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A unified formula for Steenrod operations
in flag manifolds

Haibao Duan and Xuezhi Zhao

ABSTRACT

The classical Schubert cells on a flag manifold G/P give a cell decomposition for G/P
whose Kronecker duals (known as Schubert classes) form an additive base for the integral
cohomology H*(G/P). We present a formula that expresses Steenrod mod-p operations
on Schubert classes in G/P in terms of Cartan numbers of G.

1. Introduction

For a prime p > 2, let 4, be the mod-p Steenrod algebra, and let Pk e Ay, k > 1, be the Steenrod
mod-p reduced powers on the Fj,-cohomology of topological spaces [SE62] (here [F,, = Z/pZ). In the
case p = 2, it is also customary to use S¢** € A, instead of P*.

An entire description of the A,-action on the [F,-cohomology of a topological space X leads to
two enquiries.

PROBLEM A. Specify an additive basis S = {w1, ..., wm} for the graded F,-vector space H*(X;F))
that encodes the geometric formation of X (e.g. a cell decomposition of X ).

PROBLEM B. Determine the coefficients c ; € [F, in the expression

Z cmwj, k=21, 1<t<m.

1<j<m

The study of the internal structure of the algebra .4, has continued for almost 50 years, see
Wood [Woo098] for a thorough historical account, further problems and relevant references. On the
other hand, we note that even partial solutions to Problem B can have significant consequences
in manifold geometry: the classical Wu formula [Wu50] can be interpreted as the expansion of the
S¢F-action on the special Schubert classes in the real Grassmannians; the calculation by Steenrod
and Whitehead [SW51] in the truncated real projective spaces led to an enormous step in under-
standing the problem of how many linearly independent vector fields can be found on the
n-sphere S™; by deriving partial knowledge of the P*-action on the special Schubert classes in
the complex Grassmannian, Borel and Serre [BS51, BS53] demonstrated that the 2n-dimensional
spheres 52" do not admit any almost complex structure unless n = 1,2,3. Needless to say, there
are many profound applications and deep implications of Steenrod operations in topology [Die89,
Len98, Ste72], and effective calculation of these operations on the cohomology of a given manifold
also deserves high priority.

Let G be a compact connected Lie group and let P be the centralizer of a one-parameter subgroup
in G. The space G/P = {gP | g € G} of left cosets of P in G is known as a flag manifold. In this
paper, we study Problems A and B for all G/P.
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Firstly, if X is a flag manifold G/P, a uniform solution to Problem A is already known as the
basis theorem in Schubert’s enumerative calculus [Kle76, Sot02, BGGT73]. This was originated by
Ehresmann [Ehr34] for the Grassmannians G, , of k-dimensional subspaces in C" in 1934, extended
to the case where GG is a matrix group by Bruhat in 1954, and completed for all compact connected
Lie groups by Chevalley [Che94] in 1958. We briefly recall the result.

Let W and W’ be the Weyl groups of G and P, respectively. The set W/W' of left cosets of W’
in W can be identified with the subset of W

W ={weW | l(wy) > L(w) for all wy € wW'},

where £: W — 7 is the length function relative to a fixed maximal torus 7" in G [BGGT73, Proposi-
tion 5.1]. The key fact is that the space G/P admits a canonical decomposition into cells indexed
by elements of W

G/P= ] Xu, dimX, =20(w), (1.1)

weWw

where each cell X,, is the closure of an algebraic affine space, known as a Schubert variety on G/P
(see [Che94, BGGT73]). Since only even-dimensional cells are involved in the decomposition (1.1),
the set of fundamental classes [X,] € Hog(,)(G/P), w € W, forms an additive basis of the homology
H,.(G/P). The cocycle class o, € H*)(G/P) defined by the Kronecker pairing as

(Ow, [ Xu]) = 0w, w,u€W,

is called the Schubert class corresponding to w. Combining (1.1) with the Poincaré duality yields a
solution to Problem A.

LEMMA 1 (Basis theorem). The set of Schubert classes {o,, | w € W} constitutes an additive basis
for the ring H*(G/P).

It follows from Lemma 1 that, for a u € W and k > 1, one has the expression
Pr(oy) = Zaﬁ,waw mod p, aﬁ,w e F,, (1.2)

where the sum ranges over all w € W with £(w) = £(u) + k(p — 1) since P* has degree k(p — 1).
Thus, in the case of X = G/P, Problem B admits a concrete form.

PROBLEM B'. Determine the numbers af , € F, for k > 1, w,u € W with {(w) = {(u) + k(p — 1).

If G is the unitary group U(n) of order n and if P = U(k) x U(n — k), the flag manifold G/P
is the complex Grassmannian G, of k-planes through the origin in C". The ith Chern classes
c € H 2"(Gn,k), 1 <4 < k, of the canonical complex k-bundle over G, ; are precisely the special
Schubert classes on G, 1, (see [Sot02, GH78]). In order to generalize the Wu formula [Wu50], many
works were devoted to finding an expression of P¥(c;) in terms of the ¢; (cf. [BS51, BS53, Dua03b,
Lan83, Len98, Pet75, Sha77, Sug79]). This seems to be the only special case for which Problem B’
has been studied in some detail.

It is well known that the knowledge of the 4, action on the F, cohomology of a space X
can provide deeper information on the topology of X than just the cohomology ring structure.
In particular, in view of the geometric decomposition (1.1) of G/P offered by the classical Schubert
cells, the numbers afj’;,u are immediately applicable to investigating the attaching maps of these cells
(e.g. compare the tables in §5 with the figure in [Len98, §6]). We quote from Lenart [Len98] for the
case of G, ;: ‘Apart from projective spaces, very little is known about the attaching maps of their

cells’.

The present paper is a sequel to [Dua05, DZ03], where the multiplicative rule of Schubert
classes was determined. There is a common main idea behind these works. The calculation in
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the ring H*(G/P) can be brought to the cohomology of an appropriate Bott—Samelson K-cycle
(cf. Definition 4), which provides the desingularization of a Schubert variety.

This paper is so arranged as follows. Section 2 contains a brief introduction to the Weyl
group associated with a Lie group. Then the solution to Problem B’ is presented in the Theorem.
After geometric preliminaries in §3, the Theorem is established in §4. In order to illustrate the
effective computability of our method, computational results for some cases of G/P are explained
and tabulated in § 5.

2. The result

To investigate the topology of a flag manifold G/P one may assume that the Lie group G under
consideration is 1-connected and semi-simple [BH58|. Since all 1-connected semi-simple Lie groups
are classified by their Cartan matrices [Hum?72, p. 55|, any numerical topological invariant of G/P
may be reduced to the Cartan numbers (entries in the Cartan matrix of G). We present both a
formula and an algorithm that evaluate the numbers aﬁ,w € IF,, in terms of Cartan numbers of G.

Fix a maximal torus 7" of G and set n = dim7". Equip the Lie algebra L(G) of G with an inner
product (-,-) so that the adjoint representation acts as isometries of L(G). The Cartan subalgebra
of G is the Euclidean subspace L(T') of L(G).

The restriction of the exponential map exp: L(G) — G to L(T) defines a set D(G) of £ (dim G—n)
hyperplanes in L(T), i.e. the set of singular hyperplanes through the origin in L(T"). The reflections
of L(T') in these planes generate the Weyl group W of G (see [Hum?72, p. 49]).

Fix a regular point o € L(T)\Upep(e) L and let A be the set of simple roots relative to
[Hum72, p. 47]. If 5 € A, the reflection sz in the hyperplane Lg € D(G) relative to 3 is called a
simple reflection. If 3,3 € A, the Cartan number

BoB =2(6,0)/(8,0)
is always an integer (only 0,41, +2, +3 can occur [Hum72, p. 55]).

Since the set of simple reflections {sg | 3 € A} generates W, any w € W admits a factorization
of the form

w=2s5g 0---08g,., [i€A. (2.1)

DEFINITION 1. The length ¢(w) of a w € W is the lowest number of factors in all decompositions
of w in the form (2.1). The decomposition (2.1) is said reduced if m = ¢(w).

If (2.1) is a reduced decomposition, the m x m (strictly upper triangular) matrix A, = (a; ;)

with
0 ifi> ],
Qjj = e .
—fjofi ifi<y,
will be called the Cartan matriz of w associated to the decomposition (2.1).
Let Z[z1,...,2m] = Qo Zz1,- - , )™ be the ring of integral polynomials in 1, ..., 2,
graded by |z;| = 1.
DEFINITION 2. For a subsequence [i1,...,i,] C [1,...,m]and 1 < k < r, denote by my, p(z4,, ..., 2;,)
the polynomial

Z :L‘qul N :L"?: c Z[:L‘l, . ’xm](T-‘rk(p—l))’
(a17"'7a7‘)

where the sum is over all distinct permutations (a1, ..., a,) of the partition (p’ﬂ 17“—16) (see [Mac95,

p. 1]).
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Remark 1. In the theory of symmetric functions, my, ,(x;,, ..., x;,) is known as the monomial sym-
metric functionin x;,, ..., x;, associated to the partition (p*,17=%) (see [Mac95, p. 19]). As examples,
if [i1,...,4,] = [1,2,3], one has
map(Tiy s e s i) = wrows + v1abrs + :L‘ll‘Ql‘g,
mop(Tiy, ..., xi,) = 2l abrs + zpabal + alzonh,
ms3p(Tiys ..., x;,) = afabah.

DEFINITION 3. Given an m x m strictly upper triangular integer matrix A = (a; ;) define an additive
homomorphism Ty : Z[z1, . .., 2] ™ — Z recursively as follows:

(1) for h € Z[zy, ..., 2m-1]"), Ta(h) = 0;
(2) if m =1 (consequently, A = (0)), then T'y(z1) = 1;
(3) for h € Zlxy, ..., Tm_1]"") with 7 > 1,
TA(hx‘In) = TA’(h(al,mwl +- am—l,mxm—l)r_l)a

where A’ is the ((m—1) x (m—1) strictly upper triangular) matrix obtained from A by deleting
the mth column and the mth row.

By additivity, T4 is defined for every h € Z[xl,...,xm](m) using the unique expansion h =
Zogrsm hrl‘:n With hr 6 Z[xl, “ e ,mm_l](m_r).
Remark 2. Definition 3 implies an effective algorithm to evaluate T4.
For k=2 and A; = (8 8), Ty, : Z[azl,mg](2) — 7 is given by
T, (‘T%) =0, Ty (x1m2) = TAl’(‘Tl) =1

Ty, (23) = Ty, (azy) = a.
For k =3 and Ay = <§§§)’ Al = Ay and Ty, : Z[l‘l,.’L‘Q,.’L‘g](S) — 7 is given by

0 if r3 = 0

Ty, (2 xh?2l) =< '

(27 25°25") Ta, (27 zp?(bry + cag)371), if rg > 1,
where 71 4+ 19 + r3 = 3, and where Ty, is calculated in the above.

Assume that w = sg o---0sg , B € A, is a reduced decomposition of w € W and let
Ay = (a;,)mxm be the associated Cartan matrix of w. For a subsequence J = [i1,...,i,] C [1,...,m]
we set

87 =8p, 0 rosp, €W

A solution to Problem B’ is the following.
THEOREM. For au € W, k > 1 with £(u) =7 and m =7 + k(p — 1), we have (in (1.2)) that
aﬁ’w =Ty, < Z M p(Tiy s .- 7~’Ez',«)> mod p. (2.2)

J:[i17“'7ir]g[l7"'7m]
SJj=u

This result indicates an effective algorithm to evaluate aﬁw as the following recipe shows:

(1) starting from the Cartan matrix of G, a program to present all elements of W by their minimal
reduced decompositions is available in [DZ03, DZZ04]; with this presentation, W also becomes
an ordered set (cf. §5);

(2) for a w € W with a reduced decomposition, the corresponding Cartan matrix A4, can be read
directly from Cartan matrix of G (compare Definition 1 with [Hum?72, p. 59]);
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(3) for aw € W with a reduced decomposition w = sg, 0---0sg, and au € W with £(u) =7 < m,
the solutions in the subsequence J = [iy, ... 4, C [1,...,m] to the equation s; = w in W agree
with the solutions to the equation sj(a) = u(a) in the vector space L(T), where a € L(T) is
a fixed regular point;

(4) the evaluation the operator T4, on a polynomial can be easily programmed (cf. Definition 3
or [DZ03, §5]).

Based on the algorithm explained above, a parallel program to give the full expansion
PHo,) = Z aﬁ,waw mod p,

has been implemented (in which the order on W is used in assigning to each w € W a computing
unit). We refer to §5 for some computational results from the program.

3. Preliminaries in the K-cycles of Bott—Samelson

In this section all homologies (respectively cohomologies) will have integer coefficients unless other-
wise specified. If f : X — Y is a continuous map between two topological spaces, f. (respectively f*)
is the homology (respectively cohomology) homomorphism induced by f. If M is an oriented closed
manifold (respectively a connected projective variety) [M] € Hgim pr(M) stands for the orientation
class. The Kronecker pairing, between cohomology and homology of a space X, will be denoted by
(,): H(X) x H (X) — Z.

The proof of the Theorem will make use of the celebrated K-cycles (i.e. Bott-Samelson resolu-
tions of Schubert varieties) on the flag manifold G /T constructed by Bott and Samelson early in
1955 [BS55]. In this section we recall the construction of these cycles, as well as their basic prop-
erties (from Lemmas 2-4) developed in [BS55, BS58, Dua03a, Dua05]. The main technical result
in this section is Lemma 5, which allows us to transform the proof of the Theorem for G/P to a
calculation in terms of the K-cycles of Bott—Samelson.

As in §2, we fix a regular point a € L(T) and let A be the set of simple roots relative to .
For a B € A, the singular plane in L(T) relative to § will be denoted by Lg (see [Hum?72, p. 47]).
Denote by K3 the centralizer of exp(Lg) in G, where exp is the restriction of the exponential map
L(G) — G to L(T). We note that ' C Kz and that the quotient manifold Kg/T is diffeomorphic
to a 2-sphere [BS58, p. 996].

The 2-sphere Kg/T carries a natural orientation ws € H?(Ky/T;Z) that may be specified as
follows. The Cartan decomposition of the Lie algebra L(Kg) relative to the maximal torus 7' C Kjp
has the form L(Kg) = L(T) @ ¥g, where 93 C L(G) is a 2-plane, the root space belonging to the
root 3 (see [Hum72, p. 35]). Let [-,-] be the Lie bracket on L(G). Take a non-zero vector v € g3
and let ' € Y3 be such that [v,v'] = 3. The ordered base {v,v'} gives an orientation on ¥z which
does not depend on the initial choice of v.

The tangential of the quotient map mg: Kg — Kg/T at the group unit e € Kz maps vg
isomorphically onto the tangent space to Kg/T at mg(e). In this manner the orientation {v,v’} on
¥ furnishes Kg/T with the induced orientation wg = {mg(v), m3(v")}.

For a sequence f31, ..., Bm € A of simple roots (repetitions ; = 3; may occur), let K (51, ..., 0m)
be the product group Kg, x --- x Kg, . Since T' C Kg, for each i the group T x --- x T (m-copies)
acts on K(f1,...,0n) from the right by

(gl, . ,gm)(tl, e ,tm) = (gltl,tl_lg2t2, . ,t;}_lgmtm).

Let I'(51, ..., 8m) be the base manifold of this principal action, oriented by the wg,, 1 < i < m.
The point in (S, . .., Bin) corresponding to a (g1, ..., 9m) € K(B1, ..., Bm) denoted by [g1, - .. , gm]-
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The integral cohomology of I'(fi,...,0,) has been determined in [BS55, Proposition IIJ.
Let ¢; : Kg,/T — I'(f1,. .., Bm) be the embedding induced by the inclusion K, — K(51,...,0m)
onto the ith factor group, and put

yizsoi*(wﬁi)EHQ(F(ﬁlv"'aﬁm))v I<i<m.
Form the m x m strictly upper triangular matrix A = (a; j)mxm by letting
0 ifi>7,
Qij = cp .
—Bjo B ifi <.
LeEMMA 2 (Bott—Samelson [BS58]). The set {yi,...,ym} forms a basis for Ho(I'(f1,...,0m))-

Further, let z; € H*>(I'(B1,...,8m)), 1 < i < m, be the classes Kronecker dual to y1,...,ym as
<:1:7,7y]> = 5i,j; 1< 17] <m, then

H*(T(B1,---,0m)) =Zlx1,...,zn)/1,
where I is the idea generated by m? -

i<j QigTity, 1 < j < m.

In view of Lemma 2 one may introduce an additive map fr( 22z, ... ,xm](m) — 7Z by

ﬁl,...,ﬁm)
/ b= (e, ... sy (). C(Br- - B,
T(B1,--Pm)

where [['(G1,...,0m)] € Hom(T'(B1, ..., Bm)) = Z is the orientation class and where
pF(,Bl,---,,Bm) . Z[xl, . ,:L’m] — H*(F(ﬂl, . ,ﬂm))

is the obvious quotient homomorphism in view of Lemma 2. The geometric implication of the
operator T4 in Definition 3 is seen from the next result.

LEMMA 3 (Duan [DuaO3a, Proposition 2]). We have
/ :TA:Z[ml,...,xm](m) — Z.
F(ﬁlw'wﬁm)

In particular, fp(ﬁ By T17 0 T = 1.
1o Pm

It also follows from Lemma 2 that the ring H*(I'(f1, ..., Bn)) has the additive basis {x;, - - - x;,. |
[i1,...,i] € [1,...,m]}. Since the dimension of each w; is 2, the action of the P* € A, on these
base elements is determined by the Cartan formula [SE62]. Let my, (24, .., ;) be the monomial
symmetric function in z;,,..., ;. associated to the partition (p¥, 1"~*) (cf. Definition 2).

T

LEMMA 4. We have P*(z;, -+ x;,) = my p(ziy, ..., x;.) mod p.

Let P be the centralizer of a one-parameter subgroup in G and let G/P be the flag manifold of
left cosets of P in G. Assume (without loss the generality) that with respect to the fixed maximal
torus T C G, T CPCGQG.

DEFINITION 4. The map

Pb1,ofpmiP L (B1, -, Bm) — G/ P
by [g1,---,gm] — g1 gm P is clearly well defined and will be called the K-cycle of Bott—Samelson
on G/ P associated to the sequence fi,..., 3, € A of simple roots (cf. [Dua05, §7.1]).

It was first shown by Hansen [Han73] in 1972 that, when P = T, certain K-cycles provide
desingularizations of Schubert varieties on G/T. The following more general result allows one to
bring the calculation of P*-action on H*(G/P) (i.e. Problem B) to the computation of the action
on the truncated polynomial algebra H*(I'((1,. .., Bm)), while the latter is handled by Lemma 4.
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LeEMMA 5. Let {0, € H*®)(G/P) | u € W} be the set of Schubert classes on G/P (cf. Lemma 1).
The induced cohomology ring map ¢j 5 .p is given by

¢/2177B7R7P(0-u) = (_]‘)T Z :L‘Zl o 'xir7

J=[i1,..yir)C[L,..im]
Sj=u

where r = {(u).

Proof. Since T'C P C G, the map g, .. 3,..p factors through g, . 3, .7 in the fashion

B, m;
T(Bi,...,0m) —"% q/T
SDBI ..... Bm; P lﬂ- ’
G/P

where 7 is the standard fibration with fiber P/T. By [Dua05, Lemma 5.1] we have
(a) Lemma 5 holds for the case P =T.
From [BGG73, §5] we find that:

(b) the induced map 7 : H*(G/P) — H*(G/T) is given by

™(0y) = 0w, weEW CW.

Combining parts (a) and (b) verifies Lemma 5. O

In the case P =T, a result similar to Lemma 5 in the setting of T-equivariant cohomology was
obtained by Willems in [Wil04, Proposition 3.10].

4. Proof of the Theorem
For a u € W with £(u) = and a k > 1, we assume as in (1.2) that

Pr(o,) = Z afj,vav, agv € F,. (4.1)
vEW,L(v)=r+p(k—1),

Let w = s, 0---03sg,, B € A, be a reduced decomposition of a w € W with m = r + k(p — 1),
and let 4, = (ai,j)mxm be the associated Cartan matrix. Consider the K-cycle ¢g, . 3,..p :
L'(f1,...,0m) — G/P associated to the ordered sequence (f31,...,[y) of simple roots. Applying
the ring map ¢j 5 p to Equation (4.1) in H*(G/P;F,) yields in H*(I'(B1,. .., Bm);Fp) that

* k — ok k
Spﬁlvv/amxpp (Uu) = <p/81776m7p< Z auzvav>
vEW L(v)=r+p(k—1),

(—1)maz7w:1:1 e Ty,

where the second equality follows from

. (=)™mxy -z ifv=w,
CB1,....8m;P(O0) =

if v #£ w,
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by Lemma 5. On the other hand

PP P (00) = P05, gip(0w)

(—1)’“7>’f< > T ac) (by Lemma 5)

J:[ih'“?i’!‘}g[l?"'vm}

SJ=u
=(-1)" Z Mpp(Tiy, ..., 2;,.) (by Lemma 4),
J:[ilv"'7ir]g[l7“'7m]
sj=u

where the first equality comes from the naturality of P* (see [SE62]). Summarizing, we get in

H*™ (51, Bn)i Fp) = Fyp

that
Z Mpp(Tiyy o T) = (—1)]"’(1’_1)@5@3:1 R .
J:[i17“'7ir]g[l7"'7m]
SJ=u
Evaluating both sides on the orientation class [['(81,. .., 5n)] mod p and noting that p is a prime,

we get from Lemma 3 that

du=( X gl DG )

J:[ilw“vi’!‘}g[l?"'vm}
SJ=u

=Ta, < Z M p(Tiy s ,xir)>.
J

:[7:17"'77:T]g[17""m}
SJ=u

This completes the proof.

5. Applications

The formula (2.2) handles Problem B’ in its natural generality in the sense that it applies
uniformly to:
(1) every flag manifold G/ P;
(2) each Schubert class in a given G/P;
and, in addition, it is
(3) valid for every k > 1 and a prime p > 2.
Owing to of these features, a single program can be developed to perform computations in various

G /P (cf. the discussion at the end of §2). We list computational results from the program for some
cases of G/P.

For the Lie groups G concerned in Examples 1-4 below, we assume that a set of simple roots
A ={p1,...,0n} of G is given and ordered as that in [Hum72, pp. 64-75].

For the centralizer P of a one-parameter subgroup in G, write W for the subset of W = W/W'
consisting of the elements of length r (cf. Definition 1), where W (respectively W) is the Weyl group
of G (respectively P). The set {0, | w € W"} forms a basis for the 2r-dimensional cohomology
H?"(G/P) by Lemma 1.

Let Ap C A be the subset consisting of simple roots of P. Starting from the order on A
as well as the subset Ap C A, a program to decompose each w € W" uniquely into a reduced
product (which is the lexicographically minimum product in all reduced decompositions of w),
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called the minimal reduced decomposition of w, has been compiled in [DZ03]. If two w, w’' € W™ are
given by their minimal reduced decompositions
W =85p;, © "985, wlzsﬁjl ©---088;,

we say w < w’ if there exists a 1 < d < r such that (i1,...,iq) = (J1,-.-,Jd), but ig+1 < jg+1.
With respect to this order the W becomes an ordered set, hence, can be written as W = {w,; |
1<i < |WT|}.

Write s; instead of sg,, B; € A. We list in Table 1 all w,; € W by their minimal reduced
decompositions; this followed by Table B expressing all nontrivial P¥ (or,i), where the notion o.; is
used to simplify the Schubert class oy, ; mod p.

Ezample 1. G = G5 (the exceptional group of rank 2) and H =T (a maximal torus).

TABLE A. Elements of W and their minimal reduced decompositions.

wy;  Decomposition  w,; Decomposition  w,;  Decomposition

) ) s

wi,1 S1 w3, 1 515251 Ws,1 0152515251
wi,2 g2 w3, 2 525152 W5 2 5§251525152
w21 5152 Wy, 1 51520152 We, 1 515251025152
w22  S281 Wy2  S2518281

TABLE B. Nontrivial P*(o,.;).

Ori Pl(a'r,i) (p=3) Pl(a'r,i) (p=5)

01,1 20’371 20571
01,2 0 30’5’2
021 2041 0
022 042 0
0'371 0 0
032 052 0

Ezample 2. G = Fj (the exceptional group of rank 4) and H = Spin(7) x S*.

TABLE A. Elements of W and their minimal reduced decompositions.

Wy ; Decomposition Wy i Decomposition

wi,1 S1 ws 2 5§2515352545352S51

w21 $251 Wy, 1 5152515352545352S51

w31 535281 wWy,2 5§35251535254535251

W41 §2835281 w10,1 515352515835254535251

Wy, 2 54535281 w10,2 545352515352545352S51

Ws,1 5152535251 w111 5154535251535254535251

Ws,2 52854535251 w11,2 5251535251535254535251

We,1 515284838251 w12,1 5§25154535251535254535251
We,2 535254838251 w13,1 5§35251545835251535254535251
w71 51535254835251 W14,1 5§2535251545835251535254535251
w7 2 §25352548352851 wi5,1 515253525154535251535254535251

ws,1 5152535254535251
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TABLE B. Nontrivial P*(o,.;).

p=3 p=>5 p=7
Ori Pl(crm) PQ(O'T,Z') Pl(O'r,i) ’PQ(UT’i) Pl(o'r,i) PQ(UT,i)
01,1 2031 0 2051 + 3052 0 do71+2072 0
021 041+ 2042 06,2 dog1+2062 30101 +40102 401 +3082 0141
o310 0 do7 2 20112 09,2 30151
O41 06,2 0 3081+ 032 40121 30101+ 60102
o042 2062 0 301 +3082 20121 5010,1 + 30102
o051 071 0 4091+ 09,2 20131 9011,2
052 072 0 dog1+ 092 20131 4do11,1 +5011,2
061 081+ 2082 010,1 + 0102 20101 + 20102 40141 30121
062 0 0 40101 20141 12,1
o710 0 o111 +011,2 0 013,1
or2 0O 0 011,2 3015,1 13,1
082 20101+ 010,2 0 3012,1 3014,1
09,1 011,01 + 20112 0 13,1 20151
092 20111+20112 0 0 30151
10,1 20121 20141 o141
0102 20121 20141 3014,1
o112 0 0 40151
O12,1 2014,
o131 20151

Ezample 3. G = SO(12) (the special orthogonal group of order 12) and H = U(6). The flag manifold
G/H is the Grassmannian of complex structures on the 12-dimensional real Euclidean space R'?
(see [Dua02]).

TABLE A. Elements of W and their minimal reduced decompositions.

wy;  Decomposition Wy Decomposition
w11 Se ws,2 5153525453555456
W21 5486 ws 3 5352565453555456
w31 535456 w9y, 1 518352565453555456
w32 555456 Wy, 2 525153525453555456
Wy4,1 52535456 Wy, 3 545352565453555456
Wy4,2 53555456 Wi10,1  S51545352565453555456
W51 5152535456 Wi0,2 52515352565453555456
W52 52535554856 W10,3 S55548352565453555456
W53 5453555456 Wi11,1  S155545352565453555456
We,1 515253555456 Wi1,2  525154535256545355545¢6
We,2 525453555456 Wi2,1  S525155545352565453555456
We,3 565453555456 Wi2,2  535251545352565453555456
wWwr 1 51525453555456 W13,1 S3525155545352565453555456
W72  52565453555456 Wi14,1  S453525155545352565453555456
W73  53525453555456 W15,1  565483525155545352565453555456
wg,1  S5152565453555456
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TABLE Bj. Nontrivial Pk(am) for p = 3.

Ori Pl(ar,i) P2(Ur,i) PB(UT,i) P4(0r7i) P5(0r7i)
01,1 03,1 + 03,2 0 0 0 0
021 2041+ 042 06,1 +2062+ 2063 0 0 0
03,1 0502 2071 +2072+2073 091+ 092+ 2093 0 0
032 2052 07,1+ 072+ 073 2891 +092+093 O 0
041 061 2081+ 2032 2510,1 + 010,2 20122 0
042 0Og2 1063 2081+ 2032 20101 +2010,2 012,1 0
052 O71+072+073 0 o11,2 513,1 20151
053 Or2+2073 09,2 0112 5131 20151
061 081+ 082 0 0 0
062 081+ 082+ 033 2010,1 +2810,2 +2010,3 0121 + 0122 0
06,3 2083 010,1 + 0102 + 010,3 512,1 + 0122 0
o71 091 +2092 20111+ 20112 0 0
O72 091 20111 +20112 25131 20151
073 0911092 201110+ 20112 0
08,1 20102 012,1 +012,2 014,1
082 0102 2012,1 +2012,2 25141
083 0O10,1 + 0102+ 0103 O 014,1
09,1 011,01 t 0112 0 0
093 0111 t 0112 0 015,1
10,1 012,10 +2012,2 0
0102 0O12,1 + 0122 0
010,3 0121 0
o11,1 20131 o15,1
o112 0131 20151
013,1 O15,1
TABLE Bs. Nontrivial Pk(am-) for p = 5.

Ur,i Pl(ar,i) PQ(UT’,i) ’Pg(a'r,i)

01,1 051 +3052+2053 0 0

02,1 306,1 +4U6,3 0 0

o031 4ora+3073 20111 4151

032 2071+2072+2073 o11,1 20151

04,1 4og1+3082 0122

o042 4doga+4os3 30121 + 28122

052 2091+2092+2093 25131

053 2091+2092+2093 25131

06,1 2010,1 +3010,2 0

062 20101+ 20102 +40103 45141

063 30101 +2010,2 + 0103 0

o711 4o 20151

o072 30111 40151

or3 4o 20151

08,1 20121 +2012,2

082 40121 +3012,2

083 30122

o091 4oz

093 30131

10,1 2014,

0102 20141

011,1 O15,1

o112 40151
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Ezample 4. G = U(7) (the unitary group of order 7) and H = U(3) x U(4). The flag manifold G/H
is the Grassmannian of 3-planes through the origin in C”.

TABLE A. Elements of W and their minimal reduced decompositions.

wy;  Decomposition w,; Decomposition w, ; Decomposition

wi,1 83 Ws5,3 5256555453 ws, 1 5154535256555453

wz,1 52853 Ws5,4 5352555453 ws,2 $251535256555453

W2,2 54853 We,1 515256555453 ws,3 $251545352555453

w31 515253 We,2 515352555453 Ws, 4 5554535256555453

w32 525453 We,3 525153525453 Wy, 1 515554535256555453
W33  S55453 We,4 535256555453 wy,2 525154535256555453
W4,1 51525453 We,5 545352555483 Wy, 3 535251545352555453
W4,2 52555453 Wr1  S518352565554S3  W10,1  S2515554535256555453
Wy,3 53525453 W72  51545352555483  W10,2 53525154535256555453
W44 56555453 W73  52515352555483  Wi1,1  S$352515554535256555453
W51 5152555453 W74  545352565554583  Wi12,1  545352515554535256555453

W52  S153525453

TABLE Bj. Nontrivial Pk(am) for p = 3.

Ori Pl(ar,i) P2(Ur,i) PB(UT,i) ,P4(Uﬂi)
011 031+2032+033 0 0 0
021 2041+ 042+2043 2062 + 06,3 + 06,5 0 0
022 041+ 2042+ 2043 +2044  S61+ 2062+ 063+ 065 0 0
031 051+2052 072 +2073 89,3 0
03,2 2051+ 2052+ 2053+2054 2071+2074 09,1 +2092+2093 0
033 051+2053+2054 2071+ 2072 +073+2074 091 +2092+ 593 0
o041 2061+ 2062 08,1+ 2832+ 2033 010,1 + 010,2 0121
o412 2061+2062+2064 08,1+ 2083+ 034 2010,2 20121
043 2062+ 063+2064 +065 2081+ 082+ 084 20101 + 0102 812,1
044 061 +2064 2081+ 08,2+ 58,4 20101 + 0102 012,1
051 2071 09,1 + 2092 0

052 2071+072+2073 091+ 2092 0

053 2071 09,1+ 2092 0

054 2071+ 2072 +073+2074 O 0

06,2 2081 +2082+ 2033 0 25121

06,3 2082+ 083 010,1 0

064 2081+ 082+ 084 0 25121

0655 2081+ 083 20101 25121

o71 091 +2092 0

072 2092+2093 20111

073 2092+2093 20111

07,4 2091+ 09,2 0

08,1 20101 +2010,2 012,1

08,2 0101 +2010,2 012,1

083 20102 012,1

08,4 0101

09,1 20111

092 20111

010,2 012,1
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TABLE Bs. Nontrivial Pk(am) for p = 5.

Ori 'Pl(Gni) P2(Jr7i)

s

01,1 051 +4053 0
02,1 4061+ 062+4064 0101
02,2 061+ 062+ 4064 010,1

031 40714073 o11,1
032 O72+073+4074 20111
033 071+ 072+4074 011,1
o041 4og1+ 082+ 0383 0121

042 082+ 083+ 4084 20121
043 081 +4082+ 083 012,1
04,4 081 +4084 012,1
051 4091+ 092

052 092+ 093

053 4091+ 092

054 091+ 093

06,2 010,1 +010,2

06,3 20102

064 40101+ 0102

0655 0101 +4010,2

o72 0111

o073 20111

ora 40111

083 20121

084 30121
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