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HARMONIC CHARACTERISTIC VECTOR FIELDS ON
CONTACT METRIC THREE-MANIFOLDS

DOMENICO PERRONE

Dedicated to the memory of my father

In this paper we show that a contact metric three-manifold is a generalised (k,/i)-
space on an everywhere dense open subset if and only if its characteristic vector field
£ determines a harmonic map from the manifold into its unit tangent sphere bundle
equipped with the Sasaki metric. Moreover, we classify the contact metric three-
manifolds whose characteristic vector field £ is strongly normal (or equivalently, is
harmonic and minimal).

1. INTRODUCTION

Blair, Koufogiorgos and Papantoniou [2] introduced the so-called (k, /i)-spaces. Such
spaces are contact metric manifolds (M, 77, £, g, <j>) (for the definition of these manifolds,
see Section 2) satisfying

R(X, Y)t = k{V(Y)X - V(X)Y} + fi{V(Y)hX - v(X)hY}

where R is the curvature tensor, k, \i are constant and 2h — L^cj).

Recently, Koufogiorgos and Tsichlias [10] introduced a new class of contact metric
three-manifolds: the generalised (k,fi) -spaces. These spaces are defined by the above
equation where (k, fx) are functions. They proved that, if dim M > 3, then k and fj, are
necessarely constant and if dim M = 3, there exist examples of generalised (k, /x)-spaces
which are not (k, /x)-spaces. However, they did not provide a classification for this new
class and few results are known. One purpose of this paper is to give a characterisation
of such spaces in terms of harmonic maps.

If (M, g) is a Riemannian manifold and (TXM, gs) is its unit tangent sphere bundle
equipped with the Sasaki metric gs, a unit vector field V on M determines a map between
(M, g) and (TlM,gs). When M is compact and orientable, the energy of V is the energy
E(V) of the corresponding map. V is said to be a harmonic vector field if it is a critical
point for the energy functional E defined on the space xH-^0 °f aU u n i t vector fields
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on (M, g). The corresponding critical point condition has been determined in [17] and
[18]. A harmonic vector field determines a harmonic map if an additional condition is
satisfied ([9]). Gil-Medrano [6] introduced similar notions when M is also non-compact
and non-orientable. Now, it is well known that the characteristic vector field £ plays a
fundamental role in the study of the Riemannian geometry of a contact metric manifold
(see [1]). So, it is natural to study the harmonicity of £ in contact metric geometry.
If M is Sasakian, then £ is a harmonic vector field ([17]) and determines a harmonic
map ([8]). Han and Yim [9] proved that the Hopf vector field f on the unit 3-sphere
S3, that is the characteristic vector field of the standard contact metric structure on
S3 (see for example [1]), is the only unit vector field which defines a harmonic map
into its unit tangent bundle. In [15], the present author proves that the characteristic
vector field £ of a general contact metric manifold is a harmonic vector field if and only
if it is an eigenvector of the Ricci operator. Gonzalez-Davila and Vanhecke [8] studied
harmonicity and minimality of the characteristic vector field of a contact metric three-
manifold when the space is locally homogeneous or has constant scalar curvature. The
same authors introduced in [7] the notion of a strongly normal unit vector field V. Such
notion generalises the normality notion used in contact metric geometry where the role
of V is played by the characteristic vector field.

The main results of this paper are the following.

THEOREM 1 . 1 . Let (M, g, 77, £, (j>) be a contact metric three-manifold. Then the

characteristic vector Geld £ : (M, g) —> (TlM,g3) defines a harmonic map if and only if

M is a generalised (k, fi)-space on an everywhere dense open subset (specified in Section

2).

For a non-Sasakian contact metric three-manifold, we define the invariant p
:— (4\ /2W^/ ||r||, where W is the Webster scalar curvature and ||r|| the scalar torsion
introduced by Chern and Hamilton [4]. Then, we get the following.

THEOREM 1 . 2 . Let (M, 77, g, £, <j>) be a contact metric three-manifold. Then the

following statements are equivalent:

(i) £ is strongly normal;

(ii) £ is harmonic and minimal;

(iii) M is Sasakian or is locally isometric to a unimoduJar Lie group G equipped

with a non-Sasakian left-invariant contact metric structure (r],g). More

precisely:

ifp > 1, G is the 3-sphere group SU(2);

ifp = 1, G is the group E(2), that is, the universal covering of the group

of rigid motions of Euclidean 2-space;

if-I / p < 1, G is the group SL(2, R);

ifp — —1, G is the group E(\, 1) of rigid motions of the Minkowski 2-space;
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where G denotes the universal covering ofG.

COROLLARY 1 . 3 . A compact three-manifold admits a contact metric structure
whose characteristic vector field is strongly normal, or equivalently, harmonic and min-
imal, if and only if it is diffeomorphic to a left quotient of the Lie group G under a
discrete subgroup, where G is one ofSU(2), H3 (the Heisenberg group), SL{2, R), E(2)
or £(1,1).

2. PRELIMINARIES ON CONTACT METRIC MANIFOLDS

In this section, we collect some basic facts about contact metric manifolds. All
manifolds are assumed to be connected and smooth. A (2n+ l)-dimensional manifold M
is said to be a contact manifold if it admits a global 1-form r\ such that r\ A (̂ 77)" ^ 0.
Given 77, there exists a unique vector field £, called the characteristic vector field or the
Reeb vector field, such that r/(£) = 1 and drj(£, •) = 0. Furthermore, a Riemannian metric
g is said to be an associated metric if there exists a tensor <f> of type (1,1) such that

V = 9(Zr), dr,(;-)=g(; 0-), <j>2 =-I2 + ^ ® $.

(77, £, <£) is called an almost contact structure. (n,g,£,</>), or (r],g), is called a contact
metric structure and (M, 77, g, £, <j>) a contact metric manifold. We denote by V the Levi
Civita connection and by R the corresponding Riemann curvature tensor given by

RXY = V[x,y] - [Vx, Vy]

for all smooth vector fields X, Y. Moreover, we denote by p the Ricci tensor of type
(0,2), by Q the corresponding endomorphism field and by r the scalar curvature. The
tensor h — {L^(j>)/2, where L denotes the Lie derivative, is symmetric and satisfies

(2.1) V f = - 0 - <j>h, Vtf = 0, h<j) = -4>h, hi = 0.

The tensor h and the scalar torsion ||r||, T = L^g, introduced in [4], are related by

T = 2g{h<t>,-), | | r | | 2 = 4 t r / l
2

If M is 3-dimensional, andO, A, —A are the eigenvalues of h, then ||r||2 = 8A2 = 8-4p(£,f).
A contact metric manifold is said to be a K-contact manifold if £ is a Killing vec-

tor field, or equivalently, h = 0. An almost contact structure (77, £,<£) naturally gives
an almost complex structure on the product manifold M x R. If this almost complex
structure is integrable, the almost contact structure is called normal. If an almost con-
tact structure comes from a contact form 77, then the contact form 77 is called normal.
A Sasakian manifold is a normal contact metric manifold. Moreover, a contact metric
structure (£, 77, cj>, g) is a Sasakian structure if and only if
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Any Sasakian manifold is if-contact and the converse also holds when n = 1, that is,
for three-dimensional spaces. We refer to [1] for more information about contact metric
manifolds.

Next, let (M, 77, g, £, </>) be a contact metric three-manifold and m a point of M.
Then there exists a smooth local orthonormal basis of the form {£, ei,e2 = <pei} in a
neigborhood of m. Now, let Ui be the open subset of M where h / 0 and let t/2 be the
open subset of points m € M such that h — 0 in a neighbourhood of m. U\ U U2 is an
open dense subset of M. On U\ we put he\ — Aei and hence we have he2 — —Ae2 where
A is a non-vanishing smooth function. Then, we have

LEMMA 2 . 1 . [3] On Ux we have

= - a e 2

= -(A -

(2.2) Ve iei = —{e2(X) + A}e2, V62e2 = — {ei(A) + B}ex,

ie2 = "^{e2(A) + A} e i + (A +

5}e2 + (A -

(2.3) ^ ^

where A = p(£, e{), B — p(£, e2) and a is a smooth function. Moreover,

(2.4) V4/i = 2a/i0 + ^(A)s,

where s is the tensor Geld defined by s£ — 0, se^ — e\, se2 = —e2

Finally, we recall that the components of the Ricci operator Q, with respect to
{£,ei,e2 = <t>e), are given by (see [13])

' = 2(1 - A2)f + Aei + Be2,

(2.5)

Qe2 = B£ + f (A)ex + ( ^ - 1 + A2 - 2aA)e2.

3. GENERALISED (k, /^-SPACES AND HARMONICITY OF THE CHARACTERISTIC

VECTOR FIELD

Let {M,g,T],^,<j>) be a contact metric three-manifold. We recall that M is called

generalised (k, ^)-space if

(3.1) R(X, Y)£ = k{r,(X)Y - rj(Y)X} + p{ri(X)hY - r,(Y)hX},
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where k and fi are in general smooth functions. If k = 1, then M is Sasakian. If A; and
/i are constant, M is a (k, /x)-space.

Moreover, we recall that a unit vector field V on a Riemannian manifold (M,g)

defines a harmonic map V : (M, g) —> (^M, gs) if and only if the following two conditions
are satisfied:

(1) V is a harmonic vector field, and

(2) trR(V.V,V)- = 0.

(See [9] for the compact case and [6] for the non-compact case.)

In [15] contact metric manifolds whose characteristic vector field £ is a harmonic

vector field are called H-manifolds. Moreover, we have

THEOREM 3 . 1 . [15] T i e characteristic vector Geld of a contact metric (2n+l)-
manifold is a harmonic vector Geld if and ony if it is an eigenvector of the Ricci operator.

For n — 1, this theorem is proved in [8].

For a contact metric three-manifold, from Lemma 2.1, we have on U\:

t rR(V.f , 0 - = -2Af(A)f + (A - \)Bex + (A + l)Ae2,

and hence, by Theorem 3.1, we obtain easily the following

PROPOSITION 3 . 2 . [8] Let (M, g, T), f, <f>) be a contact metric three-manifold.
Then £ defines a harmonic map if and only iff; is a harmonic vector Geld and £||r| | = 0.

In order to prove Theorem 1.1, we first prepare some lemmas.

LEMMA 3 . 3 . Let (M, g, r], £, <j>) be a generalised (k, n)-space. Then on Ui U U2

we have
V^h = fj,h(j>, fj. = 2a, £(A) = 0, k = 1 - A2,

where a and A are the functions defined in Lemma 2.1.

P R O O F : We use the notations of Lemma 2.1. If the open set U2 is not empty, then the
restriction of the contact structure to U2 is Sasakian and in this case h = 0, X — a — fj, = 0
and k = 1. Furthermore, on U\ the equation (3.1) implies that the operator £ := R(t;,)€
satisfies

(3.2) £ =-k<t>2 + ixh = k(I -

This equation implies

(.(p — k(j> + fih<j> a n d <j>£

from which follows

(3.3) fy + <t>l= 2k(f>
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and

(3.4) e<j>-4>l= 2nh<j>.

Moreover, for a general contact metric manifold, we have (see [12, formula (2.6)])

2 V e / i = i<f>- <j>l

Hence, (3.4) gives

(3.5) V{/i = nh(j> or equivalently, 0V^/i — fj,h.

So, (2.4) of Lemma 2.1 and (3.5) give fj. = 2a and £(A) = 0. Moreover, from (3.2) and
(3.5), we get

(3.6) £ = -k<t>2 +

which is equivalent (see [12, Remark 2.4]) to

This gives k = 1 - A2. D

LEMMA 3 . 4 . If M is a generalised (k,n)-space, then p((, -)|ker^ = 0, that is, £ is
a harmonic vector field.

PROOF: Prom (3.1) we have R(X, Y)( = 0 for all X, Y € kerrj and hence p{X, f)
= 0 forallXekerr?. D

PROOF OF THE THEOREM 1.1: We use the notations of Lemma 2.1. If the open
set U2 is not empty, then the restriction of the contact structure to U2 is Sasakian and
in this case the theorem is trivial. Next, let U\ be non-empty and let (£, ei, e2 = (j>e\) be
a local <£-basis as in Lemma 2.1.

Assume that M is a generalised (k, yn)-space. Then from Proposition 3.2 and Lemmas
3.4 and 3.5, it follows that £ defines a harmonic map. Conversely, assume that £ defines a
harmonic map. We show that M is a generalised (k,/i)-space on U\. In [13], it is proved
that the Ricci operator Q of a general contact metric three-manifold is (locally) given by

(3.7) Q = a / + PTJ ® £ + <j>V(h - o{<t>2) ® £ + a(ei)r] ®ei+ a(e2)v ® e2

where a = p(£, -)|ker,,, a = (r/2) - 1 + A2 and 0 = -(r/2) + 3 - 3A2. Since (2.4)holds,
from (3.7) we obtain on U\ that a = 0 and £ (A) = 0 if and only if

(3.8) Q = {^ - 1 + A2 | / + {-^ + 3 - 3A2}?/ ® £ + 2ah.

Moreover, for a Riemannian three-manifold the curvature R(X, Y)£ is completely deter-
mined by the Ricci operator. More precisely, we have

R(X, Y)£ = v(X)QY - V(Y)QX - g(QY,t)X + g{QX,£)Y - ^{v(X)Y - T](Y)X},
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and hence, using (3.8), we get

R(X, Y)£ = (1 - \2){v(X)Y - rj(Y)X} + 2a{rj(X)hY - V(Y)hX}.

Therefore, M is a generalised (k, /z)-space with k = 1 — A2 and /J, — 2a on Ui. D

REMARK. By the proof of Theorem 1.1, we get that, for a contact metric three-manifold,
the following properties are equivalent on U\ U U^:

(1) M3 is a generalised (k, fx)-space;

(2) P K , -)|ter, = 0 and£(A) = 0;

(3) Q = ((r/2) - k)l + ( - ( r /2) + 3*)ij <g> £ + fih.

EXAMPLES. Consider the three-dimensional manifold M = {x € R3 : x3 ^ 0} and the

9 Id 2 9 2zi d Id
5 ' e2 = ~?"3 1 e3 = 2l22;3 ^ 1 g-"5 1" -

vector fields

We define r),£,g,<j> by ^ = eu g{ei,ej) = <Jy, TJ(X) = ff(^,X) and 0(d) = 0,<
= e3, 0(e3) = - e 2 . Then (M,r],^,g,(j>) is a generalised (k,/j)-spa,ce (see [10]) and
thus £ : (M,g) —^ ^TlM,gs) defines a harmonic map. On the other hand, p(^,-)|kcrrj
= 0 and £(A) = 0 are both invariant under a £>-homothetic deformation: r/t = tr), £t

= (!/*)£> 5t = *9 + <(* - 1)»7 ® »?,& = & * > 0, and hence, for each positive number,
there exists a contact metric three-manifold whose characteristic vector field defines a
harmonic map.

4. HARMONIC, MINIMAL AND STRONGLY NORMAL CHARACTERISTIC VECTOR FIELDS

ON CONTACT METRIC THREE-MANIFOLDS

In [7], the authors introduced the notion of a strongly normal unit vector field. A
unit vector field V on a Riemannian manifold is called strongly normal if

g((Vx(W)Y, Z)=0 for all X, Y, Z 1 V.

Most of the results obtained in [7] are based on this notion because a strongly normal
unit vector field is minimal. A unit vector field V on a Riemannian manifold (M,g)
determines a submanifold of its unit tangent sphere bundle. When M is compact and
orientable, the volume of V is the volume of the submanifold and V is called minimal if
it is critical for the volume functional defined on the space x1 {M) of all unit vector fields
on {M,g). A similar notion has been introduced in [6] when M is also non-compact and
non-orientable.

The notion of a strongly normal unit vector field generalises the normality notion
used in contact metric geometry where the role of V is played by the characteristic vector
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field £. In fact, a normal contact metric manifold satisfies the conditon V£ = — (j> and
thus we have

Vx(V£)r = -(Vx<j>)Y = rj(Y)X - g(X,Y)t.

In [8], the same authors study harmonicity and minimality of the characteristic vector
field of a contact metric three-manifold (M,r],g, £,</>). They proved the following results.
If M is locally homogeneous, then £ is harmonic if and only if it is minimal or equiva-
lently, if and only if M is locally isometric to a unimodular Lie group equipped with a
left-invariant contact metric structure. If M has constant scalar curvature, then M is
locally isometric to a unimodular Lie group equipped with a left-invariant contact met-
ric structure if and only if £ is harmonic and minimal. Theorem 1.2, Corollary 1.3 and
Proposition 4.1 extend such results.

P R O O F OF THE T H E O R E M 1.2: Let (M,r),g,£,<j)) be a contact metric three-
manifold. We use the notations of Lemma 2.1. If the open set U2 is not empty,
then the restriction of the contact structure to U2 is Sasakian and in this case £ is
strongly normal, harmonic and minimal. Next, let U\ be non-empty and let (£, e\,e2)
be a local </>-basis on U\ as in Lemma 2.1. From (2.1) it follows that — VxV£
= Vx</> + V x ( # ) = Vx<t> + (Vx0)/i + <j>(Vxh). In dimension 3, the Cfl-structure
associated to the contact metric structure is integrable (see for example [1]), that is
(Vx<f>)Y = g(X + hX, Y)$ - t}(X)(X + hX). Therefore,

£is strongly normal <==> (Vxh)Y is collinear to £ for alLY, Y e ker??.

From Lemma 2.1, we have

(e2(A) + A)e2,

(Vei/i)e2 = Vei/ie2 - /i(Vei/ie2) = -A(A + 1)£ + i(e2(A) + B)e, - ei(A)e2,

(Ve2h)e2 = Ve2/ie2 - h{Ve,he2) = -(c2(A) + B)eY - e2(A)e2,

(Ve2/i)ei = Ve2he1 - /i(Vej/»ei) = e2(A)e! - (d(A) + B)e2.

So,

(4.1) £ is strongly normal on U\ •<=>• ei(A) = e2(A) = A = B — 0.

Now, in [8], the authors derived the following analityc condition for the minimality of £.
The characteristic vector field £ is minimal if and only if on the open U\ we have

{ }
B = 4JA(A2 + 2(1 + A))}~lei(A).
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Consequently, on U\ we have

£ is strongly normal <=>• £ is harmonic and minimal.

Moreover, by (2.3), (4.1) implies 2£(A) = [ei,e2](A) = 0. Thus, we get on U\\

£ is strongly normal <*=>• A is constant and £ is harmonic.

In this case, that is when £ is strongly normal, (2.5) becomes

from which we easily get

" = 0,

£) +2Aei(a))ei,

(Ve2Q)e2-(e2(0+2Ae2(a))e2.

Then, using the formula

X{r)
i

where {E{} is an orthonormal basis, we get

So, ei(a) = e2(a) = 0 and hence, since 2£ — [ei,e2], a is locally constant on U\. Since
A is continuous, it follows that M — U\ and hence A and a are globally constant. Then,
Lemma 2.1 gives

[£, ei] = c2e2, [f, e2] = cxex and [d, e2] = 2£,

where ci = A + a — 1 and c2 = A — a + 1 are constant. From this we obtain that M is
locally isometric to a unimodular Lie group with a left-invariant contact metric structure
(see [16, p. 10], [11] and [14, Theorem 3.1]). [14, Theorem 3.1] gives a classification of
the unimodular Lie groups with a left-invariant contact metric structure in terms of the
Webster scalar curvature W = (r - Ric(f, f) + 4)/8 = (r + 2 + | | T | | 2 / 4 ) / 8 and the scalar
torsion ||r||. Since our contact metric structure is non-Sasakian, then we can consider
the invariant p := ( 4 \ / 2 W ) / | | T | | and (1) of [14, Theorem 3.1] can be reformulated as
(iii) of Theorem 1.2. D
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PROOF OF COROLLARY 1.3. Geiges [5] proved that a compact three-manifold
admits a normal contact form (that is, a Sasakian structure, see Section 2) if and only if
it is diffeomorphic to a left quotient T\G of a Lie group G under a discrete subgroup F,
where G is one of SU(2), H3 (the Heisenberg group), SL(2, R). This result and Theorem
1.2 imply the Corollary 1.3. D

REMARK. Let G be one of the following simply connected unimodular Lie groups: SU(2),
H3, SL{2, R), E{2) or E(l, 1). Consequently, G contains a discrete subgroup F such that
the space of right cosets T\G is a differentiate manifold and the natural projection vr
is a differentiable map. Moreover, each left-invariant vector field on G descends to F\G,
or equivalently, if X is left-invariant, then 7T*X(,a = ir*Xa, for all a € G and b € F.
In a similar way, a left invariant contact metric structure on G and, in general, all its
left-invariant tensor fields, descend to the quotient space. So, if we consider on G a left-
invariant contact metric structure (see [14]), then T\G has a contact metric structure
with the same curvature properties for the curvature tensor on G. Also, the projections of
the (left-invariant) characteristic vector fields preserve the properties of being harmonic,
minimal and to determine harmonic maps into the corresponding unit tangent sphere
bundle. Note that a three-dimensional Lie group G admits a discrete subgroup F such
that T\G is compact if and only if G is unimodular ([11]).

We conclude this section with the following.

PROPOSITION 4 . 1 . Let M be a contact metric three-manifold with constant
scalar torsion \\T\\. Then £ is harmonic <=> £ is minimal •$=> £ is strongly normal
<=> M is Sasakian or it is strongly locally (^-symmetric.

PROOF: We use the notations of Lemma 2.1. The conditon | |T| |= constant is
equivalent to the condition A=constant. So, from (4.1), (4.2) and Theorem 3.1 follows
that harmonicity, minimality and strongly normality for £ are equivalent. Finally, from
[3, Section 5] it follows that the three-dimensional strongly locally ^-symmetric spaces
are locally isometric to the Lie groups listed in Theorem 1.2. D
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