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Abstract It is known that, for generic q, the H-invariant prime ideals in Oq(Mm,p(C)) are generated by
quantum minors (see S. Launois, Les idéaux premiers invariants de Oq(Mm,p(C)), J. Alg., in press). In
this paper, m and p being given, we construct an algorithm which computes a generating set of quantum
minors for each H-invariant prime ideal in Oq(Mm,p(C)). We also describe, in the general case, an
explicit generating set of quantum minors for some particular H-invariant prime ideals in Oq(Mm,p(C)).
In particular, if (Yi,α)(i,α)∈[[1,m]]×[[1,p]] denotes the matrix of the canonical generators of Oq(Mm,p(C)),
we prove that, if u � 3, the ideal in Oq(Mm,p(C)) generated by Y1,p and the u × u quantum minors
is prime. This result allows Lenagan and Rigal to show that the quantum determinantal factor rings
of Oq(Mm,p(C)) are maximal orders (see T. H. Lenagan and L. Rigal, Proc. Edinb. Math. Soc. 46
(2003), 513–529).
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1. Introduction

Fix two positive integers m and p with m, p � 2 and consider some complex number q

which is transcendental over Q. Denote by R = Oq(Mm,p(C)) the quantization of the ring
of regular functions on m × p matrices with entries in C (the field of complex numbers)
and let (Yi,α)(i,α)∈[[1,m]]×[[1,p]] denote the matrix of its canonical generators. There is an
action of the torus H = (C∗)m+p on R by C-automorphisms via

(a1, . . . , am, b1, . . . , bp).Yi,α = aibαYi,α ((i, α) ∈ [[1, m]] × [[1, p]]).

(If m = p, this action is induced by the bialgebra structure of R and, if m �= p, it is easy
to check that the relations which define R are preserved by the group H.)

It is known from work of Goodearl and Letzter that R has only finitely many H-
invariant prime ideals (see [8]) and that, in order to calculate the prime and primitive
spectra of R, it is enough to determine the H-invariant prime ideals of R (see [8, Theo-
rem 6.6]).

In [10], we proved that the H-invariant prime ideals in R are generated by quantum
minors, as conjectured by Goodearl and Lenagan (see [5] and [6]). In this paper, we use
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this result, together with Cauchon’s description for the set of H-invariant prime ideals
of R (see [3, Théorème 3.2.1]), to construct an algorithm which provides an explicit
generating set of quantum minors for each H-invariant prime ideal in R (see § 4). (Of
course, these generating sets can be computed with this algorithm only when m and p

have fixed values.)
The last part of this paper is devoted to the general case. We construct certain sets

of quantum minors which generate prime ideals of R. In order to do that, we consider
a new deleting-derivations algorithm (see [2]) that we define in § 5. Using this new tool,
we can prove that, if u � 3, the ideal in Oq(Mm,p(C)) generated by Y1,p and the u × u

quantum minors is prime. This result allows Lenagan and Rigal [11] to show that the
quantum determinantal factor rings of Oq(Mm,p(C)) are maximal orders.

2. H-invariant prime ideals in Oq(Mm,p(C))

Throughout this paper, we use the following conventions.

(i) N, Q and C denote, respectively, the set of natural numbers, the field of rational
numbers and the field of complex numbers. We set C∗ = C \ {0}.

(ii) If I is any non-empty finite subset of N, |I| denotes its cardinality.

(iii) q ∈ C is transcendental over Q.

(iv) m and p denote two positive integers with m, p � 2.

(v) If k is a positive integer, Sk denotes the group of permutations of [[1, k]].

(vi) R = Oq(Mm,p(C)) denotes the quantization of the ring of regular functions on
m × p matrices with entries in C; it is the C-algebra generated by the m × p inde-
terminates Yi,α, 1 � i � m and 1 � α � p, subject to the following relations.

If (
x y

z t

)

is any 2 × 2 sub-matrix of Y = (Yi,α)(i,α)∈[[1,m]]×[[1,p]], then

(a) yx = q−1xy, zx = q−1xz, zy = yz, ty = q−1yt, tz = q−1zt;

(b) tx = xt − (q − q−1)yz.

These relations agree with the relations used in [3], [5], [6], [10] and [11], but they
differ from those of [12] by an interchange of q and q−1. It is well known that
the ring R is a Noetherian domain. We denote by F its skew field of fractions.
Moreover, since q is transcendental over Q, it follows from [7, Theorem 2.3] that
all prime ideals of R are completely prime.
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(vii) As in [3, § 2.1], one can show that the group H = (C∗)m+p acts on R by C-algebra
automorphisms via

(a1, . . . , am, b1, . . . , bp).Yi,α = aibαYi,α ∀(i, α) ∈ [[1, m]] × [[1, p]].

(viii) An H-eigenvector x of R is a non-zero element x ∈ R such that h.x ∈ C∗x for each
h ∈ H. An ideal I of R is said to be H-invariant if h.I = I for all h ∈ H. Let
H- Spec(R) denote the set of H-invariant prime ideals of R.

The aim of this section is to describe the set H- Spec(R) by using the standard deleting-
derivations algorithm (see [10, § 2.1]).

Notation 2.1.

(i) We denote by �s the lexicographic ordering on N2. We often call it the standard
ordering on N2. Recall that

(i, α) �s (j, β) ⇐⇒ [(i < j) or (i = j and α � β)].

(ii) We set Es = ([[1, m]] × [[1, p]] ∪ {(m, p + 1)}) \ {(1, 1)}.

(iii) Let (j, β) ∈ Es. If (j, β) �= (m, p+1), (j, β)+s denotes the smallest element (relative
to �s) of the set {(i, α) ∈ Es | (j, β) <s (i, α)}.

Notation 2.2. If r = (j, β) and v = (i, α) belong to [[1, m]]×[[1, p]], we define a complex
number λr,v by

if r �= v, then λr,v =

{
q−1 if i = j or α = β,

1 otherwise,

if r = v, then λr,v = q−2.

Recall that R can be written as an iterated Ore extension

R = C[Y1,1] · · · [Ym,p; σm,p, δm,p],

where the indices are increasing for �s and where, for (1, 2) �s r = (j, β) �s (m, p), σr is
a C-algebra automorphism and δr a C-linear σr-derivation such that, for (1, 1) �s v =
(i, α) <s r = (j, β),

σr(Yv) = λr,vYv,

δr(Yv) =

{
−(q − q−1)Yi,βYj,α if i < j and α < β,

0 otherwise.

In [10, § 2.1], we have shown that the theory of deleting derivations (see [2]) can be
applied to the iterated Ore extension R = C[Y1,1] · · · [Ym,p; σm,p, δm,p]. The correspond-
ing algorithm is called the standard deleting-derivations algorithm. It consists of the con-
struction, for each r ∈ Es, of a family (Y (r)s

i,α )(i,α)∈[[1,m]]×[[1,p]] of elements of F = Fract(R),
defined as follows.

https://doi.org/10.1017/S0013091502000718 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000718


166 S. Launois

(i) If r = (m, p + 1), then Y
(m,p+1)s
i,α = Yi,α for all (i, α) ∈ [[1, m]] × [[1, p]].

(ii) Assume that r = (j, β) <s (m, p + 1) and that the Y
(r+s )s
i,α ((i, α) ∈ [[1, m]] × [[1, p]])

are already known. For convenience of notation, we set

Y
(r+)s
i,α = Y

(r+s )s
i,α for (i, α) ∈ [[1, m]] × [[1, p]].

If (i, α) ∈ [[1, m]] × [[1, p]], then

Y
(r)s
i,α =

{
Y

(r+)s
i,α − Y

(r+)s
i,β (Y (r+)s

j,β )−1Y
(r+)s
j,α if i < j and α < β,

Y
(r+)s
i,α otherwise.

Notation 2.3. Let r ∈ Es. We denote by R(r)s the subalgebra of F = Fract(R)
generated by the Y

(r)s
i,α ((i, α) ∈ [[1, m]] × [[1, p]]), that is,

R(r)s = C〈Y (r)s
i,α | (i, α) ∈ [[1, m]] × [[1, p]]〉.

Remark 2.4. Let r ∈ Es with r �= (m, p + 1). We will often drop a subscript and
write R(r+)s for R(r+s )s .

Notation 2.5. We set R̄s = R(1,2)s and Ti,α = Y
(1,2)s
i,α for all (i, α) ∈ [[1, m]] × [[1, p]].

Let (j, β) ∈ Es with (j, β) �= (m, p + 1). The theory of deleting derivations allows
us to construct embeddings ϕ(j,β)s : Spec(R(j,β)+s ) → Spec(R(j,β)s) (see [2, § 4.3]). By
composition, we obtain an embedding ϕs : Spec(R) → Spec(R̄s), which is called the
canonical embedding. Now to describe the set H- Spec(R) we just have to determine its
canonical image ϕs(H- Spec(R)). To do this, as in [3, Conventions 3.2.1], we introduce
some conventions and notation.

Conventions 2.6.

(i) Let v = (l, γ) ∈ [[1, m]] × [[1, p]].

(a) The set Cv = {(i, γ) | 1 � i � l} ⊂ [[1, m]] × [[1, p]] is called the truncated
column with extremity v.

(b) The set Lv = {(l, α) | 1 � α � γ} ⊂ [[1, m]] × [[1, p]] is called the truncated row
with extremity v.

(ii) W denotes the set of all the subsets in [[1, m]]× [[1, p]] which are a union of truncated
rows and columns.

Notation 2.7. Given w ∈ W , Kw denotes the ideal in R̄s generated by the Ti,α such
that (i, α) ∈ w. (Recall that Kw is a completely prime ideal in the quantum affine space
R̄s (see [9, § 2.1]).)

The following result is proved in the same manner as [3, Corollaire 3.2.1].
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Proposition 2.8.

(i) Given w ∈ W , there exists a (unique) H-invariant (completely) prime ideal Jw in R

such that ϕs(Jw) = Kw.

(ii) H- Spec(R) = {Jw | w ∈ W}.

3. The factor ring R/Jw

In this section, K denotes a C-algebra which is also a skew field. Except where stated
otherwise, all matrices considered have their entries in K.

Definition 3.1 (see Chapter 4 in [12]).

(i) Let u and v be two positive integers and let M = (xi,α)(i,α)∈[[1,u]]×[[1,v]] be an
u × v matrix. We say that M is a q-quantum matrix if the following relations
hold between the entries of M :

xi,βxi,α = q−1xi,αxi,β (1 � i � u, 1 � α < β � v),

xj,αxi,α = q−1xi,αxj,α (1 � i < j � u, 1 � α � v),

xj,βxi,α = xi,αxj,β (1 � i < j � u, 1 � β < α � v),

xj,βxi,α = xi,αxj,β − (q − q−1)xi,βxj,α (1 � i < j � u, 1 � α < β � v).

(ii) Let n be a positive integer and let M = (xi,α)(i,α)∈[[1,n]]2 be a square q-quantum
matrix. The quantum determinant of M is defined by

detq(M) =
∑

σ∈Sn
(−q)l(σ)x1,σ(1) · · ·xn,σ(n),

where l(σ) denotes the length of the n-permutation σ.

(iii) Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix. The quantum determinant
of a square sub-matrix of M is called a quantum minor of M .

Definition 3.2. Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be an m × p matrix and let (j, β) ∈ Es.
We say that M is a (j, β)s-q-quantum matrix if the following relations hold between the
entries of M .

If (
x y

z t

)

is any 2 × 2 sub-matrix of M , then

(i) yx = q−1xy, zx = q−1xz, zy = yz, ty = q−1yt, tz = q−1zt;

(ii) if t = xv, then

{
v �s (j, β) =⇒ tx = xt,

v <s (j, β) =⇒ tx = xt − (q − q−1)yz.
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Conventions 3.3 (see Convention 4.1.1 in [3] and Conventions 2.2.3 in [10]).
Let

M = (xi,α)(i,α)∈[[1,m]]×[[1,p]]

be a q-quantum matrix. As r runs over the set Es, we define matrices

M (r)s = (x(r)s
i,α )(i,α)∈[[1,m]]×[[1,p]]

as follows.

(i) If r = (m, p+1), then the entries of the matrix M (m,p+1)s are defined by x
(m,p+1)s
i,α =

xi,α for all (i, α) ∈ [[1, m]] × [[1, p]].

(ii) Assume that r = (j, β) ∈ Es \ {(m, p + 1)} and that the matrix M (r+s )s is already
known. For convenience of notation, we set M (r+)s = M (r+s )s and x

(r+)s
i,α = x

(r+s )s
i,α

for each (i, α) ∈ [[1, m]] × [[1, p]]. The entries x
(r)s
i,α of the matrix M (r)s are defined

as follows.

(a) If x
(r+)s
j,β = 0, then x

(r)s
i,α = x

(r+)s
i,α for all (i, α) ∈ [[1, m]] × [[1, p]].

(b) If x
(r+)s
j,β �= 0 and (i, α) ∈ [[1, m]] × [[1, p]], then

x
(r)s
i,α =

⎧⎨
⎩

x
(r+)s
i,α − x

(r+)s
i,β (x(r+)s

j,β )−1x
(r+)s
j,α if i < j and α < β,

x
(r+)s
i,α otherwise.

We say that M (r)s is the matrix obtained from M by applying the standard deleting-
derivations algorithm at step r.

(iii) If r = (1, 2), we set ti,α = x
(1,2)s
i,α for all (i, α) ∈ [[1, m]] × [[1, p]].

Note that our definitions of q-quantum matrix and (j, β)s-q-quantum matrix slightly
differ from those of [1] (see [1, Definitions III.1.1 and III.1.3]). Because of this, we must
interchange q and q−1 whenever carrying over a result of [1].

Lemma 3.4. Let (j, β) ∈ Es. If M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] is a q-quantum matrix,
then the matrix M (j,β)s is (j, β)s-q-quantum.

Proof. This lemma is proved in the same manner as [1, Proposition III.2.3.1]. �

The formulae of Conventions 3.3 allow us to express the entries of M (r+)s in terms of
those of M (r)s .

Proposition 3.5 (restoration algorithm). Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-
quantum matrix and let r = (j, β) ∈ Es with r �= (m, p + 1).
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(1) If x
(r)s
j,β = 0, then x

(r+)s
i,α = x

(r)s
i,α for all (i, α) ∈ [[1, m]] × [[1, p]].

(2) If x
(r)s
j,β �= 0 and (i, α) ∈ [[1, m]] × [[1, p]], then

x
(r+)s
i,α =

⎧⎨
⎩

x
(r)s
i,α + x

(r)s
i,β (x(r)s

j,β )−1x
(r)s
j,α if i < j and α < β,

x
(r)s
i,α otherwise.

We now come back to the H-invariant prime ideals Jw of R (see the notation of § 2). The
aim of the rest of this section is to study the effect of the standard deleting-derivations
algorithm on the matrix whose entries are yi,α = Yi,α + Jw ((i, α) ∈ [[1, m]] × [[1, p]]).

Notation 3.6. Let w ∈ W .

(i) Set Rw = R/Jw. It follows from [2, Lemme 5.3.3] that Rw and R̄s/Kw are two
Noetherian algebras with no zero-divisors and which have the same skew field of
fractions. We set Fw = Fract(Rw) = Fract(R̄s/Kw).

(ii) If (i, α) ∈ [[1, m]] × [[1, p]], then yi,α denotes the element of Rw defined by yi,α =
Yi,α + Jw.

(iii) We denote by Mw the matrix, with entries in the C-algebra Fw, defined by

Mw = (yi,α)(i,α)∈[[1,m]]×[[1,p]].

Let w ∈ W . Since Y = (Yi,α)(i,α)∈[[1,m]]×[[1,p]] is a q-quantum matrix, Mw is also a q-
quantum matrix. Thus, we can apply the standard deleting-derivations algorithm to
Mw (see Conventions 3.3 with K = Fw) and if we still denote ti,α = y

(1,2)s
i,α for (i, α) ∈

[[1, m]] × [[1, p]], we get the following theorem.

Theorem 3.7.

(i) M
(1,2)s
w is (1, 2)s-q-quantum.

(ii) ti,α = 0 if and only if (i, α) ∈ w.

(iii) There is a C-algebra isomorphism from C〈ti,α | (i, α) /∈ w〉 onto the subalgebra
C〈Ti,α | (i, α) /∈ w〉 of R̄s, which sends ti,α onto Ti,α for each (i, α) /∈ w.

Proof. The first point follows from Lemma 3.4. By [2, Propositions 5.4.1 and 5.4.2],
there exists a C-algebra homomorphism f(1,2) : R̄s → Fw such that f(1,2)(Ti,α) = ti,α for
(i, α) ∈ [[1, m]] × [[1, p]]. Its kernel is Kw and its image is the subalgebra of Fw generated
by the ti,α with (i, α) ∈ [[1, m]] × [[1, p]]. Hence ti,α = 0 if and only if Ti,α ∈ Kw, that is,
if and only if (i, α) ∈ w, and

C〈ti,α | (i, α) /∈ w〉 � R̄s/Kw � C〈Ti,α | (i, α) /∈ w〉.

�
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4. An algorithm which computes a generating set for Jw

Input. Fix w ∈ W . Denote by Mw = (yi,α)(i,α)∈[[1,m]]×[[1,p]] the matrix whose entries are

yi,α = Yi,α + Jw ((i, α) ∈ [[1, m]] × [[1, p]]).

It follows from Theorem 3.7 that M
(1,2)s
w = (ti,α)(i,α)∈[[1,m]]×[[1,p]] is a (1, 2)s-q-quantum

matrix whose entries have the following properties.

(i) ti,α = 0 if and only if (i, α) ∈ w.

(ii) There is an isomorphism from C〈ti,α | (i, α) /∈ w〉 onto C〈Ti,α | (i, α) /∈ w〉, which
sends ti,α onto Ti,α ((i, α) /∈ w).

Step 1: restoration of Mw. Starting with the matrix M
(1,2)s
w , we compute the matrix

Mw = (yi,α)(i,α)∈[[1,m]]×[[1,p]]

by using the restoration algorithm (see Proposition 3.5). This is a q-quantum matrix
with entries in the McConnell–Pettit algebra C〈t±1

i,α | (i, α) /∈ w〉.

Step 2: we calculate all quantum minors of Mw.

Result. Let

Xw = {(I, Λ) | I ⊆ [[1, m]], Λ ⊆ [[1, p]], |I| = |Λ| and detq(yi,α)(i,α)∈I×Λ = 0}.

Then Jw is generated, as right and left ideal, by the quantum minors detq(Yi,α)(i,α)∈I×Λ

with (I, Λ) ∈ Xw.

Proof. This is immediate from [10, Théorème 3.7.2]. �

Example 4.1. Assume that m = p = 3. If this algorithm is applied to w = {(1, 1),
(1, 3), (2, 1), (2, 2)}, one can show that the two-sided ideal in Oq(M3(C)) generated by

Y1,3, detq

(
Y1,1 Y1,2

Y2,1 Y2,2

)
, detq

(
Y1,1 Y1,2

Y3,1 Y3,2

)
,

detq

(
Y2,1 Y2,2

Y3,1 Y3,2

)
, detq

(
Y2,1 Y2,3

Y3,1 Y3,3

)
and detq

(
Y2,2 Y2,3

Y3,2 Y3,3

)

is (completely) prime. In the more general case where we just assume that q ∈ C∗ is not
a root of unity, this result was proved by Goodearl and Lenagan (see [6, § 7.2]) by using
different methods.
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5. The last-column deleting-derivations algorithm

The aim of this section is to define a new deleting-derivations algorithm which will allow
us to show that certain sets of quantum minors generate prime ideals of R. We shall only
use it when m and p are greater than or equal to 3, so for the remainder of this section,
we assume that min(m, p) � 3 (although most of the following results are still true when
m = 2 or p = 2).

Definition 5.1. Define the relation �dc by

(i, α) �dc (j, β)

⇐⇒ [(α = β = p and i � j) or (β = p and α < p) or (α, β < p and (i, α) �s (j, β))].

This defines a total ordering on [[1, m]] × [[1, p]] ∪ {(m + 1, p)} that we will call the last-
column ordering on [[1, m]] × [[1, p]] ∪ {(m + 1, p)}.

Notation 5.2.

(i) We set Edc = ([[1, m]] × [[1, p]] ∪ {(m + 1, p}) \ {(1, 1)}.

(ii) Let (j, β) ∈ Edc. If (j, β) �= (m + 1, p), denote by (j, β)+dc the smallest element
(relative to �dc) of the set {(i, α) ∈ Edc | (j, β) <dc (i, α)}.

Using [2, Propositions 6.1.1 and 6.1.2], we get the following theorem.

Theorem 5.3.

(1) R can be written as an iterated Ore extension

R = C[Y1,1] · · · [Ym,p−1; σ′
m,p−1, δ

′
m,p−1][Y1,p; σ′

1,p, δ
′
1,p] · · · [Ym,p; σ′

m,p, δ
′
m,p],

where the indices are increasing for �dc and where, for (1, 2) �dc r = (j, β) �dc

(m, p), σ′
r is a C-algebra automorphism and δ′

r a C-linear σ′
r-derivation such that,

for (1, 1) �dc v = (i, α) <dc r = (j, β),

σ′
r(Yv) = λr,vYv (λr,v was defined in Notation 2.2);

δ′
r(Yv) =

{
−(q − q−1)Yi,βYj,α if i < j and α < β,

0 otherwise.

(2) R satisfies Conventions 3.1 of [2] with qr = q−2 for any r ∈ [[1, m]] × [[1, p]].

(3) If r ∈ [[1, m]] × [[1, p]] \ {(1, 1)}, there exists h′
r ∈ H such that h′

r.Yv = λr,vYv for
v ∈ [[1, m]] × [[1, p]]. Thus, R satisfies Hypotheses 4.1.2 of [2] with the group H.

It follows from the previous theorem that the theory of deleting derivations (see [2])
can be applied to the iterated Ore extension R = C[Y1,1] · · · [Ym,p; σ′

m,p, δ
′
m,p]. The cor-

responding algorithm is called the last-column deleting-derivations algorithm.
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Let r = (j, β) ∈ [[1, m]] × [[1, p]] with (1, 1) <dc r. Denote by B the subalgebra of R

generated by the Yv with v ∈ [[1, m]] × [[1, p]] and (1, 1) �dc v <dc r, and let C be the
subalgebra of R generated by B and Yr. It follows from Theorem 5.3 that C is the (left)
Ore extension B[Yr; σ′

r, δ
′
r], and that, in F = Fract(R), we have

+∞∑
k=0

(1 − q−2)−k

[k]!q−2
λ−k

r,vδ
′k
r (Yv)Y −k

r =

{
Yv − Yi,βY −1

j,β Yj,α if i < j and α < β,

Yv otherwise,

where [k]!q−2 = [0]q−2 × · · · × [k]q−2 with [0]q−2 = 1 and [i]q−2 = 1 + q−2 + · · · + q−2(i−1)

if i is a positive integer.
Hence, the last-column deleting-derivations algorithm consists of the construction, for

each r ∈ Edc, of a family (Y (r)dc
i,α )(i,α)∈[[1,m]]×[[1,p]] of elements of F = Fract(R), defined as

follows.

(1) If r = (m + 1, p), then Y
(m+1,p)dc
i,α = Yi,α for all (i, α) ∈ [[1, m]] × [[1, p]].

(2) Assume that r = (j, β) <dc (m + 1, p) and that the

Y
(r+dc )dc
i,α ((i, α) ∈ [[1, m]] × [[1, p]])

are already known. For convenience of notation, we set Y
(r+)dc
i,α = Y

(r+dc )dc
i,α for

(i, α) ∈ [[1, m]] × [[1, p]].

If (i, α) ∈ [[1, m]] × [[1, p]], then

Y
(r)dc
i,α =

⎧⎨
⎩

Y
(r+)dc
i,α − Y

(r+)dc
i,β (Y (r+)dc

j,β )−1Y
(r+)dc
j,α if i < j and α < β,

Y
(r+)dc
i,α otherwise.

6. A link between the standard and last-column deleting-derivations
algorithms

Throughout this section, we use the following conventions.

(i) We assume that min(m, p) � 3.

(ii) K denotes a C-algebra which is also a skew field. All the matrices considered have
their entries in K.

Conventions 6.1. Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix. As r runs
over the set Edc, we define matrices

M (r)dc = (x(r)dc
i,α )(i,α)∈[[1,m]]×[[1,p]]

as follows.

(1) If r = (m + 1, p), then the entries of the matrix M (m+1,p)dc are defined by
x

(m+1,p)dc
i,α = xi,α for all (i, α) ∈ [[1, m]] × [[1, p]].
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(2) Assume that r = (j, β) ∈ Edc\{(m+1, p)} and that the matrix M (r+dc )dc is already
known. We set

M (r+)dc = M (r+dc )dc and x
(r+)dc
i,α = x

(r+dc )dc
i,α for each (i, α) ∈ [[1, m]] × [[1, p]].

The entries x
(r)dc
i,α of the matrix M (r)dc are defined as follows.

(a) If x
(r+)dc
j,β = 0, then x

(r)dc
i,α = x

(r+)dc
i,α for all (i, α) ∈ [[1, m]] × [[1, p]].

(b) If x
(r+)dc
j,β �= 0 and (i, α) ∈ [[1, m]] × [[1, p]], then

x
(r)dc
i,α =

⎧⎨
⎩

x
(r+)dc
i,α − x

(r+)dc
i,β (x(r+)dc

j,β )−1x
(r+)dc
j,α if i < j and α < β,

x
(r+)dc
i,α otherwise.

We say that M (r)dc is the matrix obtained from M by applying the last-column
deleting-derivations algorithm at step r.

Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix. The following lemma is obvious.

Lemma 6.2.

(1) M (m,p)s = M (m,p)dc .

(2) If (j, β) ∈ Es ∩ Edc = [[1, m]] × [[1, p]] \ {(1, 1)}, then

x(j,β)s
m,α = x(j,β)dc

m,α = xm,α for any α ∈ [[1, p]],

x
(j,β)s
i,p = x

(j,β)dc
i,p = xi,p for any i ∈ [[1, m]].

Proposition 6.3. If M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] is a q-quantum matrix, then M (1,2)s =
M (1,2)dc .

Since the proof of this result is very technical, we just give a sketch.

Proof. First, if i = m or α = p, it follows from Lemma 6.2 that x
(1,2)dc
i,α = ti,α. Now we

assume that i � m−1 and α � p−1. A decreasing induction shows that, if j ∈ [[1, m+1]],
then

xi,α = x
(j,p)dc
i,α +

m∑
k=max(i+1,j)

xk,p �=0

xi,px
−1
k,px

(j,p)dc
k,α .

In particular, for j = 1, we obtain

xi,α = x
(1,p)dc
i,α +

m∑
k=i+1
xk,p �=0

xi,px
−1
k,px

(1,p)dc
k,α . (6.1)
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Now, we easily deduce the following equalities from (6.1):

x
(m,p)s
i,α = x

(1,p)dc
i,α +

m−1∑
k=i+1
xk,p �=0

xi,px
−1
k,px

(1,p)dc
k,α

and

x
(m,p−1)s
i,α = x

(m,p−1)dc
i,α +

m−1∑
k=i+1
xk,p �=0

xi,px
−1
k,px

(m,p−1)dc
k,α .

Next, by a decreasing induction (with respect to �dc), we can show that, if (j, β) ∈ Edc

with (j, β) �dc (m, p − 1), then

x
(j,β)s
i,α = x

(j,β)dc
i,α +

j−1∑
k=i+1
xk,p �=0

xi,px
−1
k,px

(j,β)dc
k,α . (6.2)

For (j, β) = (1, 2), equality (6.2) becomes ti,α = x
(1,2)dc
i,α , and Proposition 6.3 follows. �

Corollary 6.4. Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix. Then

x
(j,β)+dc
j,β = tj,β for any (j, β) ∈ [[1, m]] × [[1, p]].

Proof. Since

x
(j,β)+dc
j,β = x

(1,2)dc
j,β for any (j, β) ∈ [[1, m]] × [[1, p]],

this corollary is an immediate consequence of Proposition 6.3. �

7. The effect of the last-column deleting-derivations algorithm on
quantum minors

Throughout this section, we keep the conventions and notation of § 6.

Definition 7.1. Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a matrix and let (j, β) ∈ Edc. We
say that M is a (j, β)dc-q-quantum matrix if the following relations hold between the
entries of M .

If (
x y

z t

)

is any 2 × 2 sub-matrix of M , then

(1) yx = q−1xy, zx = q−1xz, zy = yz, ty = q−1yt, tz = q−1zt;

(2) if t = xv, then

{
v �dc (j, β) =⇒ tx = xt,

v <dc (j, β) =⇒ tx = xt − (q − q−1)yz.
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Lemma 7.2. Let (j, β) ∈ Edc. If M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] is a q-quantum matrix,
then M (j,β)dc is a (j, β)dc-q-quantum matrix.

Proof. First, it follows from [2, Théorème 3.2.1] that the matrix

(Y (j,β)dc
i,α )(i,α)∈[[1,m]]×[[1,p]]

(see § 5) is a (j, β)dc-q-quantum matrix. The rest of the proof is similar to [10,
Lemme 2.5.3]. �

The following result can be deduced easily from this lemma.

Corollary 7.3. Let M be an m × p q-quantum matrix and let (j, β) ∈ Edc.

(1) If β = p, then

(a) the matrix obtained from M (j,β)dc by deleting the last column is q-quantum;

(b) the matrix obtained from M (j,β)dc by deleting the rows j, . . . , m is q-quantum
(j > 1).

(2) If β < p, then

(a) the matrix obtained from M (j,β)dc by deleting the rows j, . . . , m and the last
column is q-quantum (j > 1);

(b) the matrix obtained from M (j,β)dc by deleting the rows j + 1, . . . , m and the
columns β, . . . , p is q-quantum (j, β > 1).

Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix. We now express the quantum
minors of M (j,β)+dc in terms of those of M (j,β)dc .

Notation 7.4. Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix and let

δ = detq(xi,α) i=i1,...,il
α=α1,...,αl

be an l × l quantum minor of M (1 � l � min(m, p), 1 � i1 < · · · < il � m, 1 � α1 <

· · · < αl � p).

(1) (a) If I is a non-empty subset of {i1, . . . , il}, we set Î = {i1, . . . , il} \ I. In the
particular case where I = {ik} (k ∈ [[1, l]]), we set îk = Î.

(b) If Λ is a non-empty subset of {α1, . . . , αl}, we set Λ̄ = {α1, . . . , αl} \ Λ. In the
particular case where Λ = {αk} (k ∈ [[1, l]]), we set ᾱk = Λ̄.

(Observe that the set Î (respectively, Λ̄) depends on the set {i1, . . . , il} (respec-
tively, {α1, . . . , αl}).)
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(2) If (j, β) ∈ Edc is greater (relative to �dc) than the elements of {i1, . . . , il} ×
{α1, . . . , αl}, it follows from Lemma 7.2 that the matrix

(x(j,β)dc
i,α )(i,α)∈{i1,...,il}×{α1,...,αl}

is q-quantum. We set

δ(j,β)dc = detq(x
(j,β)dc
i,α )(i,α)∈{i1,...,il}×{α1,...,αl}.

(3) Let I be a non-empty subset of {i1, . . . , il} and let Λ be a non-empty subset of
{α1, . . . , αl} with |I| = |Λ|.

(a) We set δÎ,Λ̄ = detq(xi,α)(i,α)∈Î×Λ̄.

(b) If (j, β) ∈ Edc is greater (relative to �dc) than the elements of Î × Λ̄, it follows
from Lemma 7.2 that the matrix (x(j,β)dc

i,α )(i,α)∈Î×Λ̄ is q-quantum. We set

δ
(j,β)dc

Î,Λ̄
= detq(x

(j,β)dc
i,α )(i,α)∈Î×Λ̄.

(4) Consider λ′ ∈ [[1, p]]\{α1, . . . , αl}. If (j, β) ∈ Edc is greater (relative to �dc) than the
elements of {i1, . . . , il}×{α1, . . . , αk−1, αk+1, . . . , αl, λ

′}, it follows from Lemma 7.2
that the matrix

(x(j,β)dc
i,α )(i,α)∈{i1,...,il}×{α1,...,αk−1,αk+1,...,αl,λ′}

is q-quantum. We set

δ
(j,β)dc
αk→λ′ = detq(x

(j,β)dc
i,α )(i,α)∈{i1,...,il}×{α1,...,αk−1,αk+1,...,αl,λ′}.

(5) Consider i′ ∈ [[1, m]]\{i1, . . . , il}. If (j, β) ∈ Edc is greater (relative to �dc) than the
elements of {i1, . . . , ik−1, ik+1, . . . , il, i

′} × {α1, . . . , αl}, it follows from Lemma 7.2
that the matrix

(x(j,β)dc
i,α )(i,α)∈{i1,...,ik−1,ik+1,...,il,i′}×{α1,...,αl}

is q-quantum. We set

δ
(j,β)dc
ik→i′ = detq(x

(j,β)dc
i,α )(i,α)∈{i1,...,ik−1,ik+1,...,il,i′}×{α1,...,αl}.

Using [10, Proposition 2.2.8], one can prove the following proposition.

Proposition 7.5. Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix, let (j, β) ∈
Edc with (j, β) �dc (m, p − 1) and let

δ = detq(xi,α) i=i1,...,il
α=α1,...,αl

be an l × l quantum minor of M with (il, αl) <dc (j, β).
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(1) If tj,β = 0, then δ(j,β)+dc = δ(j,β)dc .

(2) Assume that tj,β �= 0.

If il = j, or if there exists k ∈ [[1, l]] such that β = αk, or if β < α1, then
δ(j,β)+dc = δ(j,β)dc .

(3) Assume that tj,β �= 0 and that il < j.

(a) If αl < β, then

δ(j,β)+dc = δ(j,β)dc −
l∑

k=1

(−q)k−(l+1)t−1
j,βx

(j,β)dc
j,αk

δ
(j,β)dc
αk→β (7.1)

and

δ(j,β)+dc = δ(j,β)dc −
l∑

k=1

(−q)(l+1)−kδ
(j,β)dc
ik→j x

(j,β)dc
ik,β t−1

j,β . (7.2)

(b) If there exists h ∈ [[1, l − 1]] such that αh < β < αh+1, then

δ(j,β)+dc = δ(j,β)dc −
h∑

k=1

(−q)k−(h+1)t−1
j,βx

(j,β)dc
j,αk

δ
(j,β)dc
αk→β . (7.3)

Proposition 7.6. Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix, let j ∈
[[1, m]] and let

δ = detq(xi,α) i=i1,...,il
α=α1,...,αl

be an l × l quantum minor of M with (il, αl) <dc (j, p).

(1) If tj,p = 0, then δ(j,p)+dc = δ(j,p)dc .

(2) Assume that tj,p �= 0.

If αl = p, or if there exists k ∈ [[1, l]] such that j = ik, or if j < i1, then
δ(j,p)+dc = δ(j,p)dc .

(3) Assume that tj,p �= 0 and that αl < p.

(a) If il < j, then

δ(j,p)+dc = δ(j,p)dc −
l∑

k=1

(−q)k−(l+1)t−1
j,px

(j,p)dc
ik,p δ

(j,p)dc
ik→j (7.4)

and

δ(j,p)+dc = δ(j,p)dc −
l∑

k=1

(−q)(l+1)−kδ(j,p)dc
αk→p x

(j,p)dc
j,αk

t−1
j,p . (7.5)
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(b) If there exists h ∈ [[1, l − 1]] such that ih < j < ih+1, then

δ(j,p)+dc = δ(j,p)dc −
h∑

k=1

(−q)k−(h+1)t−1
j,px

(j,p)dc
ik,p δ

(j,p)dc
ik→j . (7.6)

Proof. We observe that the standard algorithm performed along the last row of a
q-quantum matrix coincides with the last-column algorithm applied to the last column
of its transpose. Since the algebras generated by a generic q-quantum matrix and by
its transpose are isomorphic, this allows us to apply [10, Proposition 2.2.8] in order to
obtain the result. �

An immediate corollary of Propositions 7.5 and 7.6 is the following result.

Corollary 7.7. Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix, let (j, β) ∈
Edc \ {(m + 1, p)} and let

δ = detq(xi,α) i=i1,...,il
α=α1,...,αl

be an l × l quantum minor of M with (il, αl) <dc (j, β).
If either il = j or αl = β, then δ(j,β)+dc = δ(j,β)dc .

We finish this section by computing the quantum minors of M (j,β)+dc that involve
x

(j,β)+dc
j,β in terms of quantum minors of M (j,β)dc .

Proposition 7.8. Let M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix and let

δ = detq(xi,α) i=i1,...,il
α=α1,...,αl

be an l × l quantum minor of M with l � 2. Then

δ(il,αl)
+
dc = δ

(il,αl)dc

îl,ᾱl
til,αl

.

Proof. If til,αl
= x

(il,αl)
+
dc

il,αl
= 0, it follows from [3, Proposition 4.1.1] that δ(il,αl)

+
dc = 0.

Thus,
δ(il,αl)

+
dc = 0 = δ

(il,αl)dc

îl,ᾱl
til,αl

.

Assume now that til,αl
�= 0 and set

ci,α = x
(il,αl)

+
dc

i,α for (i, α) ∈ {i1, . . . , il} × {α1, . . . , αl}.

By Lemma 7.2, the matrix C = (ci,α)(i,α)∈{i1,...,il}×{α1,...,αl} is q-quantum. Hence, we can
apply the standard deleting-derivations algorithm to C (see Conventions 3.3) and it is
obvious that c

(l,l)s
i,α = x

(il,αl)dc
i,α for all (i, α) ∈ {i1, . . . , il} × {α1, . . . , αl}. So, we deduce

from [3, Proposition 4.1.2] that

δ(il,αl)
+
dc = detq(C) = detq(c

(l,l)s
i,α ) i=i1,...,il−1

α=α1,...,αl−1

cil,αl
= δ

(il,αl)dc

îl,ᾱl
til,αl

.

�
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8. Some vanishing criteria for quantum minors

Throughout this section we use the following conventions.

(1) K denotes a C-algebra which is also a skew field.

(2) m and p are greater than or equal to 3.

(3) M = (xi,α)(i,α)∈[[1,m]]×[[1,p]] is a q-quantum matrix with entries in K and we set

ti,α = x
(1,2)s
i,α = x

(1,2)dc
i,α for any (i, α) ∈ [[1, m]] × [[1, p]]

(see Proposition 6.3).

(4) We assume that the following property holds for the matrix M : the non-zero mono-
mials t

k1,1
1,1 · · · tkm,p

m,p (where the indices are increasing for �s) (ki,α ∈ N) are linearly
independent over C, so that C〈ti,α | (i, α) ∈ [[1, m]] × [[1, p]] and ti,α �= 0〉 can be
viewed as a quantum affine space.

Notation 8.1.

(i) L denotes the matrix obtained from M by deleting the last row and the last column,
that is

L = (xi,α)(i,α)∈[[1,m−1]]×[[1,p−1]].

(ii) If (j, β) ∈ Edc, we denote by L(j,β)dc the matrix obtained from M (j,β)dc by deleting
the last row and the last column, that is

L(j,β)dc = (x(j,β)dc
i,α )(i,α)∈[[1,m−1]]×[[1,p−1]].

Observe that L(m+1,p)dc = L.

(iii) We set N = L(m,1)dc .

By Lemma 7.2, N is a q-quantum matrix. Hence, the standard deleting-derivations
algorithm (see Conventions 3.3) can be applied to N , and from Proposition 6.3 we deduce
the following lemma.

Lemma 8.2. We have N (1,2)s = (ti,α)(i,α)∈[[1,m−1]]×[[1,p−1]], so that the matrix N sat-
isfies convention (4) at the beginning of this section.

Lemma 8.3. Let l ∈ [[1, inf(m − 1, p − 1)]] and assume that all l × l quantum minors
of N are equal to 0. If (j, β) ∈ Edc with (m, 1) �dc (j, β) �dc (m, p) and if k is an integer
such that k � l, then all k × k quantum minors of the q-quantum matrix L(j,β)dc are
equal to 0.

Proof. If k � l, the k × k quantum minors of L(j,β)dc are right linear combinations
(with coefficients in K) of l × l quantum minors of L(j,β)dc . So, it is enough to prove that
all l× l quantum minors of L(j,β)dc are zero. To achieve this aim, we proceed by iteration
(for �dc) on (j, β).
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Since N = L(m,1)dc , the case (j, β) = (m, 1) is done. Assume now that (m, 1) �dc

(j, β) �dc (m− 1, p) and that all l × l quantum minors of L(j,β)dc are equal to 0. In order
to prove that the same property holds for all l × l quantum minors of L(j,β)+dc , two cases
may be distinguished.

(i) If j = m, then β < p. Thus, by Proposition 7.5, every l × l quantum minor of
L(j,β)+dc is a left linear combination (with coefficients in K) of l× l quantum minors
of L(j,β)dc . The desired result follows from the induction hypothesis.

(ii) If j �= m, then β = p. Thus, by Proposition 7.6, every l × l quantum minor of
L(j,β)+dc is a left linear combination (with coefficients in K) of l× l quantum minors
of L(j,β)dc . The desired result follows from the induction hypothesis.

�

Proposition 8.4. Let l and s be two integers such that l ∈ [[1, inf(m − 1, p − 1)]] and
s ∈ [[1, m − 1]], and assume that all l × l quantum minors of N are equal to 0. Then

(1) all (l + 1) × (l + 1) quantum minors of M are equal to 0;

(2) if, moreover, we suppose that xi,p = ti,p = 0 for i ∈ [[1, s]], then all l × l quantum
minors of the matrix obtained from M by deleting the rows s + 1, . . . , m are equal
to 0.

Proof.

(1) Let
δ = detq(xi,α) i=i1,...,il+1

α=α1,...,αl+1

be an (l + 1) × (l + 1) quantum minor of M . In order to establish that δ = 0, four
cases are distinguished.

(i) If αl+1 = p and il+1 = m, then, by Proposition 7.8, we have δ = δ
(m,p)dc
m̂,p̄ tm,p.

Since δ
(m,p)dc
m̂,p̄ is an l×l quantum minor of L(m,p)dc , we deduce from Lemma 8.3

that
δ
(m,p)dc
m̂,p̄ = 0,

so that
δ = δ

(m,p)dc
m̂,p̄ tm,p = 0.

(ii) If αl+1 = p and il+1 < m, then, by Corollary 7.7, we have δ = δ(il+1+1,p)dc .

Thus, it follows from Proposition 7.8 that

δ = δ
(il+1,p)dc

îl+1,p̄
til+1,p.

Since δ
(il+1,p)dc

îl+1,p̄
is an l × l quantum minor of L(il+1,p)dc , we deduce from

Lemma 8.3 that δ
(il+1,p)dc

îl+1,p̄
= 0. Hence

δ = δ
(il+1,p)dc

îl+1,p̄
til+1,p = 0.
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(iii) If αl+1 < p and il+1 = m, then, by Corollary 7.7, we have δ = δ(m,p)dc .
Expanding this last quantum minor along the last row (see [12, Corol-
lary 4.4.4]), we get

δ =
l+1∑
k=1

(−q)k−(l+1)x(m,p)dc
m,αk

δ
(m,p)dc
m̂,ᾱk

.

Since each δ
(m,p)dc
m̂,ᾱk

is an l × l quantum minor of L(m,p)dc , we deduce from
Lemma 8.3 that each δ

(m,p)dc
m̂,ᾱk

is equal to 0, so that δ = 0.

(iv) If αl+1 < p and il+1 < m, we have the following.

(a) If tm,p = 0, then it follows from Proposition 7.6 that δ = δ(m,p)dc . Since
δ(m,p)dc is an (l + 1) × (l + 1) quantum minor of L(m,p)dc , we deduce from
Lemma 8.3 that δ(m,p)dc = 0.

(b) Assume now that tm,p �= 0. By Proposition 7.6, we have

tm,pδ = tm,pδ
(m,p)dc −

l+1∑
k=1

(−q)k−(l+2)x
(m,p)dc
ik,p δ

(m,p)dc
ik→m . (8.1)

Since δ(m,p)dc is an (l +1)× (l +1) quantum minor of L(m,p)dc , we deduce
from Lemma 8.3 that δ(m,p)dc = 0. Next, let k ∈ [[1, l + 1]]. Expanding
δ
(m,p)dc
ik→m along the last row (see [12, Corollary 4.4.4]), we get

δ
(m,p)dc
ik→m =

l+1∑
i=1

(−q)i−(l+1)x(m,p)dc
m,αi

δ
(m,p)dc

îk,ᾱi
.

Since each δ
(m,p)dc

îk,ᾱi
is an l × l quantum minor of L(m,p)dc , we deduce from

Lemma 8.3 that each δ
(m,p)dc

îk,ᾱi
is equal to 0. Thus δ

(m,p)dc
ik→m = 0.

Equation (8.1) and the above results show that tm,pδ = 0, so that δ = 0. The
proof of the first assertion is now complete.

(2) Let
δ = detq(xi,α) i=i1,...,il

α=α1,...,αl

be an l× l quantum minor of M with il � s. In order to show that δ = 0, two cases
may be distinguished.

(i) Assume that αl = p. Thus, the last column of δ is 0, so that δ = 0.

(ii) Assume that αl < p.

(a) If tm,p = 0, then δ = δ(m,p)dc . Since il � s < m and αl < p, δ(m,p)dc is an
l × l quantum minor of L(m,p)dc . Thus, it follows from Lemma 8.3 that
δ(m,p)dc = 0. Hence δ = δ(m,p)dc = 0.

https://doi.org/10.1017/S0013091502000718 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000718


182 S. Launois

(b) Assume now that tm,p �= 0. Since il � s < m and αl < p, it follows from
Proposition 7.6 that

δtm,p = δ(m,p)dctm,p −
l∑

k=1

(−q)l+1−kδ(m,p)dc
αk→p x(m,p)dc

m,αk
. (8.2)

Since δ(m,p)dc is an l × l quantum minor of L(m,p)dc , we deduce from
Lemma 8.3 that δ(m,p)dc = 0. Next, let k ∈ [[1, l]]. By Lemma 6.2, we have
x

(m,p)dc
i,p = xi,p for i ∈ [[1, m]]. Thus, since il � s, the last column of δ

(m,p)dc
αk→p

is 0, so that δ
(m,p)dc
αk→p = 0.

Equation (8.2) and the above results show that δtm,p = 0, so that δ = 0. The
proof of the second assertion is now complete.

�

9. Some non-vanishing criteria for quantum minors

Throughout this section, we assume that the four conventions of § 8 are satisfied and we
retain the notation of that section.

9.1. A criterion for 1 × 1 quantum minors

Let (i, α) ∈ [[1, m]] × [[1, p]] and assume that ti,p × tm,α �= 0.

(i) If i = m, it follows from Lemma 6.2 that xi,α = xm,α = tm,α �= 0.

(ii) If α = p, it follows again from Lemma 6.2 that xi,α = xi,p = ti,p �= 0.

(iii) If i < m and α < p, we have xm,pxi,α − xi,αxm,p = −(q − q−1)xi,pxm,α. So we
deduce from Lemma 6.2 that xm,pxi,α − xi,αxm,p = −(q − q−1)ti,ptm,α �= 0. This
implies that xi,α �= 0.

So we can conclude with the following proposition.

Proposition 9.1. Let (i, α) ∈ [[1, m]] × [[1, p]] and assume that ti,p × tm,α �= 0. Then
xi,α �= 0.

Remark 9.2. The above result is still true if m = 2 or p = 2.

9.2. A criterion for quantum minors of L

Notation 9.3. Let (j, β) ∈ Edc.

(i) We denote by B(j,β)dc the subalgebra of K generated by the x
(j,β)dc
i,α ((i, α) ∈

[[1, m]] × [[1, p]]), that is

B(j,β)dc = C〈x(j,β)dc
i,α | (i, α) ∈ [[1, m]] × [[1, p]]〉.
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(ii) We denote by C(j,β)dc the subalgebra of B(j,β)dc defined by

C(j,β)dc = C〈x(j,β)dc
i,α | (1, 1) �dc (i, α) <dc (j, β)〉.

The following result is proved in the same manner as [10, Corollaire 3.5.5].

Lemma 9.4. Let (j, β) ∈ Edc. If tj,β = x
(j,β)dc
j,β �= 0, then the monomials tkj,β (k ∈ N)

are linearly independent in B(j,β)dc viewed as a right (respectively, left) C(j,β)dc -module.

Proof. First, an induction (with respect to �dc) shows that, if (j, β) ∈ Edc and
(i, α) ∈ [[1, m]] × [[1, p]], then x

(j,β)dc
i,α = ti,α + Q, where Q is a Laurent polynomial (with

coefficients in C) in the non-zero tu,λ with (1, 1) �dc (u, λ) <dc (j, β). Hence, C(j,β)dc

is contained in D = C〈t±1
i,α | (1, 1) �dc (i, α) <dc (j, β) and ti,α �= 0〉. So it is enough to

prove that the monomials tkj,β (k ∈ N) are linearly independent in K viewed as a left
(respectively, right) D-module. This follows immediately from convention (4) of § 8. �

Proposition 9.5. Let (j, β) ∈ Edc \ {(m + 1, p)} and let

δ = detq(xi,α) i=i1,...,il
α=α1,...,αl

be an l × l quantum minor of M . Assume that (il, αl) <dc (j, β). If δ(j,β)+dc = 0, then
δ(j,β)dc = 0.

Proof. If tj,β = 0, we have δ(j,β)dc = δ(j,β)+dc = 0, as required. Assume now that tj,β �=
0. We distinguish two cases.

(i) If β = p, then, since δ(j,β)+dc = 0, it follows from Proposition 7.6 that tj,βδ(j,β)dc ∈
C(j,β)dc . On the other hand, it is clear that δ(j,β)dc ∈ C(j,β)dc . Thus, we deduce
from Lemma 9.4 that δ(j,β)dc = 0.

(ii) If β < p, then, since δ(j,β)+dc = 0, it follows from Proposition 7.5 that tj,βδ(j,β)dc ∈
C(j,β)dc . On the other hand, it is clear that δ(j,β)dc ∈ C(j,β)dc . Thus, we deduce
from Lemma 9.4 that δ(j,β)dc = 0. The proof is now complete.

�

The following non-vanishing criterion can be easily deduced from Proposition 9.5.

Proposition 9.6. Let

δ = detq(xi,α) i=i1,...,il
α=α1,...,αl

be an l × l quantum minor of L. If δ(m,1)dc �= 0, then δ �= 0.
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9.3. A criterion for quantum minors of M

Proposition 9.7. Let
δ = detq(xi,α) i=i1,...,il

α=α1,...,αl

be an l × l quantum minor of M with l � 2, and assume that til,p × tm,αl
�= 0. If

δ
(m,1)dc

îl,ᾱl
�= 0, then δ �= 0.

Proof. Assume that δ = 0. In order to prove that δ
(m,1)dc

îl,ᾱl
= 0, three cases may be

distinguished.

(i) If αl = p, then Corollary 7.7 shows that δ(il+1,p)dc = δ = 0. Since til,p �= 0, it follows
from Proposition 7.8 that δ

(il,p)dc

îl,p̄
= 0. Now, since il−1 < m and αl−1 < p, we have

(il−1, αl−1) <dc (m, 1), and so, we deduce from Proposition 9.5 that δ
(m,1)dc

îl,ᾱl
= 0,

as desired.

(ii) If il = m and αl < p, we deduce from Proposition 9.5 that δ(m,αl)
+
dc = 0. Thus,

since tm,αl
�= 0, Proposition 7.8 shows that δ

(m,αl)dc
m̂,ᾱl

= 0. Now, since il−1 < m and
αl−1 < p, we have (il−1, αl−1) <dc (m, 1), and so, we deduce from Proposition 9.5
that δ

(m,1)dc

îl,ᾱl
= 0, as required.

(iii) If il < m and αl < p, we observe that since M is a q-quantum matrix, xm,p �= 0. Fur-
ther, since αl < p, we have (il, αl) <dc (m, p). It then follows from Proposition 9.5
that δ(m,p)dc = 0. Thus, by Lemma 6.2, formula (2) of [10, Proposition 2.2.8] gives
us the equation

0 =
l∑

k=1

(−q)k−l−1xm,αk
δ(m,p)dc
αk→p .

By Corollary 7.7, we have
δ(m,p)dc
αk→p = δ(il+1,p)dc

αk→p .

Hence,
l∑

k=1

(−q)k−l−1xm,αk
δ(il+1,p)dc
αk→p = 0.

Now, we deduce from Proposition 7.8 that

l∑
k=1

(−q)k−l−1xm,αk
δ
(il,p)dc

îl,ᾱk
til,p = 0.

Since til,p �= 0, we conclude that

l∑
k=1

(−q)k−l−1xm,αk
δ
(il,p)dc

îl,ᾱk
= 0. (9.1)
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On the other hand, by expanding

δ
(il,p)dc
il→m = detq

⎛
⎜⎜⎜⎜⎝

x
(il,p)dc
i1,α1

· · · x
(il,p)dc
i1,αl

...
. . .

...
x

(il,p)dc
il−1,α1

· · · x
(il,p)dc
il−1,αl

x
(il,p)dc
m,α1 · · · x

(il,p)dc
m,αl

⎞
⎟⎟⎟⎟⎠

along the last row (see [12, Corollary 4.4.4]), we obtain, by Lemma 6.2,

δ
(il,p)dc
il→m =

l∑
k=1

(−q)k−lx(il,p)dc
m,αk

δ
(il,p)dc

îl,ᾱk
=

l∑
k=1

(−q)k−lxm,αk
δ
(il,p)dc

îl,ᾱk
.

From (9.1), it follows that δ
(il,p)dc
il→m = 0. Hence, by using Proposition 9.5, we

get δ
(m,αl)

+
dc

il→m = 0. Thus, since tm,αl
�= 0, it follows from Proposition 7.8 that

δ
(m,αl)dc

îl,ᾱl
= 0. Since il−1 < m and αl−1 < p, we have (il−1, αl−1) <dc (m, 1); so,

Proposition 9.5 shows that δ
(m,1)dc

îl,ᾱl
= 0. The proof is now complete.

�

10. A generating set for some H-invariant prime ideals in R

The aim of this last section is to construct a generating set of quantum minors for
some Jw. To do this, we use the notation of §§ 2 and 3. Let w ∈ W . Recall that Jw denotes
the corresponding H-invariant prime ideal in R (see Proposition 2.8), that Fw denotes
the skew field of fractions of Rw = R/Jw, and that Mw = (yi,α)(i,α)∈[[1,m]]×[[1,p]], where
yi,α = Yi,α + Jw (see Notation 3.6). If (i, α) ∈ [[1, m]] × [[1, p]], we still set ti,α = y

(1,2)s
i,α .

We have shown (see Theorem 3.7) that

(i) Mw is a q-quantum matrix with entries in Fw;

(ii) ti,α = 0 if and only if (i, α) ∈ w;

(iii) there exists an isomorphism from C〈ti,α | (i, α) /∈ w〉 onto the subalgebra C〈Ti,α |
(i, α) /∈ w〉 of R̄s which sends ti,α onto Ti,α for (i, α) /∈ w.

Thus, the conventions 1, 3 and 4 of §§ 8 and 9 are satisfied if we replace K by Fw, M

by Mw and xi,α by yi,α ((i, α) ∈ [[1, m]] × [[1, p]]).

10.1. The case w = [[1, m − u]] × [[1, p − u]] (u � 0)

By [10, Théorème 3.7.2], Jw is generated by the quantum minors of Y which belong
to Jw. So, in order to find a generating set for Jw, we just have to determine the quantum
minors of Mw which are equal to zero. To do this, we first establish the following result.
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Theorem 10.1. Let K be a C-algebra which is also a skew field, let M =
(xi,α)(i,α)∈[[1,m]]×[[1,p]] be a q-quantum matrix with entries in K and let u ∈ [[0, inf(m−1, p−
1)]]. For (i, α) ∈ [[1, m]]× [[1, p]], we set ti,α = x

(1,2)s
i,α . Assume that the non-zero monomials

t
k1,1
1,1 · · · tkm,p

m,p (where the indices are increasing for �s) with ki,α ∈ N are linearly indepen-
dent over C. We also assume that ti,α = 0 if and only if (i, α) ∈ [[1, m − u]] × [[1, p − u]].
Then

(1) the v × v quantum minors of M with v � u + 1 are zero;

(2) the v × v quantum minors of M with 1 � v � u are non-zero.

Proof. If u = 0, it is obvious that xi,α = 0 for all (i, α) ∈ [[1, m]] × [[1, p]], as required.
We now establish Theorem 10.1 when m = 2 and u = 1. In this case, it follows from

Proposition 3.5 that we have

xi,α =

{
ti,α if i = 2 or α = p,

ti,pt
−1
2,pt2,α otherwise.

Thus, all 1 × 1 quantum minors of M are non-zero, as desired. Next, let

δ = detq

(
x1,α x1,β

x2,α x2,β

)
(1 � α < β � p)

be a 2 × 2 quantum minor of M . In order to show that δ = 0, we distinguish two cases.

(i) If β < p, then δ = t1,pt
−1
2,pt2,αt2,β − qt1,pt

−1
2,pt2,βt2,α. Now, since M (1,2)s is a (1, 2)s-

q-quantum matrix, we have t2,βt2,α = q−1t2,αt2,β , so that

δ = t1,pt
−1
2,pt2,αt2,β − t1,pt

−1
2,pt2,αt2,β = 0.

(ii) If β = p, then δ = t1,pt
−1
2,pt2,αt2,p − qt1,pt2,α. Now, since M (1,2)s is a (1, 2)s-

q-quantum matrix, we have t2,αt2,p = qt2,pt2,α, so that

δ = qt1,pt
−1
2,pt2,pt2,α − qt1,pt2,α = qt1,pt2,α − qt1,pt2,α = 0.

Thus, all 2×2 quantum minors of M are zero and Theorem 10.1 is now established
when m = 2 and u = 1.

By a similar argument, we establish Theorem 10.1 when p = 2 and u = 1, and this
proves Theorem 10.1 when m = 2 or p = 2.

We now assume that m, p � 3 and that the result is true for any m′ × p′ q-quantum
matrix with (m′, p′) <s (m, p). If u = 0, we have already proved the desired result.

Assume now that u � 1. Since m and p are greater than or equal to 3, the four
conventions of §§ 8 and 9 are satisfied. Hence, we can use the notation and results of
these two sections. In particular, we still denote by N the matrix obtained from M (m,1)dc

by deleting the last row and the last column. By Lemma 8.2, the induction hypothesis
can be applied to the q-quantum matrix N . This leads to the following properties.
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(1) The v × v quantum minors of N with v � u are equal to zero.

(2) The v × v quantum minors of N with 1 � v � u − 1 are non-zero.

It then follows from Assertion 1 and Proposition 8.4 (with l = v � u) that the (v + 1) ×
(v+1) quantum minors of M with v � u are zero. On the other hand, since ti,p×tm,α �= 0
for all (i, α) ∈ [[1, m]]×[[1, p]], it follows from Proposition 9.1 that all 1×1 quantum minors
of M are non-zero, and it follows from Assertion 2 and Proposition 9.7 (with l = v + 1
when 1 � v � u − 1) that the (v + 1) × (v + 1) quantum minors of M with 1 � v � u − 1
are non-zero. All this together shows that the v ×v quantum minors of M with v � u+1
are equal to zero and that the v × v quantum minors of M with 1 � v � u are non-zero.
This completes the inductive step and the result follows. �

Let u ∈ [[0, inf(m− 1, p− 1)]] and set w = [[1, m−u]]× [[1, p−u]]. Then w is an element
of W and the matrix Mw satisfies the hypotheses of Theorem 10.1. Since the v × v

quantum minors with v � u + 1 are right linear combinations (with coefficients in R)
of (u + 1) × (u + 1) quantum minors, the following theorem results from Theorem 10.1
(and [10, Théorème 3.7.2]).

Theorem 10.2. Let u be an integer such that 0 � u � inf(m − 1, p − 1), and set
w = [[1, m−u]]×[[1, p−u]]. Then w belongs to W and Jw is generated by the (u+1)×(u+1)
quantum minors of Y.

Remark 10.3. Let u be an integer such that 0 � u � inf(m − 1, p − 1). It follows
from Theorem 10.2 that the ideal generated by the (u + 1) × (u + 1) quantum minors of
Y is (completely) prime. So, we have just established that the quantum determinantal
ideals are (completely) prime. In the more general case where we only assume that q is
a non-zero element of any base field, this result was proved by Goodearl and Lenagan
(see [4, Corollary 2.6]) by using different methods.

10.2. The case w = ([[1, m − u]] × [[1, p − u]]) ∪ ([[1, s]] × {p}) (u � 1, s � 1)

Theorem 10.4. Assume that m and p are greater than or equal to 3, and let u

and s be two integers such that u ∈ [[1, inf(m − 1, p − 1)]] and 1 � s � m − 1. Set
w = ([[1, m − u]] × [[1, p − u]]) ∪ ([[1, s]] × {p}). Then w belongs to W and Jw is generated
by

(1) the (u + 1) × (u + 1) quantum minors of Y;

(2) the u × u quantum minors of the matrix obtained from Y by deleting the rows
s + 1, . . . , m;

(3) Y1,p, . . . , Ys,p.

Proof. By [10, Théorème 3.7.2], Jw is generated by the quantum minors of Y which
belong to Jw. So, in order to find a generating set for Jw, we just have to find the quantum
minors of Mw which are equal to 0. This is what we do now.
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Since m and p are greater than or equal to 3, the four conventions of §§ 8 and 9 are
satisfied if we replace K by Fw, M by Mw and xi,α by yi,α ((i, α) ∈ [[1, m]] × [[1, p]]). So,
we can use the notation and results of these two sections. In particular, N still denotes
the matrix obtained from M

(m,1)dc
w by deleting the last row and the last column.

Now if (i, α) ∈ [[1, m − 1]] × [[1, p − 1]], it follows from Theorem 3.7 that ti,α = 0 if and
only if (i, α) ∈ [[1, m − u]] × [[1, p − u]]. Hence, it follows from Lemma 8.2 that N satisfies
the hypotheses of Theorem 10.1 if we replace m by m−1, p by p−1 and u by u−1. Thus,
the v × v quantum minors of N with v � u are zero and the v × v quantum minors of
N with v � u − 1 are non-zero. It then follows from the first assertion of Proposition 8.4
(with l = v � u) that the (v + 1) × (v + 1) quantum minors of Mw with v � u are zero.
Hence, the quantum minors

detq(Yi,α) i=i1,...,iv
α=α1,...,αv

with v � u + 1 belong to Jw.
It remains to deal with the v × v quantum minors of Mw such that 1 � v � u. Let

δ = detq(yi,α) i=i1,...,iv
α=α1,...,αv

be such a quantum minor. We consider four cases.

(i) Assume that v = u and that iu � s. It follows from the second assertion of Propo-
sition 8.4 (with l = u) that δ = 0. Hence, the quantum minors

detq(Yi,α) i=i1,...,iu
α=α1,...,αu

with iu � s belong to Jw.

(ii) Assume that 1 < v � u and that iv > s. Recall that, if 1 � k � u − 1, the
k × k quantum minors of N are non-zero. In particular, δ

(m,1)dc

îv,ᾱv
�= 0. Thus, since

tiv,p × tm,αv
�= 0 (remember that iv > s), it follows from Proposition 9.7 that δ is

non-zero. Hence, the quantum minors

detq(Yi,α) i=i1,...,iv
α=α1,...,αv

with 1 < v � u and iv > s do not belong to Jw.

(iii) Assume that 1 � v < u and that iv � s. If αv = p, then the last column of δ is
zero, so that δ = 0. Hence, the quantum minors

detq(Yi,α) i=i1,...,iv
α=α1,...,αv

with 1 � v < u, iv � s and αv = p belong to Jw.

If αv < p, then, since iv � s < m, δ(m,1)dc is a v × v quantum minor of N . Thus,
since v < u, we have δ(m,1)dc �= 0. It then follows from Proposition 9.6 that δ �= 0.
Hence, the quantum minors

detq(Yi,α) i=i1,...,iv
α=α1,...,αv

with 1 � v < u, iv � s and αv < p do not belong to Jw.
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(iv) Assume that v = 1 and that iv > s. Observe that tiv,p × tm,αv
�= 0 (since iv > s).

Thus, it follows from Proposition 9.1 that δ = yiv,αv �= 0. Hence, the quantum
minors

detq(Yi,α) i=i1,...,iv
α=α1,...,αv

with v = 1 and iv > s do not belong to Jw.

We deduce from the above results that Jw is generated by

(i) the v × v quantum minors with v � u + 1;

(ii) the u × u quantum minors of the matrix obtained from Y by deleting the rows
s + 1, . . . , m;

(iii) the v × v quantum minors with 1 � v < u, αv = p and iv � s.

Denote by Lw the two-sided ideal in R generated by the (u + 1) × (u + 1) quantum
minors of Y, by the u×u quantum minors of the matrix obtained from Y by deleting the
rows s + 1, . . . , m and by Y1,p, . . . , Ys,p. The above results show that Lw ⊆ Jw. Since the
v ×v quantum minors with v � u+1 are left linear combinations (with coefficients in R)
of (u+1)× (u+1) quantum minors, and since the v×v quantum minors with 1 � v < u,
αv = p and iv � s are left linear combinations of Y1,p, . . . , Ys,p, we have Jw ⊆ Lw. Hence
Jw = Lw and the proof is complete. �

10.3. The case w = ([[1, m − u]] × [[1, p − u]]) ∪ ([[1, s]] × {p}) (u > s � 1)

An immediate corollary of Theorem 10.4 is the following result.

Corollary 10.5. Assume that m and p are greater than or equal to 3 and let u and
s be two integers such that 1 � s < u � inf(m − 1, p − 1). Set w = ([[1, m − u]] × [[1, p −
u]]) ∪ ([[1, s]] × {p}). Then w belongs to W and Jw is generated by

(1) the (u + 1) × (u + 1) quantum minors of Y;

(2) Y1,p, . . . , Ys,p.

The following result can be easily deduced from Corollary 10.5 (with u � 2 and s = 1).

Corollary 10.6. Assume that m and p are greater than or equal to 3 and let u ∈
[[2, inf(m−1, p−1)]]. The two-sided ideal in R generated by the (u+1)×(u+1) quantum
minors of Y and by Y1,p is (completely) prime.

Remark 10.7. Corollary 10.6 allowed Lenagan and Rigal [11] to show that the quan-
tum determinantal factor rings of Oq(Mm,p(C)) are maximal orders.
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