πhk3
0

∫ re

r

δk[p0∀(r)]δk[p∗
1∀(r)]

r
dr. (D8)

Similarly, the solution to the nth-order linear equation (C18) is obtained as follows:

pn = (−1)n+1 Qμ

2πhkn+1
0 εn

∫ re

r

δk[p∗
(n−1)∀(r)]δk[p∗

(n−2)∀(r)] . . . δk[p0∀(r)]
r

dr. (D9)
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Thus, the nth-order perturbation solution for the pore fluid pressure can be expressed as

p∗
n(r) = Qμ

2πhk0
ln
(

r
re

)
+ Qμ

2πhk2
0

∫ re

r

δk[p0∀(r)]
r

dr − Qμ
2πhk3

0

∫ re

r

δk[p∗
1∀(r)]δk[p0∀(r)]

r
dr

+ · · · + (−1)n+1 Qμ

2πhkn+1
0

∫ re

r

n−1∏
i=0
δk[p∗

i∀(r)]

r
dr, (D10)

where

δk( p) = krrε( p)
2

1 +
√

1 + 4βγ k2
rrε

μ2

∣∣∣dp
dr

∣∣∣
− k0, (D11)

krrε( p) = k0

{
1 +

∫ d2

d1

∫ re

0

[
∂p(ρ)
∂ρ

(
a
∂u(1)r

∂r
+ b

u(1)r

r

)
+ bp(ρ)

∂ ûz

∂z

]
dρ dζ

}
. (D12)
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