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INCLUSIONS FOR CLASSES OF LACUNARY SETS

C.S. CHUN AND A. R. FREEDMAN

1. Introduction. A sequence, a; < @, < a3 < ..., of positive integers is
called lacunary if the difference sequence d, = a, ,, — a, tends to infinity
as n — oo.

In several recent papers we have made use of these sequences in analysis
and combinatorics. In [6] we show that the class £ of all sets which are
either finite or the range of a lacunary sequence is “full” in the sense that
if (#,) is a real sequence and 2,  ; |t,| < oo for each L € % then (z;) is an
/, sequence, that is,

Ezozl Itk! < ©oo.

In [3] the class & of all finite unions of sets of .# is shown to consist of
exactly those sets of integers, 4, whose characteristic sequence, x4, is in
the well known summability space bs + ¢;. More recently, in [1], we study
lacunary sequences in connection with the conjecture of P. Erdgs that, if a
set A of integers satisfies 2, , 1/a = oo, then 4 contains arbitrarily long
arithmetic progressions. It turns out that Erdos’ conjecture is true if, and
only if, it is true for all sets in % and that the conjecture is indeed true for
all sets in .%, a certain full subclass of . to be defined below.

In this paper we introduce some natural subclasses of ¥ and prove
inclusions among them and among their closures with respect to finite
unions and subsets. These subclasses were suggested by the combinatorial
and analytical work done in [1] and [3]. Furthermore, the use of lacunary
sets goes back as far as the classical contribution of G. G. Lorentz [5].
These statements notwithstanding, the proofs of these inclusions became
so demanding that the results seem to generate an interest in themselves
aside from any possible applications.

For a class & of subsets of the natural numbers I we define ¥ * and [¥]
to be the “hereditary closure” and closure under finite unions of %
respectively, that is,

F*={A4:ACS forsomeS € ¥},
[Fl={4:4=S,US8 U...US, forsomeS; € ¥andk = 0}.
It is easy to see that [#*] = [¥]*. Moreover, a class of sets & is of the

form [¥*] if and only if & = 2! or o7 is a “zero-class”, that is, the class
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of sets of zero upper density with respect to some density on / (see [2]
and [4]).

We now define the subclasses of .# in which we are interested. For an
integer j = 0 define %, to be the class of all lacunary sequences for which
s = t implies that dSJ = d, + j. Further, we define 4 to be the
“monotone” lacunary sequences %}, . Finally, define two subclasses of
& thus:

H=Ae B Va=m) &=% -2,
2. Inclusions. The remainder of this paper will be devoted to proving
the following diagrams. In every case the inclusion itself is a trivial

consequence of the definitions. It is in proving the two classes to be equal
or unequal, as the case may be, that the real difficulties arise.

(4] &
(1 Ml & ) & ) & 1]
] &

where 1 = i < j and [%] and [%] are incomparable. If we remove the
closure under finite unions from each of the above classes the same
inclusions hold by definition. However we get the following for hereditary
closure * of these classes.

25 C
) LSSy =L =
2% C

for all i = 1. #% and #% remain incomparable. Finally, taking both
closures we get

Q) #3] S 193] = [£1] ¢ 121
We omit the simple proof of our first proposition.
PrOPOSITION 1. If o € B C 2! and o is full, so is B.

PropPOSITION 2.7 C 2l is full if and only if [/] is full if and only if <2 *
is full.

Proof. If o/ is full then by Proposition 1, [#/] and &/ * are full.
Suppose [«/] is full, and (¢, ) is a real sequence such that

2:021 ltki = 0OQ.
Then there exists 4 € [«/] such that

ZkeA lt,] = oo.
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Letd =A4, UA, U ... U A, where 4, € &/ fori =1,2,..., n Then
there exist i such that

EkeA, lt| = oo.

Hence 7 is full.
Suppose that o7 * is full. If

zo=1 |t,] = oo,
there exists A € &/* such that
D lty] = oo
Let A € B where B € ./ Then obviously
Des It = o0
and B € </ Therefore «7 is full.
ProrosiTION 3. & 4, %, are full

Proof. Since & C 4 C £ we only need to show that % is full. Let ()
be a real sequence such that

220=] ‘tkl = OQ.
For each n, there exists b, € I such that
(o0}
2 lts, +kaml = oo

We construct two sequences (M,),~ ,, and (N,),—, in I with the fol-
lowing properties:

4 N, <M, <N, (=1
(5) N,=M,=b,mod2" (nZ=2)
6) M,,, =N mod@2" +1) (n=1)

(7 M,>b, (nZ2)
®) zaeB[Z",MmN"] ft,) >1 (n=2)
© SecspmnVVa>1 (nz2)

where Bls, a, b] = {a,a + s,a + 2s,...,a + [ (b — a)/s)s}.

Take N; = b; and suppose that we have constructed two sequences
(M,,)n":z1 and (N,),— ! such that (4) and (6) are true forn = 1, 2,.. .,
m — 2 and (5), (7), (8) and (9) are true forn = 2, 3,...,m — 1. Since
2" and 2" ' + 1 are relatively prime, we can find M,, € I such that

M, = b, mod 2",

M, = N,_,mod Q"' + 1),

m

M, >b, and M, >N, ;.
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Since
> ltp, +koml = o0 and M, = b, mod 2"
we have
202 ltat, + kol = oo
Clearly
>0 1M, + K2™) = co.
Now we can take N, large enough such that
Nm = Mm mod 2m,
EaEB[T",Mm.Nm] lt,) > 1,
and
EUEB[ZM,M,",NM] l/a > l
Let
A=Ul, BR+1,N, MU B M N DD
Clearly 4 € % and X, 4 It,| = oo.
ProprosITION 4. The class &5 is not full. Thus [£%¥) & €7).
Proof. The sequence 1/k satisfies
20 1k = co.
But, for any infinite set 4 in %4,
Dues 1/a < oo,
The last statement follows since [£}] is full.

Proposition 4 also establishes the corresponding inclusion in diagrams
(1) and (2). ’

ProrosiTION 5. [£3] = [ZF].

Proof. Obviously [#%] C [#F]. For [£}] C [¥%], we only need to show
A C [#A]. In fact we show that, for any infinite set A = {a,} € 4,
A c B, U B, where B,, B, are members of .%. For n = 1, let
d, = a,,, — a, Weknowd, = d,,, for each n and lim d, = co. Thus
we can find sy, 1, € I such that

dl é a,‘ - (al + SOdl) < 2d1 < d’l and
o Ve + jd) > L.
Suppose that we have thus constructed s, < s, < ... <5, .l =1<
t; < ... < t, such that
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d_=a,

Ty © (afk«l + sk_‘d’k~l) < Zdtlwl < dtk

and
2t W, jd, ) >

fork = 1,2,..., m. Again, since d, = d, | for each n and lim d, = co,
we can find s,, and ¢, | such that

Sp—1 < Sy and Iy < Im+1

d =a, —(a +s,d)<d and

m+ 1

2y Vi, + jd, ) > 1.
Forn =1,2,3,...,1let
Po=A{a,a +d,....a +s5,d}

n
W, = {at,,’ Aty - oo az,,+,}-
Then we have,

ey, Va>1 and 4 = U, W,

Let
Bi=PUW,UP,UW,U...UPy,_ | UW, U....
By=W,UP,UW,UP,U...UW, _,UP, U....
Clearly B, € % fori = 1,2and 4 € B, U B,.
We have shown that [¥£3] = [£F]. We proceed to show that
L3 ¢ £

Definition 1. (1) Let a, x|, x,,...,x, be positive integers with
a=xy+x,+...+x,andx; = x, = ... = x, Then (x}, x5, ..., x,)is
called a partition of a of length n.

(2) let (a;, ap,...,a,) be any finite sequence of positive integers
and let

(0)  (Vyis Yizo -+ > Yikp Y2 V2o o5 Yok o o5 Yulo = =+ 2 k)

be a nondecreasing sequence such that (y,, ya,...,J¥;) is a parti-
tion of a. Then the block (10) is called a partition of the sequence
(aj, ay, ..., a,).

Definition 2. Let (x,) be a sequence and (z(n)) a strictly increasing
sequence of positive integers with #(1) = 1. Then

(xt(n)’ Xy 15 -+ oo Xt 1)~ 1)

is called the n-th part of (x,),-, with respect to (z(n) ).
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LEMMA 6. Let p > 2 be a prime number and let (ay, a,, . . ., ap) be the
sequence with a, = p, foralli = 1,2,...,p. Let
1 Y1z Vikp Y2 oo Vakp -5 Vpts Vpo -+ ypkp)
be a partition of (ay, ay, . . ., ap) with y;; > 1. Then kp =1 andypl = p.
Proof. Suppose that k, > 1. Then Yok, < P and since p is a prime,
yp] < ypkp‘
It follows that k; > 1 for all i < p since if k; = 1, then
yi] = p > ypkp’
which is a contradiction. Furthermore,
Y < Vi,
since a; = p is a prime. Therefore 1 < y;; < y,; < ... <y, < p which
is impossible.
ProrosITION 7. £¥ C L.

Proof. We construct A € £t — £%. Let p,, be the m-th prime number.

Let D, = (P, Pp» - - - » Py) b€ D, TEpetitions of p,. Let

{d,} =D, Dy,...,D,,....)
and finally let the sequence 4 = (a,) be defined such that a; = 1 and
a4,y = a, + d,

Clearly 4 € 4 c #t. Suppose that 4 € F3 andso4 € B = {b,},
where B € %,. Lete, = b,,; — b, for u = 1. Since B is lacunary there
exists N such that, forany k = N, ¢, > 1. If

tm)y =1+ 23" p,

then {a,(,,), @;(my+ 15 - - - » Qmt 1)~ 1} 1S the m-th part of A corresponding to
the m-th part D,, of {d, }. Take m such that by = a,,,. For each i, since
A C B, some part of {e,} is a partition of D,. Then by = a,,,, = b,, for
some s, and thus N = s and e, > 1. By Lemma 6, if

GYm+1y = by, < byiy = i1
then

P = €y = Pm+1-
By Bertrand’s postulate (i.e., Pi+1 < 2p;) we get

(l/z)pm+l < Pm = €y

Hencee, + ¢,,1 > p,, . This implies that e, = p,, ;. Thus 4 and B are
asymptotically equal. Hence B € %, implies 4 € %,. But the following
computation shows that 4 & .%,. For each n,
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+1
Ei(é"f(m))ﬂ 1/a, = 2, 1{a,my + (k — Dp,}

P
< /0 1/{aymy + xp,}dx

— _L logatgm-*' 1)
Pm at(m)

1. 1+ pi+ ...+ p

P 1+p%+...+pfn_]

1 2
——log{1+ 5 Pm 5 }
P 1+ p1+ ...+ Dy
1 P

2
Pm ]+p%+...+pm_1

Pm
1+ p2+ ...+ pi_,

A

A

< _.________._
1+ 2’""
Thus, using the Prime Number Theorem,
= 1
DeealVa=1+ 22, (Eﬁzi%m 1/a;)

<1+ _-—————-————
2 ‘1+2

<r+4s2w mlogm
m

log m
<r+s2?n°=l g2
m

where r and s are positive constants.
ProrosiTION 8. ¥ ¢ L% and £ ¢ L3,

Proof. Suppose that #% C #%. Since £3 is full, #% would also be full.
This contradicts Proposition 4.

Suppose that ¥§ C %%, then 5 = £¥ U £3 = £} which
contradicts Proposition 7.

Next we show that [#¥] & [#]. This will establish the corresponding
inclusions in diagram (3) and (after Proposition 12 below) in diagram (2).
First we present two lemmas.

LEMMA 9. Let x, u and v be positive integers. Suppose that

x+x—-—D+...+x—-—u+1l
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=d +dy+ ...+ d,
x—w+Ex—u—-—DH+...+x—-—u—v+tl
=dy .+ ...+ dyip
d=d,=...=dyyp and dy > (1/2u(u + v).
Then we have dy < d, g
Proof. Suppose that d; = d, = ... = d,,p Then
ux — (1/u(u — 1) = ad,
vx — (1/2vQu + v — 1) = Bd,.
It follows that
wx — (1/Duv(u — 1) = avd,
wx — (1/2)uwQRu + v — 1) = Bud,.
Subtracting, we get
(1/uv(u + v) = (v — Bu)d,.
Thus d; divides (1/2)uv(u + v), which contradicts the hypothesis.
We omit the proof of the second lemma:

LEmMA 10. Let M, H, (t = 1,2,...,r), G and B be given reals which
satisfy

H, =H +M, fort =12,....,r—1 and
M, =1+ G\ M, fort=1,2,....r
Then M, = G(H, + B) fort = 1,2,...,r.
ProrosiTiON 11. [ZF] € [Z].
Proof. Containment is clear since £} C £* = ¥ Form = 1, let
D, = (m2 + m — l,m2 +m—2,...,m).

The sequence (d,,) = (D, D,, Ds, ... .) will be the difference sequence for
aset A = {a,} with a; = 1. It is clear that 4 € £ We will prove that
A & [£F]. Let us assume, otherwise, that 4 € 4, U 4, U ... U 4
where each 4, € 4. Foreach i, | =i = r, we write

r

4, ={a) and d, =dyy — a,
Since the A4; are lacunary sets there is an N such that n = N implies
. 3 .
d, = (3r)’ for all i.

Take
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a* = max{dy:1 =i = r}).

Consider the part P, of 4 corresponding to D,,. That is

Pm = {aa(m)’ aa(m)+1= e aa(m-H)}

where
a(t) =1+ X212 =1/6)¢ — D2t — 1) + 1 and
(da(m)’ da'(;;z‘, Flseeeo du(iiz+])—l) = Dm‘

We consider m large enough so that a* = g,,,. Let

My =3r,B=(1/2)@r — 1),

G =97, M, = G@m+ 3r+ B) and

M, =1+ G M, fort=12...,r
Then we have

M, +M,_, + ...+ M + M,

= (/G){A + G)Y — 1}M, + M,

={(l +G) — 1}(m + 3r + B) + 3r.

Since M, + ... + M, is thus a polynomial in m of degree 1, we can
further choose m such that m* > M, + ... + M,

We will partition some of P, into r + 1 blocks L., L,_,,..., Ly, L,
thus:

L = {aza(m + 1) — (My + M, + ... + M)
SjSam+ 1) — (My+ M, + ...+ M_)}

Hence L, is to the left of L, with the rightmost point of L, ; and the
leftmost point of L, equal. Furthermore, each L, has M, + 1 points in it
and thus represents M, differences of 4. Finally, since

M, +M_, + ...+ My+1=m*=am+ 1) — a(m),

it follows that UL, C P,,. Also, the rightmost point of Ly 1S G+ 1)-

Let H, be the smallest difference d, represented in the block L, (it occurs
at the right hand end of L,). Since, within P, the differences decrease by
one at each point we clearly get

H, =H +M, forO=t<r.

t

Note that Hy = m so that H; = m + 3r. We can apply Lemma 10 and
obtain

M,=GH,+ B) fort=12,...,r

Note that M, is divisible by 3r. We now partition L, into M,/3r blocks
If, Iﬁ, e, I]’Wy thus:
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= {g;a(m + ) — My + ...+ M)+ (k— 13
<jsam+ 1) — My + ...+ M)+ k-3r})

Here I} is to the left of I; ,, with one point in common. The number of
elements of 4 in I} is 3r + 1. Since

I, CA,UA,U...UA,

we get that for some i

t
I, N A;] > 3.
Let
' ' i
a,=ds ay =as,, and 4y = d5iq4p

be three elements of I; N A;. The following equations result:
x+Ex—-D+...+x—uw
=di+di .+ dye
x—u—D+Ex—-—u—-2)+...+x—u—v)
= df3+a + d3+a+1 + ...+ d§+a+ﬂ—l
where x = d,u=p — p,v=p” — p'. Recall
d;=d,, and ds> (3r) > (1/Quw(u + v)
(since u + v = 3r). We can apply Lemma 9 and get

' i
ds < dsiairp—1-

Thus we conclude that, for any I}, there exists an A, such that d’ strictly in-
creases at least once for elements of 4; in the mterval [min I}, max I;].

We first look at L, the left most of the L, According to the last
paragraph, since there are M,/3r blocks I in L,, there are at least M,/3r
increases of the d!, among 4, A,, . . . A,. Thus there exists i, such that, for
pomts of A4, w1th1n the interval [min L max L,], d’° increases at least
M, /3r? tlmes Let d’° be the largest dlfference of A; in the interval
[mm L, max L,]. Clearly

dP > M,/3r%
On the other hand
M,/3r* = 3r)M,/97° = (3r)M,/G
= (3rXH, + B) = (3r)2H, + 3r — 1)/2.

This last number is the diameter of the interval determined by I /,.
That is,

i r . r
dl?l, > max IMr/3, — min IM’/3,.
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Evidently this diameter exceeds any diameter of the interval determined
by I/ when ¢ < r. It follows that

I <
4, N LI =
for any j, t+ where + << r. Without loss of generality we may assume
Now we look at L,_,. Again, for the M,_,/3r blocks, I} ', there is an
A; such that
4, n I =

Clearly i # 1 and it follows, as before, that there is an i; (# 1) such that,
for points of A4, i 3 within the interval [min L, |, max L,_,], d,} increases
at least M,_,/3r? times. We may assume i; = 2. The largest difference
d? , thus exceeds M, _,/3r% So that, as before,

n._
A, "I =1 fore<r—1.

We repeat this process r times and then look at L, = I D, 1t follows
from the above that

4, "I =1 foralli=1,2,...,r
But this implies that
4+ 1= =N @A, Uud,U...UA4,)|

a contradiction.

A
~

ProrosiTION 12. 3* =

Proof. Let A = {a;} € & and set Ny = 1. For any k = 1, there exists
N, > Nk 1 such that d, > k* whenever n > N,. For each n with
N, < n = N,y we let

d, = qk +r, where0 =r, <k
Thus
gk =d, —r, >k — k =( — Dk

Hence g, > k — l and d, = (¢, — r,)k + (k + Dr, where g, — r, is
positive. Let

o, = (0, @, .o, @)

be the finite sequence (k, k, ..., k, k + 1,k + 1,...,k + 1) where there
are ¢, — r, many k and r, many k + 1. Let

(ey) = (a, @y, 03, .. )

a

-

= (a“, (LS LTI ,alql, [L53 TE ,azqz, e IR ,anqn, F .).

It follows from the definition of «, that, for n = m,
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a, = a,; + 1 foranyiand ;.

Hence, letting b, = a; and b,,, |, = b,, + ¢, theset B = {b,:m € I} €
P,
For any n,

d,=a, +...+a
Thus, for a, € 4,

a, = a; + 27;11 d=a + 2;:11 (qu':l a;) = b,,
where

m=1+ 2:‘;1 4q;-

Hence A € Band & C .,?Xl[. The reverse inclusion is immediate.

nq’l'

Next we show that [,?M’_] c [,?Mj ] for i < j. We need a lemma:

LEMMA 13. Suppose that d, m, s, t, u, v, i and j are nonnegative integers
suchthatd >m* + mi<j<ms=ml=v=mandl =t = m,
then

Dvd+j)=t1d~+j)+ iimpliesv = tandv(d + j) = t(d + j),

2)yvd = td + i impliesv = t and vd = td,

Nvd+j)=sd+j)+ td+ iimpliesv <s + tandv(d + j) <
s(d + j) + 1,

4) vd + j) + sd = td + i impliesv + s < t and v(d + j) +
sd < td,

S)yvd = sd + t(d + j) + i impliesv = s + t and vd < sd +
1(d + j),

6)vd + s(d+j)=t(d+j)+ iimpliesv+ s =tandvd + s(d + j) <
td =+ j).

Proof. The proofs of 2), 4), 6) are similar to those of 1), 3), 5)
respectively. We prove only 1), 3) and 5):

Dvd+j)std+j)+i<td+j)+d+j=0q+ 1)d+)).
Hence v <t + 1 so thatv = 1.

HNvd+j)=sd+j)+td+i<sd+j)+d+j) =
(s + 2)(d + j) which proves the first part. Now

vd+j) S (s +t — 1)d + ))
=sd+j)+td+ (—1)j—d<sd+j) +td
since
¢t —1)j—d<m*— @m + m)<0.

5) Since vd = sd + t(d + j) + i is equivalent to —i — § =
(s + t — v)d, we have

—a’<—m—m2<—i—tj§(s+t—v)d.
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Thusweget —1 < (s +¢t—v)or,v =5+ t. If vd = sd + t(d + j) then
we have
v —s) = t(d+)).
This implies v — s > ¢ which is a contradiction.
ProrosiTion 14. [4,] & [,Z’M] for0 =i <.

Proof We make the following defmmons
(m + ],m + ... ,m + J), m repetitions of m* + Js
Rm = (m3, m3, e, m3), m repetltlons of m?,
m = (Lys Ry Ly Rpps - - -5 L,s R,,), m repetitions of L,,, R, ,
(dn) = (B], Bz,.. B ... .)
= {a,} wherea, =1 +d + ... +d,_,,
Ala,, a,] = {am5r<n}
A(a,, a,) = {a, m<r<n}
a(m, t) = L4212+ 2 4. 4 (m— 1)+ 2 — Dym
foril=ml=t=m+ 1,
B(m, t) = a(m, t) + m.
Note that a(m + 1, 1) = a(m, m + 1). For 1 =t = m + 1 define
App = A[aa(m,t)’ AB(m,1) L Al = A(aa(m,t)’ aﬂ(m,t))
Apme = A[aB(m,t)’ Ao(m,e+1) L Az = A(ag(m 1y Baimi+1) )
If we let
Ay = Appy U Apyy U Appp U Agpp U oo U Ay U Ay
then A,, is the m-th part of 4 corresponding B,,. It is clear that
A4 e .QM_ c [,?M_].

Suppose that X = {x,} € & and X C 4. We will show that, if j <m
and d = m*> > m* + m, then

X N Ag,,.| = 2.

Let {y,} be the difference sequence of {x,} and f be the function on /
such that x, = ds Then f(s + 1) — f(s) equals the number of terms in
the sum

yS = df(s) + df(s)+l + [N + df(s+]),1.
At first we will consider the following six cases.
@) If
Aoimey = Xg < Xgu1 < Xgi2 = Apimy)

(i.e., three consecutive elements of x are in A4;,,), then, since x € "?Mi SO
that y, = y,,, + i, we have
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472
Xg01 T %q = Xg42 T Xgh + 1,
K 2
(fg+ 1D — fl@)d+)= (fq+2—flg+ b Yd + )+ i
where d = m>. By Lemma 13, case 1), we conclude that
fg+ 1 —f@ <fq@+2 - fa+th and Y, =Yg+
then we

(ii) Similarly, if x, < Xg+1 < Xg4p ATE in the interval Agmp
apply Lemma 13 case 2) and we get

f(q+1)*f(q)§f(q+2)—f(q+1

) and yq-s—yq+l.

(iif) 1f
< xq+2 = Ay(m,t+1)

<< <
then, since

a )
a(m,t) —
and Xx;42 is in Agme

+ i,

that is, Xg Xg+1 8¢ in Apm

— < —
Xg41 T X = xg42 7 Xgtl

it follows that
—_ < —
asq) = @+ af(g+1

q

+ i

af(g+1
= agmny — Ygrn T YD T agomn B

which is equivalent to

(fig+H — fl@)d + )
= (B(m, 1) — fig + H)H)d+ )+ (fg+ 2) —

Now we apply Lemma 13 case 3) and get
fq+ - f@<fatD= fla+1)

B(m, 1))d + i

anq $0 < Yg+1-

(iv) Similarly, if
Gamy = Xq < Gpon) = Fat1 < xg = Gagme+ 1y

that is, x, is in Ap,, and Xgr1 Xq+2 are in Ay, then we can apply

Lemma 13 case 4) and get

flg+H — f@) =< flg+2
W) If

—fig+ D and Y, < Vg+1-

<<
< Xg42 = ABmet D

< <
= x, < Xg+1 = GomitD
and Xg42 is in Appme+1y

apimsy =
where ¢ = m, that is, X, and x,4, are in Appe

then we have
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UYg+1) T Gig) = g+ T Gfgrny T
= dogme+1) ~ Y+ T gt T Qyme+ry T
or, equivalently,
(flg+ 1) = flg))d = (a(m,t + 1) = flg + D)d
+ (flg+2) —amt + 1))d+j) + i
By Lemma 13 case 5) we get
f@+ D) —fi=flg+2)—flg+ 1) and y, <y,
(vi) Finally, if
Apmay = Xg < Gaimuar1) = Xgu1 < Xg42 = gy
then we can apply the previous lemma case 6) and obtain
@+ D -fAP=flg+2D—flg+1) and y, <y

Now assume that | X N Ap, .| = 3 and so there exist three consecutive
elements x,, x,,, |, X,,+, of x in Ap,,,.. By case (i)

Jow+ 1 = fw)=fw+2) - fiw+ 1D
and so
2Afw+ D = fw)) = fw+ 1) = fw) + fw +2) = fw+ 1)
=fw+2)— f(w)=Em.
Thus
fw + 1) — f(w) = (1/2)m and
Yo =Uw+ 1 — fw))d = (1/2)md = (1/2)m*,

the half diameter of 4,
We claim, for any u < w and x, = a,,, ), that y, = y,.
Proof of claim: Since X € .S,PM‘, we have y, = y, + i. We may write

y,=td+j)+vd and y, = qd
and get
td+j)+vd =qd+ i

If + > 0 (resp. t = 0), then we apply the previous lemma case 4) (resp.
case 2) and get y, = y,.

By this claim we conclude that for any u = w and x,, = a,,, ) we have
V. =y, = (1/2)m* = (1/2) diameter of A, = (1/2) diameter of 4,,,, for
t=12,..,m.

Hence, for any t = m, Ay, and A;,,, each contain at least two elements
of X. '
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Therefore we conclude that: By cases (iii) and (iv) above, if x ¢ € A
and x,, € A(’)*’."’ then

fa+ D= flg<flag+2)—fla+t D
By cases (v) and (vi), if x, € AR, and x, 45 € A7+ 1) then
fa+ D) - =flg+2—flg+1

By cases (i) and (ii) if xp, x4 1, X149 € Appy OF X Xpp 1 Xg42 € Appes
then

Mg+ —flg)=flg+2)— flg+ D

Now if we let x;, be an element of X such that x;, € 47,, and
S+2€Aquf0rq——l2 mThenwehaveforq-12
m — 1,

S, + 1) = fis) < flsger 1 = flsg40)-
Therefore we get
P=flsp + D = fls) < flsg + 1) = fls) < ...
< fGs,, + 1) = f(5,) = fw+ 1) — fw) = (1/2)m.

Since there are m — 1 strict inequalities, we get a contradiction. Therefore
we conclude that |[X N Ag, .| = 2.

Finally we show that 4 & [.?’Mi]. Suppose that4 = X, U X, U ... U X,
where X, € S’Mi fors = 1,2,...,n. Since

Apmm = Yi-1 Armm N X)),
for any m with m > m* + mand m > J, we have
m = |Apl = 27 Armm N X| =
Thus m is bounded above, a contradiction.
CoroLLARY 15. For all i = 0, ["gM.] G [L). In particular 4] & [£].
ProrosITION 16. [%] & [F].

Proof Obv1ously [%4] < 4] Strictness is proved by observing that
{n} e,?but{n}éle%]

At this point we have completed the proofs of all diagrams given at the

beginning of this section. Some further interesting inclusions concerning
< follow.

ProrosiTiON 17. T C [£F].
Proof. Let A = {n*} and B = {n* + 1}. Then
A U B € [¥4] c [£7]
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But 4 U B is not lacunary. Thus 4 U B ¢ #%.

Finally we will prove [4] G [#}]. First, we define some terms and prove

a lemma.

Definition 3. Let {a,} = A be a sequence and (a,, a,,,, - .., a,,,) be a
part of {a,}.

If d, d;y,....d;4,—y) 1s a strictly decreasing sequence, where
d; = a;yy — a,, then we say that (a,, a,,, ..., a,,) is a consecutive de-

scending wave of length r + 1 in A. Further, the d, are called the (decreas-
ing) steps of the wave. (Note that the definition of descending wave in [1]
is more general.)

LEMMA 18. There exists a function f(n) (depending only on n) such that,
Joranysets A\, A,, ..., A, € &, and for any consecutive descending wave X
inAd, U A, U ...UA4,I|X| = fn).

Proof. We take f(1) = 2 which clearly works.

Suppose there exists f(n — 1) such that for any 4,, 4,, ..., 4, ,in 4,
and any consecutive descending wave Xin 4, U 4, U ... U 4, |, we
have |[X| = f(n — 1).

Let A = A4, U A4, U ... U A4, ,and B = {b,} = A4, where 4,
A,, ..., A, € 4. Further let

u{lz {a S A:bu<a < bu+]},
V.={c€AdUBb,=c=b,,}

Suppose that X is a consecutive descending wave in 4 U B, V, C X and
V.., C X, then we prove that |W | < |W,, ||

u

Lete; > e, > ... > e, > ¢ > ¢ > ... > ¢,y be the decreasing
steps of the consecutive descending wave ¥, U V, . |, where |W,| = ¢ and
IWJ'F]i = p. SinCCB (S g,

(q+ l)eq+1 §el +ez+...+eq+1
=b,41 = b, = b,43 ~ by
=c Tt ot ...ty =(p+ Do <(p+ Degyy.

Therefore g + 1 < p + 1 and so ¢ < p.

Next we show, if X € 4 U B is a consecutive descending wave then
XN Bl =f(n—1) + 2

Suppose, otherwise, that |[X N B| > f(n — 1) + 2. Let

(b, bs1r....b} = X N B,

wheres Z r + f(n — 1) + 2. Then ¥, C Xforallr = k =5 — 1. By the
above, 0 = |W| < |W,, || < ... <<|W,_,l, thus we have

W_lZs—r—1Zf(n—1)+1>fin—1)
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which is a contradiction since W,_, is a consecutive descending wave in A.
Finally, let X be a descending wave of 4 U B. Again, writing

X N B = {br, br+l""’bs}’
we get
XCHUVU...UV_,ulJ

where H and J are the (possibly empty) consecutive descending waves in

A N X which come before b,, and after b, respectively. Thus
IXI = HI + W+ 25 = (fn = D+ 3)(fin — D +2)

i=r

and so we can set
Sy = (f(n = D + 2(f(n — 1 + 3).
ProrosiTION 19. [F] € [ZF].
Proof. Let
B, = (n*, (n — Dn,(n — n, ..., 2n, n),
d) =B, B,y....,B,...)

b q’
a,=1+d +...+d, ;forn=1273....,
W, = m, m,...,m), with m(m + 1)/2 repetitions of m,
Ow) =W, Wo, oo W)

=(1,2,2,2,3,3,3,3,3,3,4,...),
X,=1+y,+y,+...+y, form=12....

Then {x,} € & and {a,} C {x,}. Thus {a,} € £} C [¥}]. Since {a,}
contains arbitrarily long consecutive descending waves, by the previous
lemma, {a,} ¢ [4]. Thus [4] & [£}].
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