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Abstract. It is suggested that the general form of the constant of quantization, K in Schrodinger's equa­
tion, is not h/2n, but K=2s<x~k, with s being the spin of the orbiting object, a the fine structure constant 
(1/137.0361), and k a small positive integer, or zero. For atoms k = 0; for planets and satellites k = 2,3 
or 4; for the solar system as a whole, revolving around the center of the Galaxy, k = 6. The probability 
that 16 objects of the solar system would follow this quantum rule by chance alone is 1 in 1016, suggestive 
that quantum mechanics, as we know it today, can be seen as a special case of a more general quantum 
mechanics of the future; it also supports the view expressed by Dirac, that h is probably not a funda­
mental constant. 

Section 1 contains the basic idea which induced me to undertake an investigation of a relationship 
between rotational and orbital angular momenta of planets; Sections 2-7 contain the experimental data, 
the application of the new quantum rule and the statistical evaluation whether the relationship proposed 
in Section 1, could have occurred by chance alone. The results obtained in Sections 2-7 are noteworthy 
in themselves, independently whether the basic idea is accepted or not. 

February 1973 is the quinquecentennial anniversary of the birth of Copernicus, who 
recognized that the planets revolve around the Sun, and in doing so revolutionized 
the premises of all subsequent astronomy and cosmology. The year 1973 also marks the 
60 th anniversary of Bohr's discovery of his atomic model: electrons revolve on Kep-
lerian orbits around a nucleus, like planets around the Sun. Is there a further physical 
law common to both? 

1. A New Quantum Rule 

Let us ask the question what would have happened to quantum theory if the electron 
spin (se) had been known in 1900? Let us take a ride in a time machine capable of 
rearranging the sequence of events. 

We start with Goudsmith and Uhlenbeck's discovery of the electron spin. Millikan 
and Einstein show that in the photoelectric effect light is absorbed in quanta, each 
quantum carrying an energy 4nsev. At the next stop of our journey we find Planck 
saying that oscillators do not emit light continuously but in quanta, with energies 
as given by Einstein's equation. Obviously a light quantum sometimes behaves as a 
wave, and other times as a corpuscle. 

Then the Broglie recognizes that since nature seems to have a preference for symme­
tries, if light behaves in a dualistic manner, then particles should also behave at times 
undulatorily; whereby, in analogy with light quanta, particle waves should also exist 
with wavelength equal to the ratio of 4n times the spin of the particle to its momentum. 
Next Bohr explains the discrete set of Balmer lines, by postulating that electrons 
revolving around the nucleus do not emit radiation as long as they move on orbits, 
along which the de Broglie waves are standing waves. This means, of course, that the 
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orbital angular momentum of the electron must always be an integer multiple of the 
electron spin. Unfortunately Heisenberg shows that the simultaneous observation of 
conjugate quantities always involves an error equal to the electron spin, hence it is 
impossible to observe Bohr's orbits. Schrodinger saves the situation by setting up a 
partial differential equation, leading for negative energies to a discrete set of Eigenval­
ues. He achieves this by substituting in the Hamiltonian a new variable 5 = K lni/f. To 
remain in agreement with observations, he sets the numerical value of K equal to 
twice the spin of the electron. 

We have now covered the events leading up to Schrodinger without the need to 
mention h, that is, Planck's constant. This curious circumstance raised in the '40 s the 
heretical thought (Barnothy 1946) in me that h is probably not a fundamental constant 
of nature, but a constant, the value of which changes in accordance with the spin of 
the orbiting object. I found that the general formula for the constant K in Schrodinger's 
equation would then be: 

K = 25xa"\ (1) 

where sx is the spin of the oscillating or revolving body, k is a small positive integer or 
zero. To remain in agreement with observations, the constant a has to be set equal to 
the fine structure constant, 337. 

In the special case of the atom, /c = 0; and since sx = se, K = h/2n as assumed by 
Schrodinger. But in the case of the Earth fe = 3, and sx is the spin of the Earth, conse­
quently 'Planck's constant' according to which the orbit of the Earth should be 
quantized is 1.7 x 1045 cgs. Since the Earth is in its lowest quantum state, its de Broglie 
wavelength equals the circumference of the ecliptic. It is conceivable that when the 
Earth was formed, it occupied a higher quantum state, and by releasing energy in the 
form of gravitational waves it 'jumped' to its present 'ground state'. I do not wish as 
yet to speculate further on a possible gravitational wave spectrum emitted from newly 
formed planetary systems in the universe. 

2. Application to the Planetary System 

The formula to compute n, the quantum number of the planets, is: 

orbital angular momentum k /wr rA /n t x2 1 on ^A_k//^ sx_x 
n = —. a* = (f/T) (R/r)2 x 137.04"*(2T COS<5) 

2 rotational spin \ / / v / / 
(2) 

where r and t are radius and period of rotation (in tropical days) of the planet; T and R 
the orbital period and distance from the Sun, respectively; T = I/Mr2 is the moment of 
inertia factor; and S the inclination of the equator to the orbital plane. 

No actual reason can be given for the occurrence of the factor a in Equations (l) 
and (2). But we should remember that the fine structure constant appears unexplanably 
in many places in physics. Some theoretical physicists believe that the fine structure 
constant may have something to do with geometrical calculations. Such an approach 
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was suggested by Barnothy (1947) and recently by Wyler (1969). Barnothy's approach 
to the problem is based on an application of Friedmann's field equations to nuclear 
forces, leading to a geometrical structure of elementary particles, which in turn per­
mits the exact calculation of dimensionless numbers such as a, gyromagnetic ratios, 
and the mass ratio of proton and electron. Wyler's approach is purely geometrical 
and compares the volume elements of a seven-dimensional group having five real 
and two imaginary timelike dimensions, with those of the subgroup of the five real 
dimensions. 

Table I shows the quantum levels of the nine planets. Three different k values were 

TABLE I 
Quantum levels of major planets 

Mercury 
Venus8 

Earth 
Mars 

Jupiter 
Saturn 
Uranus8 

Neptune 
Pluto 

k 

4 
4 
3 
3 

2 
2 
3 
3 
4 

n 

4.15 
0.69 
0.97 
3.83 

1.30 
3.14 
0.99 
0.29 
0.91 

A\n\ 

+ 0.15 
-0.31 
-0 .03 
-0.17 

-0 .30 
+ 0.14 
-0.01 

-
-0 .09 

8 Retrograde rotation. 

needed. Among the nine planets, only Neptune does not fit into the scheme. When two 
planets occupy the same n and k quantum numbers - e.g. Pluto and Venus, and again 
Earth and Uranus - one of them happens to have retrograde rotation, suggestive that 
Pauli's exclusion principle might be applicable. 

The probability to find among nine planets eight with integer n values [1], [2], [3] 
and [4] by chance alone is 1 in 108. (For the computations see Section 5.) Such a small 
probability suggests that Equation (1) may in fact be a generally valid formula to 
compute the factor of quantization (K) in Schrodinger's equation. 

This in turn leads to four further inferences: 
(1) It is possible to quantize macroscopic rotators. 
(2) Planck's constant is not a fundamental physical constant. 
(3) The uncertainty delation depends on what kind of signal carriers we use. 

Photons give very blurred pictures of Bohr's orbits, but very sharp pictures of the 
orbits of the planets. Gravitational waves, on the other hand, would give very hazy 
pictures of the planetary system, and what one could say would merely be that the 
probability to find the Earth somewhere around the Sun is proportional to \//2. This 
means that model-like descriptions should not be dismissed as worthless: they are 
complementary to statistical mathematical descriptions. Nature appears dualistic 
even in its recognition patterns (Barnothy, 1947). 
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(4) Should the above considerations be correct, their effect on present quantum 
mechanics would be similar to Einstein's special relativity on Newtonian mechanics, 
current quantum mechanics being a special case of a more general quantum mechanics 
of the future. 

3. Observational Data 

The orbital parameters of the planets and satellites are rather precisely known, while 
radii, periods of rotation, and moment of inertia factors (T) are occasionally uncertain. 
For the latter the best values as reported in Dollfus (1970), Surfaces and Interiors of 
Planets and Satellites, were used. In the following I refer to this book as SIPS, in­
dicating authors and page number. The used values are listed in Table III. 

According to Plagemeann's (1965) thermal calculations (see also Majeva, 1969) the 
interior of Mercury was never molten, hence a coreless model, with uniform distribu­
tion of metallic iron must be preferred (Levin in SIPS, p. 481), with a moment of inertia 
factor T = 0.388, at a radius of r = 2432 ±7 km (Dollfus in SIPS, p. 136). The sidereal 
period of rotation of Mercury is 58.65 days (Dyce in SIPS, p. 160), § times its orbital 
period. One solar day on Mercury (which we shall call the tropical period of rotation 
of the planet or satellite) is t=(fs~1 - T~ l)~* = 176.01 days. 

The three-zone model of Venus, consisting of a rock crust, a metallized silicon layer 
and a metallic iron core is probably correct (Levin in SIPS, p. 493 and 495). We adopt 
T = 0.341 and r = 6052 ± 6 km (Dollfus in SIPS, p. 136). The recent radar observations 
of Shapiro (1967) give a sidereal period of rotation in astounding agreement with the 
Earth-Venus resonance value of 243.16 days. Considering the retrograde rotation of 
Venus, this corresponds to a tropical period of rotation of t = (t~ * + T~ x)~* = 116.78 
days. 

The moment of inertia of the Earth is well established from mass distribution models 
and from its hydrostatic flattening, yielding T=0.3309. 

Several models have been developed for Mars, but each of them was fitted to the 
observed flattening, hence they cannot yield additional information regarding the 
moment of inertia factor of this planet. The observations of Phobos and Deimos yield 
T=0.375 (Levin in SIPS, p. 487). 

No reliable models are available for Jupiter, Saturn, Uranus and Neptune. I have 
computed their moment of inertia factor (T) as for Mars from the observed hydrostatic 
flattening (/) and the mass (M) of the planet, using the equation: 

T=f[ l - | (5m/2/ - l ) 1 / 2 ] , (3) 

where m=4n2r3/Gts
2M is the ratio of centrifugal to gravitational accelerations on the 

equator of the planet. Such a computation of the moment of inertia factor around the 
polar axis is based on the assumption that the surface of the planet is an equipotential 
surface. Table II lists the used equatorial and polar radii, the/^nd M and the resulting 
r values. 

The flattening of Uranus computed from the optically observed equatorial and 
polar diameters leads to an impossibly small T value. Cook (1972) believes that a 
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flattening between/=4.5 x 10~2 and 5.5 x 10"2 would be reasonable. Kovalevsky (in 
SIPS, p.32) suggests a flattening of j§. I have accepted this latter value in my computa­
tions. 

The difference between the equatorial and the polar radii of Neptune is not known. 
The coefficient of the second harmonic in the gravitational potential of Neptune has 
been derived from the motion of the satellite Triton, with the result J2 = 5 x 10"3 

(Kovalevsky in SIPS, p. 39). If the surface of the planet is assumed to be equipotential, 

TABLE II 
Moment of inertia factor 

Jupiter 
Saturn 
Uranus 
Neptune 

re 
(km) 

70 850a 

60000a 

25400a 

25 225 d 

rP 
(km) 

66 550a 

53 450a 

24 700a 

/ 

0.0607 
0.1092 
0.0555 
0.021 7b 

M 
(1024g) 

1900b 

569.3 b 

87.7C 

102.9e 

T 

0.233 
0.213 
0.263 
0.264 

a Dollfus in SIPS, p. 136. 
b Kovalevsky in SIPS, pp. 31, 39. 
c Klepcynski et al., 1970. 
d Kovalevsky and Link, 1969. 
e Seidelmann et ai, 1969. 

the polar flattening is given, to first order, by the formula / = f J2 + 2m> whence the 
flattening is 2.17 x 10 "2. 

Among all the planets Pluto has the most eccentric orbit, which moreover intercepts 
the orbit of Neptune. This is one of the reasons to regard Pluto as an escaped satellite. 
Its size and density, however, place it in the class of terrestrial planets. Recently all 
available transit circle observations of Neptune, from its discovery in 1846 to the 
present, have been reexamined by Seidelmann et al (1971). Pluto's mass was found to 
be (0.107 ±0.001) M e very close to that of Mars. We adopt, therefore, for the moment 
of inertia factor of Pluto the same value T = 0.375 as for Mars, and take its radius to 
3200 km, the value used by Seidelmann et al. 

We may assume that the very small asteroids behave as rigid bodies, whence T 
reaches for spherically shaped objects its maximal value of f=0.40. Only two as­
teroids, Ceres and Vesta, could be included in Table III. The period of rotation of 
Pallas and the diameter of Juno and Eros are too uncertain; for the others only 
orbital data are known. 

The moment of inertia factor of the Moon was very exactly determined to 0.3906 + 
±0.0003 from the orbits of the many artificial satellites which during the last years 
orbited the Moon (Tolson et a/., 1967). The same T value was adopted for all the other 
satellites. 

The resulting quantum numbers k and n of 9 planets, 2 asteroids and 8 satellites are 
listed in the last columns of Table III. 
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TABLE III 
Quantum levels of major and minor planets and satellites 

Mercury 
Venusa 

Earth 
Mars 
Jupiter 
Saturn 
Uranus3 

Neptune 
Pluto 

Ceres 
Vesta 

E. Moon 

J. Io 
Europe 
Ganymede 
Callisto 

S. Titan 
Iapetus 

N. Triton b 

a Retrograde i 

t 
(days) 

176.01 
116.78 

1 
1.027 
0.4097 
0.4264 
0.450 
0.658 
6.375 

0.378 
0.223 

29.53 

1.77 
3.55 
7.14 

16.75 

15.96 
53.15 

5.88 

•otation. 

T 
(days) 

87.96 
224.69 
365.24 
686.95 

4332 
10796 
30662 
59863 
90324 

1682 
1326 

365 

4332 
4332 
4332 
4332 

10796 
10796 

59863 

r€ 
(km) 

2432+ 7 
6052 ± 6 
6370± 
3402 ± 8 

70 850 ±100 
60 000 ±240 
25 402 ±280 
25 225 ±450 
3200 ? 

385± 20 
210± 17 

1739+ 5 

1750± 75 
1550± 75 
2775± 65 
2500± 75 

2425 ±150 
575± 50 

1885 ±750 

R 
(108 km) 

0.579 
1.082 
1.496 
2.279 
7.782 

14.30 
28.68 
44.81 
58.93 

4.141 
3.532 

1.496 

7.782 
7.782 
7.782 
7.782 

14.30 
14.30 

44.81 

T 
1 

0.388 
0.341 
0.3309 
0.375 
0.233 
0.213 
0.263 
0.264 
0.375 

0.40 
0.40 

0.3906 

0.39 
0.39 
0.39 
0.39 

0.39 
0.39 

0.39 

S 
(degree) 

0 
1.2 

23.45 
24.86 

3.083 
26.81 
98 
27 

? 

? 
? 

- 0 

3 
3 
3 
3 

27 
27 

- 0 

k 

4 
4 
3 
3 
2 
2 
3 
3 
4 

4 
4 

4 

4 
4 
4 
4 

4 
5 

4 

n 

4.15 
0.69 
0.97 
3.83 
1.30 
3.14 
0.99 
0.29 
0.91 

0.92 
1.69 

2.17 

0.29 
0.75 
0.47 
1.36 

2.10 
0.92 

2.03 

AM 

+ 0.15 
-0.31 
-0.03 
-0.17 
+ 0.30 
+ 0.14 
-0.01 

-
-0.09 

-0.08 
-0.31 

+ 0.17 
-

-0.25 
-

+ 0.36 

+ 0.10 
-0.08 

+ 0.03 

b Retrograde orbit. 

4. Specific Questions 

One way to quantize the satellites would be to take their respective planets as central 
body. As far as we know, all satellites always turn the same side toward their mother 
planet, hence, their period of rotation is equal to their orbital period and Equation (2) 
is simplified to : 

n = (R/r)2afc(2r)-1. (4) 

However, the results one obtains from Equation (4) is a completely random dispersion 
of n values, scattered between 2 and 50, indicating that satellites cannot be quantized 
in such a manner. 

It seems to me that the explanation of this behavior is that the spin of the orbiting 
object has a physical meaning for quantization purposes only as related to the radius 
vector of its orbit Satellites, which always turn the same side toward their planet, 
do not rotate relative to their radius vector, whence their spin is zero in the coordi­
nate system of their orbit around the planet! 

Satellites, however, rotate relative to the radius vector of their orbit around the 
Sun, and can be quantized in the same manner as planets, orbiting around the Sun, as 
this is illustrated in Table III. 
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Artificial satellites (Apollo, Mariner, etc.) turn always the same side toward the 
Moon, or the planet they orbit, thus their spin is zero relative to the radius vector of 
their orbit. Similarly as celestial satellites, they cannot be quantized when orbiting a 
planet. During their passage from the Earth to their target, artificial satellites are 
stabilized relative to the direction of the Sun. Consequently, they cannot be quantized 
as being in orbit around the Sun either. 

I could only include the Moon, four satellites of Jupiter and two satellites of Saturn 
in Table III, because th6 diameters of the other larger satellites are not yet known with 
sufficient accuracy. Although the diameter of Triton is uncertain to ± 40%, nevertheless 
I included it because it is the second largest satellite, and because it has a retrograde 
orbit relative to its mother planet. There are three satellites in the n = 2, k = 4 quantum 
state, and only one has retrograde rotation; two satellites are in the n = l, fc = 4 
quantum state, neither has retrograde rotation. This does not seem to support the 
applicability of Pauli's exclusion principle. 

The circumstance that the rotational spin of the orbiting objects has to be computed 
relative to the radius vector of the orbit requires use of the tropical period of rotation, 
instead of the sidereal period of rotation. This difference becomes significant only for 
the planets Mercury and Venus, where the tropical periods of rotation are 176.01 and 
116.78 days, instead of 58.65 and 243.16 sidereal days, respectively. 

In 1946 when the periods of rotation of Mercury and Venus were not yet known, it 
was generally assumed that the period of rotation of these two innermost planets were 
the same as those of the two other terrestrial planets Earth and Mars that is, one day. 
Nevertheless, the quantum number n which I computed at that time for Mercury and 
Venus was the same (Barnothy, 1946), as found now, that is 4 and 1, respectively. The 
quantum number k was 3 instead of 4. 

This suggests that all four terrestrial planets were formed with the same k = 3 value, 
Venus and Earth being then in the same quantum state n= 1 and fc = 3, and Pauli's 
exclusion principle required that one member of the pair should have retrograde rota­
tion. This was the reason why I concluded 30 years ago that Venus must have retro­
grade rotation, a prediction born out by later observations. 

In the course of time the direction of rotation has not changed, but Mercury and 
Venus have increased their quantum number k from 3 to 4 by lengthening their sidereal 
period of rotation by factors 56 and 244, respectively, changing thereby the original 
ratio of rotational to orbital angular momenta by a factor of about 137, without 
thereby changing their quantum level n. Mercury and Venus are much closer to 
the Sun than the Earth, and the solar tides are therefore much more powerful. It is 
generally assumed that tidal friction was the reason which increased the periods of 
rotation of the two innermost planets to their present rates. The astonishing agreement 
of the n values, whether computed with one day, or with the present tropical periods 
of rotation, supports the assumption that at the start the period of rotation was the 
same for all four terrestrial planets. 

The large deviation of the n value of Venus from an integer is rather surprising, 
because its radius and moment of inertia factor are well known. We may seek an 
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explanation in the phenomenon that Venus turns the same point of its surface toward 
the Earth at each inferior conjunction, indicating the existence of an Earth lock. It 
seems, therefore, possible that during the course of the slowing down of the rotation 
of Venus, this process was halted through the Earth lock. 

It is generally assumed that spiral galaxies are systems in gravitation equilibrium, 
their star systems revolving on Keplerian orbits around the galactic center. The total 
angular momentum of the solar system is s = 3.21 x 105Ocgs,whileitsmassis2x 1033g. 
The distance to the Galactic center is R = 9A kpc (Van den Bergh, 1972), and its rota­
tional velocity v = 250 + 20 km s " l (de Vaucouleurs and Peters, 1968). The equation to 
quantize the solar system revolving around the center of the Galaxy is: 

vRM 
n=—— a*(cos<5)_1, (5) 

2s 
where 8 = 63.6° is the inclination of the orbital plane of the major planets to the galactic 
plane. With k = 6, we obtain n = 0.76. The deviation from the integer number [1] could 
be due to an error of 30% in the distance from the Galactic center, but could also arise 
from the presence of a heavy trans-Plutonian planet with retrograde revolution. From 
the irregularities observed in the orbit of Neptune, Brady (1972) concluded upon the 
existence of a trans-Plutonian planet of 300 M e mass, with its orbital plane 120° 
inclined to the ecliptic. 

5. Probability that n is an Integer Number by Chance Alone 

Altogether there are 19 objects (9 planets, 8 satellites and 2 asteroids) for which the 
radius r, period of rotation t, and moment of inertia factor T are known with an accuracy 
better than 10% (see Table HI). With the exception of Neptune, and two of the inner 
satellites of Jupiter, all the other 16 objects have n values which deviate less than 
+ 0.36 and —0.31 from the integer numbers 1,2,3 or 4. If we compute n from Equation 
(2) without the factor <x\ then n is of the order of 104 to 109. Applying the factor a* 
divides the total range of n in subintervals, each containing the same range of n values 
from 1 to 137. Let us assume that we accept an n value as being an integer quantum 
number if its deviation from [1], [2], [3] or [4] is less than ±0.25. Then, the prob­
ability that a random number falls within ±0.25 from [1], [2], [3] or [4] would be 
^7 = 1.5%. One has, however, to take into account that whenever n is found to be 
a large integer, say between 103 and 137, this number could be changed into an n value 
between 0.75 and 1, simply by changing a* to a*+1. We have thus to divide the 16n 
values into two groups: one where n is less than 1, and another where n is greater than 
1, the groups being populated by 7 and 9 objects, respectively. In the first group the 
chance of a success in one trial is about ^ ~ 20 times higher than in the second group. 

The probability to find 7 objects in the first group and 9 in the second follows a 
biniminal distribution: 

m p = -
X K N T ^ C - < • > " - (6) 
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where N is the number of trials, x the number of successes (integer), and p the prob­
ability for one trial. Here p is determined by the average deviation of n from integer 
values. Because the average deviation from [1] in the first group is —0.11, p = 0.11 
and with x — 1 and N = 19 we have 

p 1 = _ _ 0 . i r x 0 . 8 9 1 2 = 2.4xl(T3. (7) 
7! 12! 

In the second group We have an average positive deviation of +0.33 for [1], but 
±0.15 for [2], [3], or [4]; thus p = (0.33+ 6x0.15) 137"1=9.0x 10"3. With x = 9 
and AT =19, 

P 2 = 9 n ^ ( 9 0 x l 0 " 3 ) 9 = 3 - 6 x 1 0 " 1 4 - (8) 

The total probability is thus: 

P = p1p2 = 8.6xl0"17. (9) 

The chance of 1 in 1016 cannot be called anymore a chance, but a proof that the solar 
system, hence macroscopic objects, can be quantized. Unless, of course, we want to 
believe that our solar system was specially selected by the Divine Creator from 1016 

similar planetary systems to satisfy this curious agreement. This would be, however, 
equivalent to return to the old, pre-Copernician geocentric cosmological philosophy. 

6. Objections 

The possibility to launch artificial satellites in whatever orbits, contradicts the hypo­
thesis of quantization of macroscopic objects. This objection is answered in Section 4. 
Even for a satellite rotating around an axis perpendicular to its orbit, it would take 
millions of years before its energy loss through gravitational radiation would suffice 
to settle it in a stable quantized orbit. 

The angular velocity of the Earth is slowing down at a rate of (2.65 + 0.58) x 10~10 

yr ~ * (Newton, 1972). During the past life time of the Earth, this would have amounted 
to a considerable change in the ratio of the Earth's spin to its orbital angular momen­
tum, contradicting quantization. A decrease of 0.000136" yr "* from the present 23°45' 
inclination of the rotational axis to the normal of the ecliptic, would compensate the 
effect of the slowing down of the rotation of the Earth on the quantum number n, as 
this can be seen from Equation (2). On account of the wobbling of the polar axis by 
±0.3", the detection of such a quantum mechanical 'readjustement' of the rotational 
axis would be difficult to establish even within a century, although the six stations 
of the international network for latitude determinations are capable to determine the 
momentary direction of the polar axis to an accuracy of 0.01". 

https://doi.org/10.1017/S0074180900070352 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900070352


34 J. M. BARNOTHY 

7. Further Consequences 

A quantization of binary systems consisting of two neutron stars reinstates the possi­
bility that pulsars could be binary systems, because there is no emission of gravita­
tional radiation while in stable orbits. To date some 20 different pulsar models were 
proposed. Some predict that the radiation is emitted from the first few centimeters 
thick surface layers of a neutron star, while in others the emission occurs at a height 
of 10000 km. This indicates that in spite of the great sophistication of some models, 
the question of what pulsars are, is not finally settled. A few years ago I have proposed 
at the 127th meeting of American Astron. Soc. that should one be able to disregard 
for one reason or another, the slowing down process through the emission of gravita­
tional radiation, a binary system of two neutron stars could explain without further 
assumptions many peculiarities of pulsars (Barnothy, 1968). 

Quantization of a binary pulsar raises the hope that the 'glitches' in the pulse 
frequency of the Crab and Vela pulsars may be explanable through quantum jumps 
from a higher to a lower quantum state. 

If the planetary system can be indeed quantized, it would entail a re-evaluation of 
the uncertainty principle, and with it, of quantum mechanics, certainly in its Copen­
hagen interpretation, which renounces reality as a metaphysical unscrutable. True, 
if an observer would look on our planetary system using gravitational waves with 
wavelength equal to those the system would emit when the planets would change 
from one quantum state to another, he could describe the position of the planets and 
their motion merely with the help of ̂ -functions, and may thus say, that the existence 
of the Earth, for instance, is only a statistical probability. But, if he would use light, 
and would have a sufficiently powerful telescope to see people walking on the streets, 
I seriously doubt whether he would still question the physical reality of the Earth. 

The solar system seems thus to be a quantized system, which depending on the 
signal carrier we use, obeys or rejects the uncertainty principle. The main importance 
of what I have here shown and hopefully proven is: the repudiation of John von Neu­
mann's theorem, namely that no parameter previously 'hidden' from quantum physics 
could later be discovered and permit a precise measurement that violates the un­
certainty law - thereby forever exiling cause-and-effect from the scene of physics. 

Tycho Brahe's and Copernicus' astronomy could develop into modern astrophysics 
only with the help of physics. It seems that astronomy is now in the position to repay 
this debt by helping to understand the meaning of the discarded concepts of causality 
and dualism, concepts, though used for a long time, but understood only vaguely by 
the physicists themselves. 
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