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Abstract

We first prove a basic theorem that if a set of polynomials satisfies an orthogonality relation
with respect to integration, the set also satisfies an orthogonality relation with respect to summa-
tion. This result is then used to derive the Gaussian quadrature formula. The orthogonality
relations give rise to interpolation formulas and a connection between the coefficients in these
interpolation formulas is established. Finally, the analysis is used to get an estimate of the error
in the Gaussian quadrature formula. Some error coefficients are evaluated in the cases where the
orthogonal polynomials are those of Jacobi, Laguerre, Hermite and Bessel.

Introduction

Jn this section, we set down some key relations needed to establish a basic

theorem and some of its consequences. For the most part, we omit proofs as the

results are well known and are given in a number of standard references. Let

(1) q,(x) = £ ak,nx"
k = 0

be a set of orthogonal polynomials over the interval [a, b] with respect to the
nonnegative weight function w(x), w(x) 2i 0, so that

(2) f w(x)qn(x)qm(x)dx = hn5mn,

where Smn is the usual notation for the Kronecker delta function. The polynomials

qn(x) satisfy the three term recurrence relation

(3) 9» + i W = (Anx + Bn)qn(x) - Cngn_,(x), n > 0,

This research was sponsored by the Air Force Office of Scientific Research.

196

https://doi.org/10.1017/S1446788700029499 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029499


[2]

(4)

where

(6)

An -•

Bn-

Error in

1iix)

an+l.n+l

an.n

= Anirn + l~

an interpolation formula

= iAox + Bo)qoix),

An'
" An^h

rn)> rn ,
"n.n

hn

n - i '

n ;

n > 0;

197

As a consequence of the recursion relation, we have the Christoffel-Darboux
formula

(7) i h;»qk(x)qk(y) = 04A)"1

x- y

We suppose throughout that /(x) can be represented by an expansion in
series of polynomials {qnix)} which is uniformly convergent in [a, ft]. Thus

(8) fix) = I ckqkix),

- i f*
(9) ck — hk I w(x)flt(x)j(x)ax.

J a

Suppose that /n(x) is an nth degree polynomial approximation to fix) such
that

(10) /(*.) = /B(x8), a = 0,l,...,n,41I+1(xJ = 0.

Then by the Lagrangian interpolation formula, we have

(11) fix) =fnix) + Rn + 1ix),

( ' ^ ' Jnix) = *-• 77. .. \~r 7~7\ >

where /?B+1(x) is the remainder. The remainder is usually expressed in terms of a
certain divided difference or derivative of /(x). If /(x) is analytic, it can also be
expressed as a Cauchy contour integral involving fix). We do not record these
expressions as they can be found in various sources. For a complete discussion,
see Davis (1963). Later, we derive an expression for the remainder in terms of
the coefficients ck.

In the Christoffel-Darboux formula (7), put y = xa and combine with (12)
to get

(13) fjix) = £ dk.nqk(x),
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198 Yudell K. Luke [3]

«Kdk.n =
"* «-0

A basic theorem

We now show that if a set of polynomials satisfies an orthogonality relation
with respect to integration, the set also satisfies an orthogonality relation with
respect to summation. In particular we prove the following

THEOREM. Let

Then

(16) Vfl = 6Jk, j g n, k ^ «.

PROOF. The representation (11) is exact if/(x) is a polynomial of degree ^ n.
If/(x) = qj(x),fn(x) — qj(x) for; ^ n and for such an/n(x), it follows from (13)
that dk,n = 1 if k = j and dt,n = 0 if k # j . In (14), put /(x) = q/x) and call the
resulting expression VJ"k. We therefore have (15) and (16) and the theorem is
proved.

COROLLARY 1.

(17) hkVfX = hjVkVj for all j and k,

(18) Vf.l+l = Vi"luk = Oforalljandk,

) — /ft
r,k — \Dn + r-l

\

"l Yl, Vn + r-l.k+l i

(21) V(;l.k = 0 i/ik ^ n - /• + 1, k ^ n if r = 0, V™ => 1,

A i . . . A U
I/(n> _ - ^ n + l ^ n + a -^n + r - l ' ' n + l _ -> o
yn + r.n-r+2 ~ ~~\ ~\ Z7T~U ' r = Z"

^*n-r+2^ii-r+3 '1n''n-r+2

REMARK. Equation (20) holds for k = 0 provided we set V(
n"^r^l,^l = 0.

PROOF. The first two items are trivial and (19) follows from (15) and (3) with
n replaced by n + 1. Equation (20) is a generalization of (19) and is proved as
follows. In (15), puty" — n + i and for qn + Xxa) use (3) with n replaced by n + r — 1.
Thus with the aid of (15) we get
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[4] Error in an interpolation formula 199

Next, in the latter sum, for xaqk(xtt) use (3) with k instead of n. The stated result
readily follows again with the aid of (15). Equations (21) and (22) are easily proved
by induction and we omit details.

COROLLARY 2. If in the definition of orthogonality (2), a = — b and q,,(x)
is even or odd according as n is even or odd, then

(23) Vf.l = 0 ifj + k is odd, all n,

,•„•) 2AJin
 r!l21 q iixJqJXn)

(24) Vj.l = Z ; , ,

ifj + k is even and n = 2r — I is odd,

, „ . v _ 2AX "y qMMkixJ AXqj{0)qk(Q)
' J'k — —Ti— '—7—~\—7—T T,—'—77Y\—TTvT

if both j + k and n are even.

REMARK. The hypotheses of this corollary with a = oo and a = 1 are sat-
isfied by the Hermite polynomials Hn(x) and the Jacobi polynomials Pn

(aa>(x)
respectively. Except for normalization factors, the latter are also known as
ultraspherical or Gegenbauer polynomials and include as special cases, Legendre
polynomials and both kinds of Chebyshev polynomials.

PROOF. Clearly q,,(x)q'u+l(x) is even in x and never vanishes for x = xa. If
;i + 1 is even, we can designate the zeros of qn+l(x) as + a0, + ay •••, + a r _ j ,
where n = 2r — 1. So from (15)

whence (23) and (24) are at hand. The proof of (25) is quite similar and we skip
the details.

The Gaussian quadrature formula

It is an easy matter to recover the Gauss quadrature formula. For from (11),
(13), (14) and (2), we have

• b „ r, \
w(x)f(x)dx = AX I ,- , * , + S2n+2,I

(26) S2,, + 2 = w(x)Rn+1(x)dx.= f w(x)Rn+1(
Ja
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200 Yudell K. Luke [5]

The sum portion of (26) is readily recognized as the approximate Gaussian quadra-
ture formula for the integral and 5 2 n + 2 is the remainder. This formula is usually
proved in a different manner. See, for example, Krylov (1963), Davis (1963), and
Szego (1959). If we presume that (26) is known, the orthogonality relation (16)
readily follows when we put / (x) = qj(x)qk(x) in (26), j,k g n. This is the proof
as given in Szego (1969). Our theorem is posed as a problem in Davis (1963),
p. 360, problem 3, and no doubt the intended proof is along the lines just noted.
Our presentation seems quite natural especially in view of the results in the
following section.

The coefficients in the interpolation formulas

If the expansion (8) is truncated after n + 1 terms, we get a polynomial
approximation to / (x) of degree n. Equation (13) affords a similar approximation.
In practice evaluation of the ck's, see (9), might be troublesome as closed form
expressions are not usually known. In numerous cases of practical interest, even
when the ck's can be defined in closed form, they are quite often more simply
evaluated by means of recurrence relations used in the backward direction. In
this connection, see Luke (1969). An alternative procedure is to evaluate ck by
numerical integration. Indeed, if ck is approximated by the Gauss formula (26),
(there replace / (x) by f(x)qk(x)), we see that dkn, equation (14), is an approxi-
mation for ck. In this section we establish a connection between ck and dkn and
then obtain a useful representation for Rn+l(x) as denned by (11).

In (14) replace/(xj by (8) with xa instead of x. Then after a straightfor-
ward computation and use of (15) and (21), we arrive at

(27) Uk,n = Ck
1 = 0

where the coefficient of c2n + 2-k
 c a n >̂e deduced from (22). Equation (27) can be

further simplified if (23-25) pertain. The special cases of (27) as well as (43) and
(44) below corresponding to the situations where the orthogonal polynomials are
those of Chebyshev have been delineated in Luke (1969), Chapter 8.

Form (8), (11), (14) and (27), we have

oo n

Rn+i(x) = / ( x ) - / n ( x ) = S ckqk(x) - I dk,nqk{x)
k = 0 k=0

n a>

= I (ck - dk.n)qk(x) + I ckqk(x)
k = 0 k = n + l

n ao oo

(28) = - I qk(x) I c2H+2 + ,-kV
l£+2+t-k.k+ Z ckqk(x),

* =0 s = 0 k=n+I

and with the aid of (18)-(22), we find
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[6] Error in an interpolation formula 201

Rn+i(x) = cn+1qn+l(x) + cn+2[qn + 2(x) +

(29) +

or

(30) R,, + X(x) = cn+lqn+1(x) [ l + ^ (An + 1x + Bn+1) +
L C

in view of (3). Indeed, in (29), the coefficient of each cn + r , r ^ 1, must contain
qn+l(x) as a factor since Rn+l(x) = 0 when x = x,, a = 0 , 1 , ••-,«. In practice
(29) and (30) can be advantageous, for even though the cks may be difficult to
evaluate, asymptotic estimates are often available and these can be employed to
apprise the remainder. For this and related considerations, see Luke (1969),
Chapter 8 and the references given there.

For an application of the above, suppose we want to approximate
I'J W(x)f(x)dx by J* W(x)fn(x)dx where W(x) is not necessarily the weight
function associated with the sequence of orthogonal polynomials {qn(x)}. In this
situation, the error is given by |* W(x)Rn+l{x)dx where Rn+l(x) is given by (29).
In particular, if qn(x) is the Chebyshev polynomial of the first or second kind and
W(x) = 1, our results are applicable to the quadrature schemes discussed by
Clenshaw and Curtis (1960), Elliott (1965), Fraser and Wilson (1966), Chawla
(1968), Nicholson, Rabinowitz, Richter, and Zeilberger (1971), and Riess and
Johnson (1972). Our error analysis differs from those propounded in these papers.
Further investigation on this point is reserved for a future paper.

If in the above consideration, W{x) = w(x), the weight function associated
with the sequence of orthogonal polynomials {qn(x)}, we then get the error for
the Gauss quadrature scheme. This aspect of the subject is taken up in the next
section.

Error in the Gaussian quadrature formula

Now from (26), (11), (8) and (13), (2) and (27), and because of uniform con-
vergence of (8), we have

/• b oo /*b

S2n + 2 = w(x)[f(x) - fn(x)]dx = I c , w(x)qk(x)dx
Ja k = 0 J a

(3D - I dk.n I" w(x)qk(x)dx = Ao_ (Co _ doiB)>
k=O Ja "0 .0

whence
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202 Yudell K. Luke [7]

\JJ) • M2n+2+s ~ K 2 n + 2 + s . 0 -
°0.0

From (22),

(34) 02n + 2 = ' H , ' i 2 A"+1 " + 1

and we prove that

02n+3 — ao,o

2n+3.0 — ^
s = 0

A,AS+1 ••• Anhs

A.

i, = bobt •••/).,_,, s>0, bk =
A2n+2-k "k+ 1

To deduce (35), put r = n + 3 - s and k = s in (20). Use (21). We then obtain
the recurrence formula

(36) Vn_s = Ps + b,Vm-,-lt Vn_s = K&3-,., .

Now K_t = 0 in view of (18). So Vo = pn is known and the desired solution
of the difference equation (36) is

M S

r = 1

(37) s = n,n- l , - - , 0 ,

whence (33) follows.
To get K^+^o. put r = n + 4 - s and k = s in (20). Then

•l±2n + 3 — s^s 1 T/(n) ẑ 1 I/*-")
_ i K 2 l l + 3 - 5 , , ^2 / i + 3 - s K 2«+2-s,s

+ Ajs ^-+3-.. .-l + ^ ^ - - . - 1 .

(38) W,,., = F?^*-,.,.

Both V2*2+2-M.S
 a n ( l t n e s a m e w i t n s replaced by s - 1 are known from (22). Since

W_! = 0, Wo is known and the wanted solution of (38) follows after the manner
of that for (36). K2

("|r 0 , r > 4, can be developed in a similar fashion.
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[8] Error in an interpolation formula 203

The form (32) is advantageous for the study of the error since the coefficients
ck depend only on w(x) and f(x) while the coefficients gk depend on elements
associated with the system of orthogonal polynomials. Thus in the absence of
closed form expressions for gk, the early coefficients for use in (32) can be tabulated
once and for all upon specification of the system of orthogonal polynomials and
associated weight function.

Under fairly general conditions, it is known that expansions in series of or-
thogonal functions converge in the mean to the functions associated with them.
But for most purposes in applied mathematics, mean convergence is not strong
enough. We usually require at least point wise convergence. Indeed, in our present
analysis we require uniform convergence to deduce (32). Unfortunately, except for
expansions in series of Jacobi polynomials, very little is known onpointwise con-
vergence. If/(x) is analytic in the closed interval — 1 ^ x ^ 1, then its associated
Jacobi series is convergent in the interior of the largest ellipse with foci at + 1 in
which / (x) is analytic. If f(x) is analytic as above and we expand in Legendre or
Chebyshev polynomials, then we have uniform convergence. However, the form
for S2n+2 might well be suitable for other systems of orthogonal polynomials
when/(x) is analytic. Further, it might also be applicable when/(x) is not analytic
on the path of integration. In the absence of theoretical criteria, it appears that
we must rely on heuristic means for guidance on these and other related questions.
In this connection, we also recognize that only the lead term of (32) is known in
closed form. The higher order terms can be determined by summation and in
particular cases, see the next section, explicit expressions for some of the higher
order terms are found. In view of the above remarks, our analysis is not complete.
Some exploratory numerical work is underway, but we postpone further con-
siderations for a future paper.

In some recent work*, Chawla (1971) takes up the special case when / (x) is
analytic and is expanded in series of Legendre polynomials. He shows that for s
fixed and n large,

(39) g2n+2 + 2s =

For s = 0, he obtains g2n+2 precisely as do we, see (44) with a = /? = 0. Actually,
Chawla writes g2n+2+2s ^ etc. without 0(« - 1 ) as above. In any event, it is impor-
tant to realize that 0(1- 1) is s dependent. This aside he writes

(40) S2n+2 ~ (n/2n)* (c2n + 2 - - c2 n + 4 - - c2n+6

If the coefficients c* are known in

(41) f{x) = X c*Tk(x),

* I am grateful to the referee for pointing out this reference.
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204 Yudell K. Luke [9]

where Tk(x) is the Chebyshev polynomial of the first kind, Chawla shows that for
Gauss-Legendre quadrature

S 2 n + 2 — X (c2n + 2 ~ 4J-

For the example /(x) = (9x2 + I)"1, the latter estimate is in good agreement
with the true error even though/(x) has singularities near the path of integration.
For an integrable singularity on the path of integration, e.g. /(x) = (x + 1)*, the
referee states that in some unpublished work cln+2g2n + 2

 l% a P o o r approximation
to the error. Thus several interesting questions arise in connection with the use of
(32), especially for functions which are not analytic. But, as previously remarked,
we defer further comments for a future paper.

Evaluation of error coefficients in particular cases

It is of interest to compute g2nJr2
 ar |d g2n+3 m f°u r cases of practical interest.

In one case, we also get g2n + *. We follow the notation in Luke (1969), Chapter 8
and Erdelyi et al. (1953).

CASE 1. Jacobi Polynomials

a = = l, w(x) = (1 - x)p,

h. =
2)T(n + a + l)r(n + p + 1)

(2n + X)n\T(n + X)

2(n X)
R -

2(n A -

Then

(44)

Also

2T(n + a + 2)r(w + P + 2)F(H + /I + l)(n + l)!r(4w + 1 + 4)

= (7t/2n)*[l+0(«-1)].

(45) x f

Now

2F(a + 1)T(0 + l)r(2n + A + 2)[r(2« + X + 3)]2(2n + 3)!

^ 1 1
(2s + X + l)(2s + X - 1) (4n + 5 + X - 2s)(4« + 3 + X - 2s)J '
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[10] Error in an interpolation formula 205

" , In 4- n
+ A - DT 1

(A - l)(2n + A + 1) '

(46) I [(4M + A + 5 - 2 S ) ( 4 M + A + 3 -

Thus after some algebra, we get

(n +2) T(4n + X + 5)

(47) g2n + i = - (a-P){nl2ri)\\+0(n-l)l

If a = ft, g2n + 3 = 0 which is in agreement with (23). In a similar fashion we get
the following data for g2n + 4.

(48) g2n + i = ElFi + E2F2 + E3F3,

+ A + 3) ' l 2n + X + 2 ' 3

2\n + 1)!F(M + a + 2)F(M +J? + 2)f(n + A + l)r(4n + A + 8)

(2M + 4) ![(r(2n + A + 2)]2r(2n + A + 4)

(49) = 16(2TTH)*[1 + 0 ( n " ' ) ] ,

n n

F\ = Gj — G2, Gj == 2̂  fl^, G2 ^ 2- n^,
k = 0 k = 0

_ (w + 1 - k)(n + 2- k)
"* ~ (4M + 5 - 2fc + A)2(4n + 7 - 2k + X)(2k + X - 1)'

_ (» + 1 - fc)(n + 2 - k)
* ~ (4n + 5-2k + X)(2k + A - l)2(2/c + A + 1) '

4(M + 1 - k)(n + 2 ~ kX2n + 3 - 2£)(2M + 3 + A)
(50) ak-bk= -

(4n + 5-2k + XY(4n + 7 - 2k + X)(2k + X- l)2(2k + X

V (2» + 3 - k)(2n + 3 - k + a)(2n + 3 - k + )S)(2n + 2 - k + A)
2 ~ (4n + 4 - 2fc + A)(4n + 5 - 2k + X)2(4n + 6 - 2k + X)

(51) = ( ?L^ l> [ l + 0 (» -» ) ] ,

J ^7! (2k + X - 2)(2k + A - l)2(2fc + A)

(52) = , * [1 + 0 ( M - 1 ) ] .
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In certain special cases, the required sums in (50), (51) and (52) can be ex-
pressed in closed form. Here care must be exercised in that k is a discrete parameter
and must first be assigned a value before assigning values to a and p.

CASE 1. a = p, A = 2a + 1.

[ i\ 2\ "1

(n + oc + 4)(2n + a + 7) I '
2

if a * - i ,

16(2n + 2a + 3)

On
16(2n + 2a + 3)

(54) £3F3 = - A if a = - ±,

(55) g 2 n + 4 16(2fj + 2 a + 3)(w + fl£ + i ) [ 1 + (n + a + | ) (2w + a + 7) J '

(56) g2n+4 = - (i + aX7t/2»)*[l + Ofn"1)] .

CASE 2. a = - 0, A = 1

(57) £ | C l = 0, £ l G 2 = 4 l 2 ^ ,

16(2n + 3)

, (1 - 4a2)
« + 3)

(2« + 1) 1
n + 5X4« + 7)J '2« + 3) (/ + (2

(61) 3 2 n + 4 = - i d - 4a2X7t/2n)* [1 + 00T1)].

CASE II. Generalized Laguerre Polynomials.

a = 0, fc = oo, w(x) = e"xx"

«n(x) = L<°>« = lim P<-»(1 - 2x1 P) = ^ ± i ^ L f ( _ „. a
p-.no n!

«,x . Hn + a + 1) 1 n 2n + a + 1

We find

,.„ r(n + a
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[12] Error in an interpolation formula 207

<„

(65) = "22M

CASE III. Hermite Polynomials

a = — oo, b — oo, w(x) = e~*

qJLx) = Hn(x), H2m+C{x) = ( - r 2 2 m + £

£ = 0 or e = 1,

(66) hn = n^nl, A n =2, Bn = 0.

Then

(67) g2n + 2r+i = 0, r = 0 , 1 , - .

CASE IV. Bessel Polynomials

Though the basic theory has been developed for real polynomials over real
paths, it is obvious that the results hold for complex polynomials over complex
paths. The Bessel polynomials are useful for the numerical inversion of Laplace
transforms, see [9, Vol. 2, pp. 194, 253]. We have

, f SQ.(v.-z)QJy.-z)dz _ (-ymSmn
Jc z (2n + v)r(« + v)'

I)
(68) Qn(v,-z) = 2l

where C is the path c — /oo to c + /oo, c > 0. Also

(2n + v)(2n + v + l ) (v-l)(2n + v)

n + v "

Then

'+ I r (n+v+ l)(n + l)!r(4n+v+4)(70) g2n+2 =
[r(2n + v + 2)]2r(2n + v + 3)
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208 Yudell K. Luke [13]

( —)"4(» + l)T(n + v + l)(n + 2)!F(4n +v + 5)
(71) g2n+3 =

(2n + v +1) [r(2n + v + 2)]2I\2n + v + 4)

_ [1 + 0(0].

(72) g2n+4 = £ ,F , + £ 2 F 2 + £3F3,

_ 4(v - 1 ) 2 0 _ <ft
+ v + 3) ' * 2 " 2« + v + 2

(n + l ) ! r (n+v+l ) r (4n + v + 8)
n + v + 2)]2r(2n + v + 4)

(74) Fl = G, - G2,

where G, and G2 are given by (50) with A replaced by v,

(2n + 3 - fc)(2/i + 2 - k + v)
(75) F2 = I

ri) (4« + 4 + 2/c + v)(4/i + 5 - 7/c + v)2(4n + 6 - 2k + v)'

F = f ^ + v ~ J)

* =, (2fc + v - 2)(2fc + v - l)2(2fc + v) '

If v = 1,

4(2R + 1)(2« + 3) [ (2n + 5)(4n + 7)
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