INCLUSIONS FOR CLASSES OF LACUNARY SETS

C. S. CHUN AND A. R. FREEDMAN

1. Introduction. A sequence, $a_1 < a_2 < a_3 < \dots$, of positive integers is called *lacunary* if the difference sequence $d_n = a_{n+1} - a_n$ tends to infinity as $n \to \infty$.

In several recent papers we have made use of these sequences in analysis and combinatorics. In [6] we show that the class \mathscr{L} of all sets which are either finite or the range of a lacunary sequence is "full" in the sense that if (t_k) is a real sequence and $\sum_{k \in L} |t_k| < \infty$ for each $L \in \mathscr{L}$, then (t_k) is an l_1 sequence, that is,

$$\sum_{k=1}^{\infty} |t_k| < \infty.$$

In [3] the class \mathscr{L} of all finite unions of sets of \mathscr{L} is shown to consist of exactly those sets of integers, A, whose characteristic sequence, χ_A , is in the well known summability space $bs + c_0$. More recently, in [1], we study lacunary sequences in connection with the conjecture of P. Erdös that, if a set A of integers satisfies $\sum_{a \in A} 1/a = \infty$, then A contains arbitrarily long arithmetic progressions. It turns out that Erdös' conjecture is true if, and only if, it is true for all sets in \mathscr{L} , and that the conjecture is indeed true for all sets in \mathscr{L}_1 , a certain full subclass of \mathscr{L} to be defined below.

In this paper we introduce some natural subclasses of \mathcal{L} and prove inclusions among them and among their closures with respect to finite unions and subsets. These subclasses were suggested by the combinatorial and analytical work done in [1] and [3]. Furthermore, the use of lacunary sets goes back as far as the classical contribution of G. G. Lorentz [5]. These statements notwithstanding, the proofs of these inclusions became so demanding that the results seem to generate an interest in themselves aside from any possible applications.

For a class \mathscr{S} of subsets of the natural numbers I we define \mathscr{S}^* and $[\mathscr{S}]$ to be the "hereditary closure" and closure under finite unions of \mathscr{S} respectively, that is,

 $\mathscr{S}^* = \{A : A \subset S \text{ for some } S \in \mathscr{S}\},\$

 $[\mathscr{S}] = \{A: A = S_1 \cup S_2 \cup \ldots \cup S_k \text{ for some } S_i \in \mathscr{S} \text{ and } k \ge 0\}.$

It is easy to see that $[\mathscr{S}^*] = [\mathscr{S}]^*$. Moreover, a class of sets \mathscr{A} is of the form $[\mathscr{S}^*]$ if and only if $\mathscr{A} = 2^I$ or \mathscr{A} is a "zero-class", that is, the class

Received March 3, 1987. The research of the second author was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

of sets of zero upper density with respect to some density on I (see [2] and [4]).

We now define the subclasses of \mathscr{L} in which we are interested. For an integer $j \ge 0$ define \mathscr{L}_{M_1} to be the class of all lacunary sequences for which $s \le t$ implies that $d_s^j \le d_t + j$. Further, we define \mathscr{L}_1 to be the "monotone" lacunary sequences \mathscr{L}_{M_0} . Finally, define two subclasses of \mathscr{L}_1 thus:

$$\mathscr{L}_2 = \{ A \in \mathscr{L}_1 : \sum_{a \in \mathcal{A}} 1/a = \infty \}, \ \mathscr{L}_3 = \mathscr{L}_1 - \mathscr{L}_2.$$

2. Inclusions. The remainder of this paper will be devoted to proving the following diagrams. In every case the inclusion itself is a trivial consequence of the definitions. It is in proving the two classes to be equal or unequal, as the case may be, that the real difficulties arise.

$$\begin{aligned} & [\mathscr{L}_2] \subseteq \\ (1) & [\mathscr{L}_1] \subseteq [\mathscr{L}_{M_i}] \subseteq [\mathscr{L}_{M_j}] \subseteq [\mathscr{L}] \\ & [\mathscr{L}_3] \subseteq \end{aligned}$$

where $1 \leq i < j$ and $[\mathscr{L}_2]$ and $[\mathscr{L}_3]$ are incomparable. If we remove the closure under finite unions from each of the above classes the same inclusions hold by definition. However we get the following for hereditary closure * of these classes.

$$\begin{array}{ccc} \mathscr{L}_{2}^{*} & \subsetneq \\ (2) & \qquad \mathscr{L}_{1}^{*} & \subsetneq \, \mathscr{L}_{M_{i}}^{*} = \mathscr{L}^{*} = \mathscr{L} \\ & \qquad \mathscr{L}_{3}^{*} & \subsetneq \end{array}$$

for all $i \ge 1$. \mathscr{L}_2^* and \mathscr{L}_3^* remain incomparable. Finally, taking both closures we get

(3)
$$[\mathscr{L}_3^*] \subsetneq [\mathscr{L}_2^*] = [\mathscr{L}_1^*] \subsetneq [\mathscr{L}].$$

We omit the simple proof of our first proposition.

PROPOSITION 1. If $\mathscr{A} \subset \mathscr{B} \subset 2^{I}$ and \mathscr{A} is full, so is \mathscr{B} .

PROPOSITION 2. $\mathscr{A} \subset 2^{I}$ is full if and only if $[\mathscr{A}]$ is full if and only if \mathscr{A}^{*} is full.

Proof. If \mathscr{A} is full then by Proposition 1, $[\mathscr{A}]$ and \mathscr{A}^* are full. Suppose $[\mathscr{A}]$ is full, and (t_k) is a real sequence such that

$$\sum_{k=1}^{\infty} |t_k| = \infty.$$

Then there exists $A \in [\mathscr{A}]$ such that

$$\sum_{k\in A} |t_k| = \infty.$$

Let $A = A_1 \cup A_2 \cup \ldots \cup A_n$ where $A_i \in \mathscr{A}$ for $i = 1, 2, \ldots, n$. Then there exist *i* such that

 $\sum_{k\in A_i} |t_k| = \infty.$

Hence 𝖋 is full.

Suppose that \mathscr{A}^* is full. If

$$\sum_{k=1}^{\infty} |t_k| = \infty,$$

there exists $A \in \mathscr{A}^*$ such that

$$\sum_{k\in\mathcal{A}}|t_k|=\infty.$$

Let $A \subset B$ where $B \in \mathscr{A}$. Then obviously

$$\sum_{k \in B} |t_k| = \infty$$

and $B \in \mathscr{A}$. Therefore \mathscr{A} is full.

PROPOSITION 3. $\mathscr{L}, \mathscr{L}_1, \mathscr{L}_2$ are full.

Proof. Since $\mathscr{L}_2 \subset \mathscr{L}_1 \subset \mathscr{L}$, we only need to show that \mathscr{L}_2 is full. Let (t_k) be a real sequence such that

 $\sum_{k=1}^{\infty} |t_k| = \infty.$

For each *n*, there exists $b_n \in I$ such that

$$\sum_{k=1}^{\infty} |t_{(b_n+k2^n)}| = \infty.$$

We construct two sequences $(M_n)_{n=2}^{\infty}$, and $(N_n)_{n=1}^{\infty}$ in *I* with the following properties:

(4) $N_n < M_{n+1} < N_{n+1}$ $(n \ge 1)$

(5)
$$N_n \equiv M_n \equiv b_n \mod 2^n$$
 $(n \ge 2)$

(6)
$$M_{n+1} \equiv N_n \mod (2^n + 1) \quad (n \ge 1)$$

 $(7) \quad M_n > b_n \quad (n \ge 2)$

(8)
$$\sum_{a \in B[2^n, M_n, N_n]} |t_a| > 1 \quad (n \ge 2)$$

(9)
$$\sum_{a \in B[2^n, M_n, N_n]} 1/a > 1 \quad (n \ge 2)$$

where $B[s, a, b] = \{a, a + s, a + 2s, \dots, a + [(b - a)/s]s\}$.

Take $N_1 = b_1$ and suppose that we have constructed two sequences $(M_n)_{n=2}^{m-1}$ and $(N_n)_{n=1}^{m-1}$ such that (4) and (6) are true for n = 1, 2, ..., m - 2 and (5), (7), (8) and (9) are true for n = 2, 3, ..., m - 1. Since 2^m and $2^{m-1} + 1$ are relatively prime, we can find $M_m \in I$ such that

$$M_m \equiv b_m \mod 2^m,$$

$$M_m \equiv N_{m-1} \mod (2^{m-1} + 1),$$

$$M_m > b_m \text{ and } M_m > N_{m-1}.$$

Since

$$\sum_{k=1}^{\infty} |t_{(b_m + k2^m)}| = \infty \quad \text{and} \quad M_m \equiv b_m \mod 2^m$$

we have

$$\sum_{k=1}^{\infty} |t_{(M_m + k2^m)}| = \infty.$$

Clearly

$$\sum_{k=1}^{\infty} 1/(M_m + k2^m) = \infty.$$

Now we can take N_m large enough such that

$$N_m \equiv M_m \mod 2^m,$$

$$\sum_{a \in B[2^m, M_m, N_m]} |t_a| > 1$$

and

$$\sum_{a \in B[2^m, M_m, N_m]} 1/a > 1.$$

Let

$$A = \bigcup_{k=1}^{\infty} (B[2^{k} + 1, N_{k}, M_{k+1}] \cup B[2^{k+1}, M_{k+1}, N_{k+1}]).$$

Clearly $A \in \mathscr{L}_{2}$ and $\sum_{a \in A} |t_{a}| = \infty$.

PROPOSITION 4. The class \mathscr{L}_3 is not full. Thus $[\mathscr{L}_3^*] \subsetneq [\mathscr{L}_1^*]$.

,

Proof. The sequence 1/k satisfies

 $\sum_{k=1}^{\infty} 1/k = \infty.$

But, for any infinite set A in \mathscr{L}_3 ,

 $\sum_{a\in A} 1/a < \infty.$

The last statement follows since $[\mathcal{L}_1^*]$ is full.

Proposition 4 also establishes the corresponding inclusion in diagrams (1) and (2).

PROPOSITION 5. $[\mathscr{L}_2^*] = [\mathscr{L}_1^*].$

Proof. Obviously $[\mathscr{L}_2^*] \subset [\mathscr{L}_1^*]$. For $[\mathscr{L}_1^*] \subset [\mathscr{L}_2^*]$, we only need to show $\mathscr{L}_1 \subset [\mathscr{L}_2^*]$. In fact we show that, for any infinite set $A = \{a_n\} \in \mathscr{L}_1$, $A \subset B_1 \cup B_2$, where B_1 , B_2 are members of \mathscr{L}_2 . For $n \ge 1$, let $d_n = a_{n+1} - a_n$. We know $d_n \le d_{n+1}$ for each n and $\lim d_n = \infty$. Thus we can find $s_0, t_1 \in I$ such that

$$d_1 \leq a_{t_1} - (a_1 + s_0 d_1) < 2d_1 < d_{t_1}$$
 and
 $\sum_{j=1}^{s_0} 1/(a_1 + j d_1) > 1.$

Suppose that we have thus constructed $s_0 < s_1 < \ldots < s_{m-1}$, $t_0 = 1 < t_1 < \ldots < t_m$ such that

462

$$d_{t_{k-1}} \leq a_{t_k} - (a_{t_{k-1}} + s_{k-1}d_{t_{k-1}}) < 2d_{t_{k-1}} < d_{t_k}$$

and

 $\sum_{j=1}^{s_{k-1}} 1/(a_{t_{k-1}} + jd_{t_{k-1}}) > 1$

for k = 1, 2, ..., m. Again, since $d_n \leq d_{n+1}$ for each n and $\lim d_n = \infty$, we can find s_m and t_{m+1} such that

$$s_{m-1} < s_m$$
 and $t_m < t_{m+1}$
 $d_{t_m} \leq a_{t_{m+1}} - (a_{t_m} + s_m d_{t_m}) < d_{t_{m+1}}$ and
 $\sum_{j=1}^{s_m} 1/(a_{t_m} + j d_{t_m}) > 1.$

For n = 1, 2, 3, ..., let

$$P_n = \{a_{t_n}, a_{t_n} + d_{t_n}, \dots, a_{t_n} + s_n d_{t_n}\}$$
$$W_n = \{a_{t_n}, a_{(t_n+1)}, \dots, a_{t_{n+1}}\}.$$

Then we have,

$$\sum_{a \in p_n} 1/a > 1$$
 and $A = \bigcup_{n=1}^{\infty} W_n$

Let

$$B_1 = P_1 \cup W_2 \cup P_3 \cup W_4 \cup \ldots \cup P_{2n-1} \cup W_{2n} \cup \ldots$$

$$B_2 = W_1 \cup P_2 \cup W_3 \cup P_4 \cup \ldots \cup W_{2n-1} \cup P_{2n} \cup \ldots$$

Clearly $B_i \in \mathscr{L}_2$ for i = 1, 2 and $A \subset B_1 \cup B_2$.

We have shown that $[\mathscr{L}_2^*] = [\mathscr{L}_1^*]$. We proceed to show that $\mathscr{L}_2^* \subsetneq \mathscr{L}_1^*$.

Definition 1. (1) Let a, x_1, x_2, \ldots, x_n be positive integers with $a = x_1 + x_2 + \ldots + x_n$ and $x_1 \le x_2 \le \ldots \le x_n$. Then (x_1, x_2, \ldots, x_n) is called a *partition* of a of length n.

(2) let (a_1, a_2, \ldots, a_n) be any finite sequence of positive integers and let

(10)
$$(y_{11}, y_{12}, \ldots, y_{1k_1}, y_{21}, y_{22}, \ldots, y_{2k_2}, \ldots, y_{n_1}, \ldots, y_{nk_n})$$

be a nondecreasing sequence such that $(y_{i1}, y_{i2}, \ldots, y_{ik_i})$ is a partition of a_i . Then the block (10) is called a *partition* of the sequence (a_1, a_2, \ldots, a_n) .

Definition 2. Let (x_n) be a sequence and (t(n)) a strictly increasing sequence of positive integers with t(1) = 1. Then

 $(x_{t(n)}, x_{t(n)+1}, \ldots, x_{t(n+1)-1})$

is called the *n*-th part of $(x_n)_{n=1}^{\infty}$ with respect to (t(n)).

LEMMA 6. Let p > 2 be a prime number and let (a_1, a_2, \ldots, a_p) be the sequence with $a_i = p$, for all $i = 1, 2, \ldots, p$. Let

$$(y_{11}, y_{12}, \ldots, y_{1k_1}, y_{21}, \ldots, y_{2k_2}, \ldots, y_{p1}, y_{p2}, \ldots, y_{pk_p})$$

be a partition of (a_1, a_2, \ldots, a_p) with $y_{11} > 1$. Then $k_p = 1$ and $y_{p1} = p$.

Proof. Suppose that $k_p > 1$. Then $y_{pk_p} < p$ and since p is a prime,

$$y_{p1} < y_{pk_p}$$

It follows that $k_i > 1$ for all i < p since if $k_i = 1$, then

$$y_{i1} = p > y_{pk_n},$$

which is a contradiction. Furthermore,

$$y_{i1} < y_{ik_i}$$

since $a_i = p$ is a prime. Therefore $1 < y_{11} < y_{21} < \ldots < y_{p1} < p$ which is impossible.

Proposition 7. $\mathscr{L}_2^* \subsetneq \mathscr{L}_1^*$.

Proof. We construct $A \in \mathscr{L}_1^* - \mathscr{L}_2^*$. Let p_m be the *m*-th prime number. Let $D_m = (p_m, p_m, \dots, p_m)$ be p_m repetitions of p_m . Let

 $\{d_n\} = (D_1, D_2, \dots, D_m, \dots)$

and finally let the sequence $A = (a_n)$ be defined such that $a_1 = 1$ and $a_{n+1} = a_n + d_n$.

Clearly $A \in \mathscr{L}_1 \subset \mathscr{L}_1^*$. Suppose that $A \in \mathscr{L}_2^*$ and so $A \subset B = \{b_u\}$, where $B \in \mathscr{L}_2$. Let $e_u = b_{u+1} - b_u$ for $u \ge 1$. Since B is lacunary there exists N such that, for any $k \ge N$, $e_k > 1$. If

$$t(m) = 1 + \sum_{i=1}^{m-1} p_i$$

then $\{a_{t(m)}, a_{t(m)+1}, \ldots, a_{t(m+1)-1}\}$ is the *m*-th part of *A* corresponding to the *m*-th part D_m of $\{d_n\}$. Take *m* such that $b_N \leq a_{t(m)}$. For each *i*, since $A \subset B$, some part of $\{e_u\}$ is a partition of D_i . Then $b_N \leq a_{t(m)} = b_s$, for some *s*, and thus $N \leq s$ and $e_s > 1$. By Lemma 6, if

$$a_{t(m+1)} \leq b_u < b_{u+1} \leq a_{t(m+2)-1},$$

then

$$p_m \leq e_u \leq p_{m+1}.$$

By Bertrand's postulate (i.e., $p_{i+1} < 2p_i$) we get

$$(1/2)p_{m+1} < p_m \leq e_u.$$

Hence $e_u + e_{u+1} > p_{m+1}$. This implies that $e_u = p_{m+1}$. Thus A and B are asymptotically equal. Hence $B \in \mathscr{L}_2$ implies $A \in \mathscr{L}_2$. But the following computation shows that $A \notin \mathscr{L}_2$. For each n,

$$\begin{split} \sum_{k=t(m)+1}^{t(m+1)} 1/a_k &= \sum_{k=1}^{p_m} 1/\{a_{t(m)} + (k-1)p_m\} \\ &< \int_0^{p_m} 1/\{a_{t(m)} + xp_m\}dx \\ &= \frac{1}{p_m} \log \frac{a_{t(m+1)}}{a_{t(m)}} \\ &= \frac{1}{p_m} \log \frac{1+p_1^2+\ldots+p_m^2}{1+p_1^2+\ldots+p_{m-1}^2} \\ &= \frac{1}{p_m} \log \left\{ 1 + \frac{p_m^2}{1+p_1^2+\ldots+p_{m-1}^2} \right\} \\ &\leq \frac{1}{p_m} \cdot \frac{p_m^2}{1+p_1^2+\ldots+p_{m-1}^2} \\ &\leq \frac{p_m}{1+p_1^2+\ldots+p_{m-1}^2} \\ &\leq \frac{p_m}{1+p_1^2+\ldots+p_{m-1}^2} \end{split}$$

Thus, using the Prime Number Theorem,

$$\sum_{a \in A} 1/a = 1 + \sum_{m=1}^{\infty} \left(\sum_{k=t(m+1)}^{k=t(m+1)} 1/a_k \right)$$

$$< 1 + \sum_{m=1}^{\infty} \frac{p_m}{1 + \sum_{k=1}^{m-1} k^2}$$

$$< r + s \sum_{m=1}^{\infty} \frac{m \log m}{m^3}$$

$$< r + s \sum_{m=1}^{\infty} \frac{\log m}{m^2} < \infty$$

where r and s are positive constants.

PROPOSITION 8. $\mathscr{L}_{2}^{*} \not\subset \mathscr{L}_{3}^{*}$ and $\mathscr{L}_{3}^{*} \not\subset \mathscr{L}_{2}^{*}$.

Proof. Suppose that $\mathscr{L}_2^* \subset \mathscr{L}_3^*$. Since \mathscr{L}_2^* is full, \mathscr{L}_3^* would also be full. This contradicts Proposition 4.

Suppose that $\mathscr{L}_3^* \subset \mathscr{L}_2^*$, then $\mathscr{L}_2^* = \mathscr{L}_3^* \cup \mathscr{L}_2^* = \mathscr{L}_1^*$ which contradicts Proposition 7.

Next we show that $[\mathscr{L}_2^*] \subsetneq [\mathscr{L}]$. This will establish the corresponding inclusions in diagram (3) and (after Proposition 12 below) in diagram (2). First we present two lemmas.

LEMMA 9. Let x, u and v be positive integers. Suppose that

$$x + (x - 1) + \ldots + (x - u + 1)$$

 $= d_{1} + d_{2} + \dots + d_{\alpha},$ $(x - u) + (x - u - 1) + \dots + (x - u - v + 1)$ $= d_{\alpha+1} + \dots + d_{\alpha+\beta},$ $d_{1} \leq d_{2} \leq \dots \leq d_{\alpha+\beta} \text{ and } d_{1} > (1/2)uv(u + v).$ Then we have $d_{1} < d_{\alpha+\beta}.$ Proof. Suppose that $d_{1} = d_{2} = \dots = d_{\alpha+\beta}.$ Then $ux - (1/2)u(u - 1) = \alpha d_{1}$ $vx - (1/2)v(2u + v - 1) = \beta d_{1}.$

It follows that

 $uvx - (1/2)uv(u - 1) = \alpha v d_1$

$$uvx - (1/2)uv(2u + v - 1) = \beta ud_1$$

Subtracting, we get

 $(1/2)uv(u + v) = (\alpha v - \beta u)d_1.$

Thus d_1 divides (1/2)uv(u + v), which contradicts the hypothesis.

We omit the proof of the second lemma:

LEMMA 10. Let M_t , H_t (t = 1, 2, ..., r), G and B be given reals which satisfy

$$H_{t+1} = H_t + M_t$$
 for $t = 1, 2, ..., r - 1$ and

 $M_t = (1 + G)^{t-1} M_1$ for t = 1, 2, ..., r.

Then $M_t = G(H_t + B)$ for t = 1, 2, ..., r.

PROPOSITION 11. $[\mathcal{L}_{1}^{*}] \subsetneq [\mathcal{L}].$

Proof. Containment is clear since $\mathscr{L}_1^* \subset \mathscr{L}^* = \mathscr{L}$. For $m \ge 1$, let

 $D_m = (m^2 + m - 1, m^2 + m - 2, \dots, m).$

The sequence $(d_n) = (D_1, D_2, D_3, ...)$ will be the difference sequence for a set $A = \{a_n\}$ with $a_1 = 1$. It is clear that $A \in \mathcal{L}$. We will prove that $A \notin [\mathcal{L}_1^*]$. Let us assume, otherwise, that $A \subset A_1 \cup A_2 \cup ... \cup A_r$ where each $A_i \in \mathcal{L}_1$. For each $i, 1 \leq i \leq r$, we write

 $A_i = \{a_n^i\}$ and $d_n^i = a_{n+1}^i - a_n^i$.

Since the A_i are lacunary sets there is an N such that $n \ge N$ implies

$$d_n^i \geq (3r)^3$$
 for all *i*.

Take

 $a^* = \max\{d_N^i: 1 \leq i \leq r\}.$

Consider the part P_m of A corresponding to D_m . That is

 $P_m = \{a_{\alpha(m)}, a_{\alpha(m)+1}, \ldots, a_{\alpha(m+1)}\}$

where

$$\alpha(t) = 1 + \sum_{i=1}^{t-1} i^2 = (1/6)(t-1)t(2t-1) + 1 \text{ and} (d_{\alpha(m)}, d_{\alpha(m)+1}, \dots, d_{\alpha(m+1)-1}) = D_m.$$

We consider m large enough so that $a^* \leq a_{\alpha(m)}$. Let

$$M_0 = 3r, B = (1/2)(3r - 1),$$

$$G = 9r^3, M_1 = G(m + 3r + B) \text{ and }$$

$$M_t = (1 + G)^{t-1}M_1 \text{ for } t = 1, 2, \dots, r.$$

Then we have

$$M_r + M_{r-1} + \ldots + M_1 + M_0$$

= (1/G){ (1 + G)^r - 1}M₁ + M₀
= { (1 + G)^r - 1}(m + 3r + B) + 3r.

Since $M_r + \ldots + M_0$ is thus a polynomial in *m* of degree 1, we can further choose *m* such that $m^2 > M_r + \ldots + M_0$.

We will partition some of P_m into r + 1 blocks L_r , L_{r-1} , ..., L_1 , L_0 thus:

$$L_t = \{a_j: \alpha(m+1) - (M_0 + M_1 + \ldots + M_t) \\ \leq j \leq \alpha(m+1) - (M_0 + M_1 + \ldots + M_{t-1}) \}.$$

Hence L_{t+1} is to the left of L_t with the rightmost point of L_{t+1} and the leftmost point of L_t equal. Furthermore, each L_t has $M_t + 1$ points in it and thus represents M_t differences of A. Finally, since

$$M_r + M_{r-1} + \ldots + M_0 + 1 \leq m^2 = \alpha(m+1) - \alpha(m),$$

it follows that $\cup L_t \subset P_m$. Also, the rightmost point of L_0 is $a_{\alpha(m+1)}$.

Let H_t be the smallest difference d_n represented in the block L_t (it occurs at the right hand end of L_t). Since, within P_m , the differences decrease by one at each point we clearly get

 $H_{t+1} = H_t + M_t \quad \text{for } 0 \leq t < r.$

Note that $H_0 = m$ so that $H_1 = m + 3r$. We can apply Lemma 10 and obtain

$$M_t = G(H_t + B)$$
 for $t = 1, 2, ..., r$.

Note that M_t is divisible by 3r. We now partition L_t into $M_t/3r$ blocks $I_1^t, I_2^t, \ldots, I_{M_t/3r}^t$ thus:

$$I_k^t = \{a_j: \alpha(m+1) - (M_0 + \ldots + M_t) + (k-1)3r \\ \leq j \leq \alpha(m+1) - (M_0 + \ldots + M_t) + k \cdot 3r\}.$$

Here I_k^t is to the left of I_{k+1}^t with one point in common. The number of elements of A in I_k^t is 3r + 1. Since

$$I_k^t \subset A_1 \cup A_2 \cup \ldots \cup A_r,$$

we get that for some *i*

$$|I_k^t \cap A_i| > 3.$$

Let

$$a_p = a^i_{\delta}, a_{p'} = a^i_{\delta+\alpha}$$
 and $a_{p''} = a^i_{\delta+\alpha+\beta}$

be three elements of $I_k^t \cap A_i$. The following equations result:

$$x + (x - 1) + \dots + (x - u)$$

= $d^{i}_{\delta} + d^{i}_{\delta+1} + \dots + d^{i}_{\delta+\alpha-1}$
 $(x - u - 1) + (x - u - 2) + \dots + (x - u - v)$
= $d^{i}_{\delta+\alpha} + d^{i}_{\delta+\alpha+1} + \dots + d^{i}_{\delta+\alpha+\beta-1}$

where $x = d_p$, u = p' - p, v = p'' - p'. Recall

$$d_j^i \leq d_{j+1}^i \text{ and } d_{\delta}^i > (3r)^3 > (1/2)uv(u+v)$$

(since $u + v \leq 3r$). We can apply Lemma 9 and get

 $d^i_{\delta} < d^i_{\delta+\alpha+\beta-1}.$

Thus we conclude that, for any I_k^t , there exists an A_i such that d_n^i strictly increases at least once for elements of A_i in the interval [min I_k^i , max I_k^i].

We first look at L_r , the left most of the L_i . According to the last paragraph, since there are $M_r/3r$ blocks I_k^r in L_r , there are at least $M_r/3r$ increases of the d_n^i among $A_1, A_2, \ldots A_r$. Thus there exists i_0 such that, for points of A_{i_0} within the interval [min L_r , max L_r], $d_n^{i_0}$ increases at least $M_r/3r^2$ times. Let $d_{n_r}^{i_0}$ be the largest difference of A_{i_0} in the interval [min L_r , max L_r]. Clearly

$$d_{n_r}^{i_0} > M_r/3r^2.$$

On the other hand

$$M_r/3r^2 = (3r)M_r/9r^3 = (3r)M_r/G$$

= $(3r)(H_r + B) = (3r)(2H_r + 3r - 1)/2.$

This last number is the diameter of the interval determined by $I^r_{M_r/3r}$. That is,

$$d_{M_r}^{i_0} > \max I_{M_r/3r}^r - \min I_{M_r/3r}^r$$

468

Evidently this diameter exceeds any diameter of the interval determined by I_i^t when t < r. It follows that

$$|A_{i_0} \cap I_i^l| \leq 1$$

for any j, t where t < r. Without loss of generality we may assume $i_0 = 1$.

Now we look at L_{r-1} . Again, for the $M_{r-1}/3r$ blocks, I_k^{r-1} , there is an A_i such that

 $|A_i \cap I_k^{r-1}| \ge 3.$

Clearly $i \neq 1$ and it follows, as before, that there is an $i_1 (\neq 1)$ such that, for points of A_{i_1} within the interval [min L_{r-1} , max L_{r-1}], $d_n^{i_1}$ increases at least $M_{r-1}/3r^2$ times. We may assume $i_1 = 2$. The largest difference $d_{n_{r-1}}^2$ thus exceeds $M_{r-1}/3r^2$. So that, as before,

 $|A_2 \cap I_j^t| \leq 1$ for t < r - 1.

We repeat this process r times and then look at $L_0 = I_1^0$. It follows from the above that

 $|A_i \cap I_1^0| \leq 1$ for all $i = 1, 2, \dots, r$.

But this implies that

$$3r + 1 = |I_1^0| = |I_1^0 \cap (A_1 \cup A_2 \cup \ldots \cup A_r)| \leq r$$

a contradiction.

PROPOSITION 12. $\mathscr{L}_{M_1}^* = \mathscr{L}$.

Proof. Let $A = \{a_i\} \in \mathscr{L}$ and set $N_0 = 1$. For any $k \ge 1$, there exists $N_k > N_{k-1}$ such that $d_n > k^2$ whenever $n > N_k$. For each n with $N_k < n \le N_{k+1}$, we let

$$d_n = q_n k + r_n$$
, where $0 \leq r_n < k$.

Thus

$$q_n k = d_n - r_n > k^2 - k = (k - 1)k$$

Hence $q_n > k - 1$ and $d_n = (q_n - r_n)k + (k + 1)r_n$ where $q_n - r_n$ is positive. Let

$$\alpha_n = (\alpha_{n1}, \alpha_{n2}, \ldots, \alpha_{nq_n})$$

be the finite sequence (k, k, ..., k, k + 1, k + 1, ..., k + 1) where there are $q_n - r_n$ many k and r_n many k + 1. Let

$$(e_m) = (\alpha_1, \alpha_2, \alpha_3, \dots)$$

= $(\alpha_{11}, \alpha_{12}, \dots, \alpha_{1q_1}, \alpha_{21}, \dots, \alpha_{2q_2}, \dots, \alpha_{n1}, \dots, \alpha_{nq_n}, \dots).$

It follows from the definition of α_n that, for $n \leq m$,

 $\alpha_{ni} \leq \alpha_{mi} + 1$ for any *i* and *j*.

Hence, letting $b_1 = a_1$ and $b_{m+1} = b_m + e_m$, the set $B = \{b_m : m \in I\} \in \mathscr{L}_{M_1}$.

For any n,

 $d_n = \alpha_{n1} + \ldots + \alpha_{nq_n}$

Thus, for $a_n \in A$,

$$a_n = a_1 + \sum_{i=1}^{n-1} d_i = a_1 + \sum_{i=1}^{n-1} (\sum_{j=1}^{q_i} \alpha_{ij}) = b_m,$$

where

$$m = 1 + \sum_{i=1}^n q_i$$

Hence $A \subset B$ and $\mathscr{L} \subset \mathscr{L}^*_{M_1}$. The reverse inclusion is immediate.

Next we show that $[\mathscr{L}_{M_i}] \subsetneq [\mathscr{L}_{M_i}]$ for i < j. We need a lemma:

LEMMA 13. Suppose that d, m, s, t, u, v, i and j are nonnegative integers such that $d > m^2 + m$, i < j < m, $s \le m$, $1 \le v \le m$ and $1 \le t \le m$, then

1) $v(d + j) \leq t(d + j) + i$ implies $v \leq t$ and $v(d + j) \leq t(d + j)$,

2) $vd \leq td + i$ implies $v \leq t$ and $vd \leq td$,

3) $v(d + j) \leq s(d + j) + td + i$ implies v < s + t and v(d + j) < s(d + j) + td,

4) $v(d + j) + sd \leq td + i$ implies v + s < t and v(d + j) + sd < td,

5) $vd \leq sd + t(d + j) + i$ implies $v \leq s + t$ and vd < sd + t(d + j),

6) $vd + s(d + j) \leq t(d + j) + i$ implies $v + s \leq t$ and vd + s(d + j) < t(d + j).

Proof. The proofs of 2), 4), 6) are similar to those of 1), 3), 5) respectively. We prove only 1), 3) and 5):

1) $v(d + j) \leq t(d + j) + i < t(d + j) + d + j = (t + 1)(d + j)$. Hence v < t + 1 so that $v \leq t$.

3) $v(d + j) \leq s(d + j) + td + i < s(d + j) + t(d + j) = (s + t)(d + j)$ which proves the first part. Now

$$v(d + j) \leq (s + t - 1)(d + j)$$

= $s(d + j) + td + (t - 1)j - d < s(d + j) + td$

since

$$(t-1)j - d < m^2 - (m^2 + m) < 0.$$

5) Since $vd \leq sd + t(d + j) + i$ is equivalent to $-i - tj \leq (s + t - v)d$, we have

$$-d < -m - m^2 < -i - tj \leq (s + t - v)d.$$

Thus we get -1 < (s + t - v) or, $v \le s + t$. If $vd \ge sd + t(d + j)$ then we have

$$(v-s)d \ge t(d+j).$$

This implies v - s > t which is a contradiction.

PROPOSITION 14. $[\mathscr{L}_{M_i}] \subsetneq [\mathscr{L}_{M_i}]$ for $0 \leq i < j$.

Proof. We make the following definitions: $L_m = (m^3 + j, m^3 + j, ..., m^3 + j), m$ repetitions of $m^3 + j, R_m = (m^3, m^3, ..., m^3), m$ repetitions of $m^3, B_m = (L_m, R_m, L_m, R_m, ..., L_m, R_m), m$ repetitions of $L_m, R_m, (d_n) = (B_1, B_2, ..., B_m, ...), A = \{a_n\}$ where $a_n = 1 + d_1 + ... + d_{n-1}, A[a_m, a_n] = \{a_r: m \le r \le n\}, A(a_m, a_n) = \{a_r: m < r < n\}, a(m, t) = 1 + 2(1^2 + 2^2 + ... + (m - 1)^2) + 2(t - 1)m$ for $1 \le m, 1 \le t \le m + 1$,

 $\beta(m, t) = \alpha(m, t) + m.$ Note that $\alpha(m + 1, 1) = \alpha(m, m + 1)$. For $1 \le t \le m + 1$ define

$$A_{Lmt} = A[a_{\alpha(m,t)}, a_{\beta(m,t)}], \quad A_{Lmt}^{\circ} = A(a_{\alpha(m,t)}, a_{\beta(m,t)})$$
$$A_{Rmt} = A[a_{\beta(m,t)}, a_{\alpha(m,t+1)}], \quad A_{Rmt}^{\circ} = A(a_{\beta(m,t)}, a_{\alpha(m,t+1)})$$

If we let

$$A_m = A_{Lm1} \cup A_{Rm1} \cup A_{Lm2} \cup A_{Rm2} \cup \ldots \cup A_{Lmm} \cup A_{Rmm},$$

then A_m is the *m*-th part of A corresponding B_m . It is clear that

$$A \in \mathscr{L}_{M_i} \subset [\mathscr{L}_{M_i}].$$

Suppose that $X = \{x_q\} \in \mathscr{L}_{M_i}$ and $X \subset A$. We will show that, if j < m and $d = m^3 > m^2 + m$, then

 $|X \cap A_{Rmm}| \leq 2.$

Let $\{y_q\}$ be the difference sequence of $\{x_q\}$ and f be the function on I such that $x_q = a_{f(q)}$. Then f(s + 1) - f(s) equals the number of terms in the sum

$$y_s = d_{f(s)} + d_{f(s)+1} + \ldots + d_{f(s+1)-1}.$$

At first we will consider the following six cases. (i) If

) II

$$a_{\alpha(m,t)} \leq x_q < x_{q+1} < x_{q+2} \leq a_{\beta(m,t)}$$

(i.e., three consecutive elements of x are in A_{Lmt}), then, since $x \in \mathscr{L}_{M_i}$ so that $y_q \leq y_{q+1} + i$, we have

$$\begin{aligned} x_{q+1} - x_q &\leq x_{q+2} - x_{q+1} + i, \\ a_{f(q+1)} - a_{f(q)} &\leq a_{f(q+2)} + i, \\ (f(q+1) - f(q))(d+j) &\leq (f(q+2) - f(q+1))(d+j) + i, \end{aligned}$$

where $d = m^3$. By Lemma 13, case 1), we conclude that

$$f(q + 1) - f(q) \le f(q + 2) - f(q + 1)$$
 and $y_q \le y_{q+1}$.

(ii) Similarly, if $x_q < x_{q+1} < x_{q+2}$ are in the interval A_{Rml} , then we apply Lemma 13 case 2) and we get

$$f(q + 1) - f(q) \le f(q + 2) - f(q + 1)$$
 and $y_q \le y_{q+1}$.

(iii) If

$$a_{\alpha(m,t)} \leq x_q < x_{q+1} \leq a_{\beta(m,t)} < x_{q+2} \geq a_{\alpha(m,t+1)}$$

that is, x_q , x_{q+1} are in A_{Lmt} and x_{q+2} is in A_{Rmt} , then, since

$$x_{q+1} - x_q \le x_{q+2} - x_{q+1} + 1$$

it follows that

$$a_{f(q+1)} - a_{f(q)} \leq a_{f(q+2)} - a_{f(q+1)} + i$$

= $a_{\beta(m,t)} - a_{f(q+1)} + a_{f(q+2)} - a_{\beta(m,t)} + i$,

which is equivalent to

$$(f(q + 1) - f(q))(d + j) \\ \leq (\beta(m, t) - f(q + 1))(d + j) + (f(q + 2) - \beta(m, t))d + i.$$

. .

Now we apply Lemma 13 case 3) and get

$$f(q + 1) - f(q) < f(q + 2) - f(q+1)$$

and so $y_q < y_{q+1}$. (iv) Similarly, if

$$a_{\alpha(m,t)} \leq x_q < a_{\beta(m,t)} \leq x_{q+1} < x_q \geq a_{\alpha(m,t+1)},$$

that is, x_q is in A_{Lmt} and x_{q+1} , x_{q+2} are in A_{Rmt} , then we can apply Lemma 13 case 4) and get

$$f(q + 1) - f(q) < f(q + 2) - f(q + 1) \text{ and } y_q < y_{q+1}.$$
(v) If
$$a_{\alpha(m,t)} \leq x_q < x_{q+1} \leq a_{\alpha(m,t+1)} < x_{q+2} \leq a_{\beta(m,t+1)}$$

where $t \leq m$, that is, x_q and x_{q+1} are in A_{Rmt} and x_{q+2} is in $A_{Lm(t+1)}$, then we have

$$a_{f(q+1)} - a_{f(q)} \leq a_{f(q+2)} - a_{f(q+1)} + i$$

= $a_{\alpha(m,t+1)} - a_{f(q+1)} + a_{f(q+2)} - a_{\alpha(m,t+1)} + i$

or, equivalently,

$$(f(q + 1) - f(q))d \leq (\alpha(m, t + 1) - f(q + 1))d + (f(q + 2) - \alpha(m, t + 1))(d + j) + i.$$

By Lemma 13 case 5) we get

$$f(q + 1) - f(q) \le f(q + 2) - f(q + 1)$$
 and $y_q < y_{q+1}$.

(vi) Finally, if

$$a_{\beta(m,t)} \leq x_q < a_{\alpha(m,t+1)} \leq x_{q+1} < x_{q+2} \leq a_{\beta(m,t+1)}$$

then we can apply the previous lemma case 6) and obtain

$$f(q + 1) - f(q) \le f(q + 2) - f(q + 1)$$
 and $y_q < y_{q+1}$.

Now assume that $|X \cap A_{Rmm}| \ge 3$ and so there exist three consecutive elements x_w , x_{w+1} , x_{w+2} of x in A_{Rmm} . By case (ii)

$$f(w + 1) - f(w) \le f(w + 2) - f(w + 1)$$

and so

$$2(f(w + 1) - f(w)) \le f(w + 1) - f(w) + f(w + 2) - f(w + 1)$$

= f(w + 2) - f(w) \le m.

Thus

$$f(w + 1) - f(w) \le (1/2)m \text{ and}$$

$$y_w = (f(w + 1) - f(w))d \le (1/2)md = (1/2)md$$

the half diameter of A_{Rmm} .

We claim, for any u < w and $x_u \ge a_{\alpha(m,1)}$, that $y_u \le y_w$. Proof of claim: Since $X \in \mathscr{L}_{M}$, we have $y_u \le y_w + i$. We may write

$$y_u = t(d+j) + vd$$
 and $y_w = qd$

and get

 $t(d+j) + vd \leq qd + i.$

If t > 0 (resp. t = 0), then we apply the previous lemma case 4) (resp. case 2) and get $y_u \leq y_w$.

By this claim we conclude that for any $u \leq w$ and $x_u \geq a_{\alpha(m,1)}$ we have $y_u \leq y_w \leq (1/2)m^4 = (1/2)$ diameter of $A_{Rmt} \leq (1/2)$ diameter of A_{Lmt} for t = 1, 2, ..., m.

Hence, for any $t \leq m$, A_{Rmt} and A_{Lmt} each contain at least two elements of X.

)

 $(2)m^4$,

Therefore we conclude that: By cases (iii) and (iv) above, if $x_q \in A_{Lmt}^{\circ}$ and $x_{q+2} \in A_{Rmt}^{\circ}$ then

$$f(q + 1) - f(q) < f(q + 2) - f(q + 1).$$

By cases (v) and (vi), if $x_q \in A_{Rmt}^{\circ}$ and $x_{q+2} \in A_{Lm(t+1)}^{\circ}$ then

 $f(q + 1) - f(q) \leq f(q + 2) - f(q + 1).$

By cases (i) and (ii) if x_q , x_{q+1} , $x_{q+2} \in A_{Lmt}$ or x_q , x_{q+1} , $x_{q+2} \in A_{Rmt}$, then

$$f(q + 1) - f(q) \leq f(q + 2) - f(q + 1).$$

Now if we let x_{s_q} be an element of X such that $x_{s_q} \in A_{Lmq}^{\circ}$ and $x_{s_q+2} \in A_{Rmq}^{\circ}$ for q = 1, 2, ..., m. Then we have for q = 1, 2, ..., m - 1,

$$f(s_q + 1) - f(s_q) < f(s_{q+1} + 1) - f(s_{q+1}).$$

Therefore we get

$$1 \leq f(s_1 + 1) - f(s_1) < f(s_2 + 1) - f(s_2) < \dots$$

$$< f(s_m + 1) - f(s_m) \leq f(w + 1) - f(w) \leq (1/2)m.$$

Since there are m-1 strict inequalities, we get a contradiction. Therefore we conclude that $|X \cap A_{Rmm}| \leq 2$.

Finally we show that $A \notin [\mathscr{L}_{M_i}]$. Suppose that $A = X_1 \cup X_2 \cup \ldots \cup X_n$ where $X_s \in \mathscr{L}_{M_i}$ for $s = 1, 2, \ldots, n$. Since

 $A_{Rmm} = \bigcup_{i=1}^{n} (A_{Rmm} \cap X_i),$

for any m with $m^3 > m^2 + m$ and m > j, we have

 $m = |A_{Rmm}| \leq \sum_{i=1}^{n} |A_{Rmm} \cap X_i| \leq 2n.$

Thus m is bounded above, a contradiction.

COROLLARY 15. For all $i \geq 0$, $[\mathscr{L}_{M_i}] \subsetneq [\mathscr{L}]$. In particular $[\mathscr{L}_1] \subsetneq [\mathscr{L}]$.

PROPOSITION 16. $[\mathscr{L}_2] \subsetneq [\mathscr{L}_1]$.

Proof. Obviously $[\mathscr{L}_2] \subset [\mathscr{L}_1]$. Strictness is proved by observing that $\{n^2\} \in \mathscr{L}_1$ but $\{n^2\} \notin [\mathscr{L}_2]$.

At this point we have completed the proofs of all diagrams given at the beginning of this section. Some further interesting inclusions concerning \mathscr{L}_1 follow.

PROPOSITION 17.
$$\mathscr{L}_{1}^{*} \subsetneq [\mathscr{L}_{1}^{*}].$$

Proof. Let $A = \{n^{2}\}$ and $B = \{n^{2} + 1\}$. Then $A \cup B \in [\mathscr{L}_{1}] \subset [\mathscr{L}_{1}^{*}].$

But $A \cup B$ is not lacunary. Thus $A \cup B \notin \mathscr{L}_{1}^{*}$.

Finally we will prove $[\mathscr{L}_1] \subsetneq [\mathscr{L}_1^*]$. First, we define some terms and prove a lemma.

Definition 3. Let $\{a_n\} = A$ be a sequence and $(a_s, a_{s+1}, \ldots, a_{s+r})$ be a part of $\{a_n\}$.

If $(d_s, d_{s+1}, \ldots, d_{s+r-1})$ is a strictly decreasing sequence, where $d_i = a_{i+1} - a_i$, then we say that $(a_s, a_{s+1}, \ldots, a_{s+r})$ is a consecutive descending wave of length r + 1 in A. Further, the d_i are called the (decreasing) steps of the wave. (Note that the definition of descending wave in [1] is more general.)

LEMMA 18. There exists a function f(n) (depending only on n) such that, for any sets $A_1, A_2, \ldots, A_n \in \mathcal{L}_1$, and for any consecutive descending wave X in $A_1 \cup A_2 \cup \ldots \cup A_n$, $|X| \leq f(n)$.

Proof. We take f(1) = 2 which clearly works.

Suppose there exists f(n-1) such that for any $A_1, A_2, \ldots, A_{n-1}$ in \mathscr{L}_1 , and any consecutive descending wave X in $A_1 \cup A_2 \cup \ldots \cup A_{n-1}$, we have $|X| \leq f(n-1)$.

Let $A = A_1 \cup A_2 \cup \ldots \cup A_{n-1}$ and $B = \{b_u\} = A_n$ where A_1 , $A_2, \ldots, A_n \in \mathcal{L}_1$. Further let

$$W_{u} = \{ a \in A : b_{u} < a < b_{u+1} \},\$$

$$V_{u} = \{ c \in A \cup B : b_{u} \leq c \leq b_{u+1} \}.$$

Suppose that X is a consecutive descending wave in $A \cup B$, $V_u \subset X$ and $V_{u+1} \subset X$, then we prove that $|W_u| < |W_{u+1}|$.

Let $e_1 > e_2 > \ldots > e_{q+1} > c_1 > c_2 > \ldots > c_{p+1}$ be the decreasing steps of the consecutive descending wave $V_u \cup V_{u+1}$, where $|W_u| = q$ and $|W_{u+1}| = p$. Since $B \in \mathcal{L}_1$,

$$(q + 1)e_{q+1} \leq e_1 + e_2 + \dots + e_{q+1}$$

= $b_{u+1} - b_u \leq b_{u+2} - b_{u+1}$
= $c_1 + c_2 + \dots + c_{p+1} \leq (p + 1)c_1 < (p + 1)e_{q+1}$.

Therefore q + 1 and so <math>q < p.

Next we show, if $X \subset A \cup B$ is a consecutive descending wave then $|X \cap B| \leq f(n-1) + 2$.

Suppose, otherwise, that $|X \cap B| > f(n-1) + 2$. Let

$$\{b_r, b_{r+1}, \ldots, b_s\} = X \cap B,$$

where $s \ge r + f(n-1) + 2$. Then $V_k \subset X$ for all $r \le k \le s - 1$. By the above, $0 \le |W_r| < |W_{r+1}| < \ldots < |W_{s-1}|$, thus we have

$$|W_{s-1}| \ge s - r - 1 \ge f(n-1) + 1 > f(n-1)$$

which is a contradiction since W_{s-1} is a consecutive descending wave in A. Finally, let X be a descending wave of $A \cup B$. Again, writing

$$X \cap B = \{b_r, b_{r+1}, \ldots, b_s\},\$$

we get

 $X \subset H \cup V_r \cup \ldots \cup V_{s-1} \cup J$

where H and J are the (possibly empty) consecutive descending waves in $A \cap X$ which come before b_r , and after b_s respectively. Thus

 $|X| \le |H| + |J| + \sum_{i=r}^{s-1} |V_i| \le (f(n-1) + 3)(f(n-1) + 2)$ and so we can set

and so we can set

$$f(n) = (f(n-1) + 2)(f(n-1) + 3).$$

PROPOSITION 19. $[\mathscr{L}_1] \subsetneq [\mathscr{L}_1^*].$

Proof. Let

$$B_n = (n^2, (n - 1)n, (n - 2)n, \dots, 2n, n),$$

$$(d_n) = (B_1, B_2, \dots, B_q, \dots),$$

$$a_n = 1 + d_1 + \dots + d_{n-1} \text{ for } n = 1, 2, 3, \dots,$$

$$W_m = (m, m, \dots, m), \text{ with } m(m + 1)/2 \text{ repetitions of } m,$$

$$(y_m) = (W_1, W_2, \dots, W_p, \dots)$$

$$= (1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, \dots),$$

$$x_m = 1 + y_1 + y_2 + \dots + y_{m-1} \text{ for } m = 1, 2, \dots$$

Then $\{x_n\} \in \mathscr{L}_1$ and $\{a_n\} \subset \{x_n\}$. Thus $\{a_n\} \in \mathscr{L}_1^* \subset [\mathscr{L}_1^*]$. Since $\{a_n\}$ contains arbitrarily long consecutive descending waves, by the previous lemma, $\{a_n\} \notin [\mathscr{L}_1]$. Thus $[\mathscr{L}_1] \subsetneq [\mathscr{L}_1^*]$.

References

- T. C. Brown and A. R. Freedman, Arithmetic progression in lacunary sets, Rocky Mountain J. Math. 17 (1987), 587-596.
- 2. A. R. Freedman, Generalized limits and sequence spaces, Bull. London Math. Soc. 13 (1981), 224-228.
- 3. <u>Lacunary sets and the space bs + c, J. London Math. Soc. (2) 31 (1985), 511-516.</u>
- 4. A. R. Freedman and J. J. Sember, *Densities and summability*, Pacific J. Math. 95 (1981), 293-305.
- 5. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- 6. J. J. Sember and A. R. Freedman, On summing sequences of 0's and 1's, Rocky Mountain J. Math. 11 (1981), 419-425.

Simon Fraser University, Burnaby, British Columbia