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SIMPLICITY OF CATEGORIES DEFINED 
BY SYMMETRY AXIOMS 

E. LOWEN-COLEBUNDERS AND Z. G. SZABO 

ABSTRACT. We consider two generalizations Row and RQ of the usual symmetry 
axiom for topological spaces to arbitrary closure spaces and convergence spaces. It is 
known that the two properties coincide on Top and define a non-simple subcategory. 
We show that RQW defines a simple subcategory of closure spaces and Ro a non-simple 
one. The last negative result follows from the stronger statement that every epireflec-
tive subcategory of Ro Conv containing all T\ regular topological spaces is not simple. 
Similar theorems are shown for the topological categories Fil and Mer. 

A full and isomorphism closed epireflective subcategory L of a topological category 
H is called simple if there exists a single object E E | L| such that L is the epireflective 
hull of { E} in H. This also means that every object of L is a subobject of a power of E. 

In this context "F is a subobject of X" means that there exists an embedding from Y 
to X, so that Y is an extremal subobject in the categorical sense. For further details on 
these notions we refer to [9]. 

Simplicity problems for TOP and its subcategories defined by means of separation 
axioms 7o, T\, T^ and by the symmetry axiom Ro have been settled for quite some time 
[6], [7], [15]. Pretop is known to be simple. Simplicity of its subcategories defined by 
To,T\, 72 properties has recently been studied by the authors in [13]. 

In the first section of this paper we show that while RQW and Ro both are extensions of 
the same symmetry axiom in TOP, they define subcategories of Pretop, where RQW Pretop 
is simple and Ro Pretop is not. The negative result for Ro Pretop is a consequence of a 
generalization of a well known result of Herrlich [7]. 

In the second section we generalize this result yet one step further to RQ convergence 
spaces. As a consequence we can conclude that every epireflective subcategory of Ro 
Conv containing all T\ regular topological spaces is not simple. 

In the last section we consider epireflective subcategories of the categories Fil of filter 
spaces and Mer of merotopic spaces. Our main theorem in this section states that every 
epireflective subcategory of Fil (of Mer) containing all spaces that are both T\ regular 
filterspaces and c" embedded Cauchy spaces, is not simple in Fil (in Mer). 

1. Closure spaces. 
For topological spaces it is well known that the following properties are equivalent (x 

denotes the filter generated by { x} and 'Wix) is the neighborhoodfilter in x). 
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(i) x > W(y) =» W(x) = W(y) 
(ii) x> <W(y)=>y> W(x) 

Each of them defines the usual Ro axiom for topological spaces. Spaces satisfying this 
axiom are also called symmetric topological spaces. It was shown in [8] that the Ro 
topological spaces are exactly those embeddable into merotopic spaces. 

For closure spaces with a non-idempotent closure operator, conditions (i) and (ii) are 
not longer equivalent. Condition (i) was used in [16] as a definition of Ro closure spaces 
and it was shown that Ro closure spaces are exactly those embeddable into merotopic 
spaces. Condition (ii) defines a weaker property which we will denote by R0w. Both R0 

and Row are extensions of the topological Ro axiom. 
Let Ro Pretop and Row Pretop be the full subcategories of Pretop defined by the proper­

ties Ro and RQW respectively. Both R0 Pretop and RQW Pretop are bireflective subcategories 
of Pretop. 

It is known (see e.g. [15]) that Ro Top is not simple in TOP. We will show that the 
two different extensions of the Ro property to Pretop give different answers with regard 
to simplicity in Pretop. 

THEOREM 1.1. R0w Pretop is simple. 

PROOF. On X = {0,1,2} we define a closure structure by means of the 
neighborhoodfilters of its points in the following way: ^ ( 0 ) = {X},W(l) = 
({0,1}) , W(2)= ({0,2}) . 

Clearly X has the Row property. Moreover, if Y is any closure space having the Row-
property we define the following maps. 

For y G Y and for any U G <W( y) let 

I I ify = z 

0 if zeU\{y} 

2 ifzeY\ U 

It is easily checked that these functions are continuous. Moreover the source 
(fy,u • Y —+ X)yeY,ueW( y) ^s P o m t separating and Y has the initial Pretop-structure. 

It follows that Y belongs to the epireflective hull of X. • 

Next we consider the stronger symmetry axion Ro. In order to investigate the simplic­
ity of Ro Pretop we need the following notions. 

DEFINITION 1.2. If Y is any closure space the relation 

yi ~y2 & W(yi)= 'Wiyi) 

is an equivalence relation. 
A map/: X —» Y between two closure spaces is quasiconstant if/(xi) ~/(*2) when­

ever x\,X2 G X. 
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If <j> : F —> F|^ is the canonical surjection associated with the equivalence relation 
then clearly/: X —> F is quasiconstant if and only if (/> of is constant. When 7 is an RQ 
closure space we have 

W(yi) = (W(y2) *• cl{ yi} = cl{ y2} 

and the equivalence classes of the relation above are exactly the closures of singletons 
of Y. Moreover in the case of an RQ space non-equivalent points can be separated in a 
T\ way i.e. each of them has a neighborhood not containing the other point. However, 
contrary to the topological case the Pretop-quotient Y\„ of an Ro closure space Y need 
not be T\, as follows from the next example. 

EXAMPLE 1.3. F = { 0 } U { - | M ^ 1} and a closure structure on Y is defined by 
the neighborhoods 

< H > ( 0 ) = ( { { O } U n l 

n 
> ^ 1 

^ ) = < r \ { 0 } : n^ 1 

Clearly Y is an RQ space. However the Pretop quotient is the Sierpinski space and hence 
it is not T\. 

The fact that the Ro property alone is not sufficient to guarantee that the quotient is T\ 
also follows from the next result. 

PROPOSITION 1.4. If Y is a closure space and Y\„ is the Pretop quotient of the iden­
tification of Definition 1.2, then F|^, is a T\ space if and only if both of the following 
conditions are fulfilled: 

(a) Y is an RQ space 

(b) cl{ y} is closed whenever y G Y. 

PROOF. Suppose Y\„ has the T\ property and y > *K;(z), y and z G Y. If y and z are 
not equivalent then there exists W G W(z) such that <j)(y) £ <j)(W) and of course this is 
impossible. So (a) clearly is fulfilled. 

In order to prove (b) suppose z G cl cl{ y}. Since Y is Ro the set cl{ y} is exactly the 
y-equivalence class. Therefore (j)(y) G <t>(W) whenever W G 'Wij). In view of the T\ 
property of y|^ we can conclude that <j> (z) = <t> ( y) and then z G cl{ y}. 

Next suppose Y satisfies conditions (a) and (b) and <j)(y) ^ <j>(z) then z £ cl{ y}. 
Moreover since cl{ y} is closed there exists a neighborhood W of z such that 
cl{ y} Pi W = 0. Since Y is Ro the set cl{ y} is exactly the equivalence class of y. 
Therefore <j> (W) is a neighborhood of <\> (z) not containing y. The same way a neighbor­
hood of <j> ( y) not containing <j> (z) can be constructed. • 

In [7] Herrlich has shown that a topological space Fis T\ if and only if there exists a T\ 
regular topological space X with at least two points such that every continuous function 
from X to F is constant. 
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Our purpose is to find a generalization of this theorem for Ro closure spaces. In spite 
of the fact that by Proposition 1.4 a generalization cannot be obtained by straightforward 
application of Herrlich's result to the identification Y\„ of the given Ro closure space Y> 
the proof in [7] can be modified in order to get the generalized result for the Ro-casc. 

THEOREM 1.5. If Y is a closure space then the following are equivalent 

(a) Y is an Ro space 
(b) there is a regular T\ topological space X (containing at least two points) such that 
every continuous map from X to Y is quasiconstant. 

PROOF. 

(b) => (a). If Y is not an Ro space then there exist y and / in Y such that y > W( y') 
and W( y) ^ W( yf). Let X be any regular T\ topological space with at least two points 
and B an open non-empty and proper subset of X then the function/: X —• Y mapping B 
to y and X\ B to y' is continuous and not quasiconstant. 

(a) => (b). The same construction as the one applied by Herllich in [7] works here. 
We use the same notations and we will only indicate the modifications that have to be 
made. 

1. Let Y be an Ro closure space and suppose card Y ^ Ka. For / = 1,2 we put Ri a 
set of cardinality Na+I-, n a fixed point of /?/. We endow R( with the same topology as in 
[7]: a subset B of Rj is open if rt G B implies card(/?/ \ B) < H +̂z. 

Now iff: Ri —• Y is continuous and/(r,) = yo then/ - 1 (F \ { y} ) is a neighborhood 
of n whenever y0 fc cl{ y}. But then n { / ~l(Y\ { y} )| y0 ^ cl{ v} } is a neighborhood 
too. Moreover using the Ro property of Y we have 

n{f~\Y\ { y})\ yo £ cl{ y}} = n{f~l(Y\ { y})\ y £ cl{ y0}} 

= rl(cl{y0}) 

and cl{ yo} is exactly the equivalence class of yo- Hence/ is quasiconstant on this neigh­
borhood of rt. 

2. All constructions towards the final construction of X have to be repeated exactly 
as in [7]. Whenever it is shown in [7] that two points have equal images through a con­
tinuous function, the corresponding result will now be that the images are equivalent, As 
in [7] a sequence Xo CXi C X2 C • • • of regular T\ topological spaces is constructed 
and whenever/ is a continuous function from Xn+\ to Y we now have that it is quasicon­
stant on Xn. On X = U{Xn\n = 0,1,...} one takes the final topological structure for 
the sink (jn : Xn —> X)n=o,\,... where jn is the canonical injection of Xn to X. Then X is 
regular T\ and when/ is any continuous function from X to the given closure space Y 
the compositions/ o jn are all continuous. Therefore/ is quasiconstant on X. • 

COROLLARY 1.6. Every epireflective subcategory L ofPretop such that T\ re g Top 
C L c i ? o Pretop is not simple. 
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PROOF. Let Y be any space in | L| then if X is the space as constructed in the previous 
theorem, all continuous maps from X to Y are quasiconstant. But then, since X is a T\ 
space, it cannot be initial for any source 

(x ^ U Y)ieI. 

2. Convergence spaces 

In this section we consider convergence spaces in the sense of Fisher [4]. A strong 
symmetry axiom for convergence spaces was introduced in [16] in the following way. 

DEFINITION 2.1. A convergence space is R0 if 

x —-+ y => x and y have the same convergent filters. 

For closure spaces this definition coincides with the Ro property defined in the previ­
ous section. 

Ro convergence spaces are exactly those embeddable in the category of merotopic 
spaces. The category Ro Conv of Ro convergence spaces is bireflective in Con v. For 
convergence spaces we use the equivalence relation as introduced in Definition 1.2: y\ 
and y2 in Y are equivalent ( y\ ~ yj) if y\ and _y2 have the same convergent filters. 

Moreover, as before, a map / : X —» Y between two convergence spaces is called 
quasiconstant iff{x\) ^ / f e ) whenever JCI ,xi G X. 

Whenever F is a convergence space let -0 Y be its Pretop reflection. The neighbor-
hoodfilters of 0 Y are given by 

W(y) = n{f\ f -?-+y} =n{<U\ <U ultra, U - ^ y}. 

PROPOSITION 2.2. Let Y be an Ro convergence space. Then the following properties 
hold 

(a) i)Y'\sRo 

(b) W(yi) = 'Wiyi) & y\ andj2 have the same F-convergent filters. 

PROOF. 

(a) If x > Wi y) then x > { U \ U ultra, 11 -?-+ y}. It follows that in the collection 
Y 

of ultrafilters on the right there is one member containing { x}. Hence x —> y. Since Y 
is Ro the points x and y have the same y-convergent filters and then W'(JC) = (W{ y). 

(b) Suppose W(y\) = W(j2)- Since y\ > ^ ( j ^ ) we can conclude as in (a) that 
Y 

y\ —> y2 and since Y is an RQ space this again implies that y\ and yi have the same 
convergent filters. Since the other implication is trivial, we are done. • 

Using this result we now can derive the following generalization of Theorem 1.5. 
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THEOREM 2.3. If Y is a convergence space then the following are equivalent 

(a) Y is an R0 space 
(b) there is a regular T\ topological space X (containing at least two points) such that 

every continuous map from X to Y is quasiconstant. 

PROOF. 

(a) => (b) goes exactly as in the proof of Theorem 1.5. 
(b) => (a). Suppose 7 is an Ro convergence space. From Proposition 2.2 we know that 

I/J Y is an Ro closure space. Then we can apply Theorem 1.5 to construct the T\ regular 
topological space X. Iff : X —• Y is continuous then/ : X —-» -0 Y is continuous and hence 
quasiconstant to ip Y. Moreover since by Proposition 2.2 (b) the equivalence classes for 
Y and X/J Y are the same,/ is quasiconstant to Y. • 

COROLLARY 2.4. Every epireflective subcategory L ofConv such that 

Ti Reg Top C L C R0 Conv 

is not simple. 

The result of Theorem 2.3 should be compared with the next one which was obtained 
by R. Lowen together with the first author in [14]. 

THEOREM 2.5 [14]. For every convergence space Y there exists a T\ c-embedded 
convergence space X such that for any source ( / : X —> Y)iej the space X is not initial in 
Conv. 

For the definition of c-embedded spaces we refer to [3]. Note that Theorem 2.5 implies 
that every epireflective subcategory of Conv containing all T\ c-embedded convergence 
spaces is not simple. In particular if RQW is the weak symmetry axiom for convergence 
spaces defined by 

R0w : x —* y & y —• x 

then it coincides with RQW for closure spaces and defines an epireflective subcategory 
Row Conv. By the previous result RQW Conv is not simple. 

REMARK 2.6. The space X constructed in Theorem 2.5 is T\ and c-embedded. It is 
not a closure space and it does not satisfy the strong regularity condition in the sense of 
[8]. 

The space X used in Theorem 2.3 which was constructed by Herrlich in [7] is T\ 
regular and topological. In general it is not an a;-regular space and so it is not necessarily 
c-embedded [11]. 

3. Filterspaces and merotopic spaces 
Both Theorem 2.3 and Theorem 2.5 have immediate consequences with regard to 

simplicity of certain subcategories of the category Fil of all filter merotopic spaces. 
For definitions and notations on Fil and its subcategories we refer to [1], [2], [9], [10] 

or [12]. We recall the following notations. 

https://doi.org/10.4153/CMB-1991-039-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-039-0


246 E. LOWEN-COLEBUNDERS AND Z. G. SZABO 

C is the full subcategory of Fil whose objects are those filter spaces X which satisfy: if 
A and *B are micromeric in X and if for some point x G X we have !A —-> x and $ —» x 
then {A U 5 | A € .#,# G S} is micromeric in X. 

T\ c~ emb Chy is the full subcategory of the category Chy of all Cauchy spaces whose 
objects are those T\ Cauchy spaces X for which the source 

X - ^ Hom(Hom(X, R), R) 

is initial. 
T\ Reg Fil is the full subcategory of Fil whose objects are the T\ regular spaces in the 

sense of [8]. 
If we denote sub for the subspaces taken in the category Mer of merotopic spaces (or 

equivalently in Fil) we have [2], [12] 

C = sub Ro Conv 

T\ c'emb Chy = sub T\ c emb Conv 

T\ Reg Fil = sub T\ Reg Top. 

Lines in the following diagram indicate subcategories, r stands for epireflective, c 
stands for coreflective. All coreflections are restrictions of the Ro Conv coreflection of a 
C-space. 

F Fil 

T cembChy 

T cembConv 

TjRegFil 

TjRegTop 

Theorems 2.3 and 2.5 now immediately imply that every epireflective subcategory L 
of Fil such that T\ c~ emb Chy C L C Fil or Tx Reg Fil C L C C is not simple. 

This result can be considerably improved by means of the following result. 

THEOREM 3.1. For every filter space Y there exists a space X in 

\T\ Reg Fil Pi remb Chy| 
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such that for any source (f: X —• F)/e/ the space X is not initial in Fil. 

PROOF. The proof is analogous to the proof of the main theorem in [14]. Let Y be 
an arbitrary filter space. Take an infinite set X with cardinality strictly larger than the 
cardinality of the underlying set of Y. Further we fix a uniform ultrafilter 11 on X. We 
make X a filterspace in the following way. 

A filter ^ on X is micromeric if J — x for some point x G X or f is a non principal 
ultrafilter different from 11. Clearly X is a T\ Cauchy space. Let J be any micromeric 
filter on X. It is easy to calculate that with the notations of [8] we have jF(<) = 7-
Hence X is regular in the sense of [8]. 

Every bounded real valued function is Cauchy continuous and p,X is the dis­
crete topology. Using the characterization theorem in [5] we can conclude that X is 
c" embedded. 

Now let (f: X —•» Y)ieI be a source in Fil, then by the proposition in [14] for every 
/ G / there exists an ultrafilter Wj ^ 11 such that stacky fCWi) — stacky fi(ll). Hence 
stocky fi(11) is micromeric for every / G /. It follows that 11 is micromeric in the initial 
filter space of the source. So finally we can conclude that X cannot be initial in Fil. • 

At this point it is natural to ask whether an analogous improvement of Theorems 2.3 
and 2.5 can also be obtained in the category of convergence spaces. This question is 
formulated in the following: 

PROBLEM 3.2. Given any Ro convergence space Y can one always construct a space 
X G | T\ reg Top D c emb Conv| such that for any source (f: X —+ Y)iEl the space X is 
not initial in Con v. 

COROLLARY 3.3. Every epireflective subcategory L of¥i\ such that T\ Reg Fil Pi c" 
emb Chy C L is not simple in Fil. 

The same construction can be used to formulate the corresponding result about non-
simplicity in the category Mer of all merotopic spaces. The proof goes completely anal­
ogous to the proof of Theorem 3.1. 

THEOREM 3.4. For every merotopic space Y there exists a space X in \ T\ Reg Fil 
H c~ emb Chy | such that for any source (f: X —> Y)iej the space X is not initial in Mer. 

COROLLARY 3.5. Every epireflective subcategory L 6>/Mer such that T\ Reg Fil D c" 
emb Chy C L is not simple in Mer. 
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