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CONWAY POTENTIAL FUNCTIONS FOR LINKS IN
Q-HOMOLOGY 3-SPHERES

by STEVEN BOYER* and DANIEL LINES**

(Received 14th February 1990)

We obtain a formula relating the Conway potential functions of links in S3 which are connected by a framed
surgery operation. Using this formula we extend the theory of Conway potential functions to links in all
oriented Q-homology 3-spheres.

1980 Mathematics subject classification (1985 Revision): 57M25.

1. Introduction

Conway [2] discovered that the Alexander polynomial of an oriented link in S3 may
be normalized so as to enjoy many important properties. Hartley's article [3] is the
basic reference. Using a refined version of Reidemeister Torsion, Turaev [8, Section 4]
shows that this normalization can be extended to links in arbitrary Z-homology
3-spheres.

Our study of surgery formulae for Casson's invariant [1] led us naturally to the
problem of determining a normalization of the Alexander polynomials of oriented links
in Q-homology 3-spheres.

The construction given by Hartley [3] for the Conway potential function of a link in
S3 cannot be applied to links in other 3-manifolds since it depends crucially on the
properties of knot projections on a plane. In the present approach, we assume the
existence and properties of Conway potential functions for links in S3 as stated in [3]
and prove a surgery formula for these functions. This enables us to extend the theory to
potential functions of links in Q-homology 3-spheres where the surgery formula plays a
central role. In particular, we give the relation between potential functions of links in
possibly distinct manifolds having homeomorphic complements.

We list below the properties of the Conway potential functions; all of them, except the
surgery formula III are straightforward generalizations of known properties of the
Conway potential functions for links in S3. Proofs and further explanations are given in
the body of the text.

Let L be an oriented link of n components in an oriented Q-homology 3-sphere M.
Let AL be the Alexander polynomial of L and let VL be its Conway potential function.
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54 STEVEN BOYER AND DANIEL LINES

(I) Relation to the Alexander polynomial

-Sid) if n = l
.,sn

2) i f n > l

where d = \torsion subgroup oi Hv(M\L)\l\Hl(M)\.

(II) Value at 1

~d if «=1

lkM(KuK2) if n = 2and L = /Cj u/C2

^0 ifn^3.

(HI) Variance under surgery

Let L be an oriented framed link in a Q-homology 3-sphere presenting an oriented
link L in the surgered manifold x(L). We suppose that x(L) is again a Q-homology 3-
sphere and denote by B the framing matrix associated to L Then

(IV) Restriction

Suppose that L = L o u X m + 1 u - u X n , then

VL(su s2,..., sm, 1 , 1 , . . . , 1) =fL,Lo(sl, s2,..., sm)V/.0(s1> s2,..., sm)

where

n

JL,L0\
sl>s2>- • • > i m J — 1 1 \ s l * 2 • • • i m ~ s l ^l • • • ̂ m ) •

i = m + 1

(V) Symmetry

VL(sT\s2
i,...,s-1)=(-irVL(s1,s2,...,sn).

(VI) Orientation change

Let L' be the link resulting from a reversal of the orientation of the first component of
L, then

VL.(s1,s2,...,sn)=-VL(si\s2,...,sn).

(VII) Ambient orientation change
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CONWAY POTENTIAL FUNCTIONS FOR LINKS 55

Let ~ L denote the link L considered in the manifold — M, then

V^(s1 )s2 , . . . ,sn)=(-ir-1Vt(s1,s2 , . . . ,sn) .

(VIII) Skein relation

Let L+, L_ and Lo be oriented links in M differing only in a 3-ball as pictured below:

L+ L_

Setting all the variables corresponding to the components appearing in the diagram
equal to s (and leaving those that remain unchanged) we have

VL +-VL.=(s-s-1)VL o.

In Section 1 we define the notions of oriented framed link and surgery presentation of
a link; we recall the definition of Alexander polynomials of links in Q-homology 3-
spheres. In Section 2 we state the surgery formula for links in S3 (Theorem 2.1) and
define Conway potential functions for links in Q-homology 3-spheres. The properties
(I)—(VIII) listed above are established in Section 3. Finally Section 4 is devoted to the
proof of Theorem 2.1 concerning the surgery formula for links in S3.

We would like to thank Vladimir Turaev for informing us about his treatment of
Conway potential functions for links in Z-homology 3-spheres.

1. Definitions and preliminary notions

We shall work in the smooth, oriented category throughout this paper. Thus all
manifolds and submanifolds will be smooth and oriented and diffeomorphisms between
manifolds will preserve orientations. M will denote a Q-homology 3-sphere, L a link in
M and T(L) a closed tubular neighbourhood of L in M.

If C, and C2 are disjoint 1-cycles in M, a rational valued linking number is defined:
lkM(CuC2)eQ [7, §77], The torsion pairing [7, §77] /: Hl{M)xHy{M)-*<Qt/Z is the
(modZ) reduction of lkM. If K is a knot in M, lkM(K, - ) : //1(M\.K;Q)-»Q provides a
canonical isomorphism sending a meridian n of K to 1.

Definition 1.1. The longitude of a knot K in M is the unique class
satisfying
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56 STEVEN BOYER AND DANIEL LINES

(i) nk=l in Hl (dT(K);Q) and

(ii) the image of k in HY(M\K\ Q) is zero.

Note that the first condition is equivalent to X being rationally homologous to K in
T(K) while the second is equivalent to lkM(K, k) = 0.

Suppose now that l(K,K)= — a/b (modZ) where gcd(a,b) = 1. It can be shown that bk
is represented by an essential simple closed curve on dT(K). Indeed we have the
following more general result.

Lemma 1.2. A class p/i + qkeH^dTiK^Q) is represented by an essential simple
closed curve on dT(K) if and only if qeZ and there is a ceZ coprime with q such that
p = c-(qa)/b.

Proof. Let n be a parallel curve to K on dT(K), that is K is a simple closed curve on
dT(K) which is isotopic to K in T(K). Now we necessarily have fi-n = l in H^dTiK))
and, after possibly altering n by an integral number of copies of fi, we may suppose
lkM(K, n) = — a/b. It follows that k = {a/b)(i + n. As n and n form a basis for the integral
homology of dT(K), the lemma follows from the fact that an integral class is represented
by an essential simple closed curve on dT(K) if and only if it is a primitive class. •

We shall call such a pair (p, q) a. framing of K.

Definition 1.3. By a framed link L in M we mean an underlying link L = Klv K2v
•••uKn^M and a sequence (puq^), (p2,qi),••-,(?«qn) of framings for the components
ofL.

Denote by (̂L) the manifold obtained by performing surgery on M along L as
indicated by L, the framing of Kj giving the surgery meridian.

Set lkM(Kh Kj) = lip 1 ^ i #7 ̂  n. We associate to L the framing matrix

B =

"Pi

Pi

Pn

When M is a Z-homology 3-sphere, B is a presentation matrix of Hi(x(l)) and thus
|B|=±|tfi(x(L))|- In general |B|= ±|ff1(^(L))|/|//1(Af)|. We shall assume henceforth
that x(IL) is a Q-homology 3-sphere. This is equivalent to requiring |B | /0 .

The union of the cores of the surgery tori determine a link

oriented so that the meridian of Kj is
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CONWAY POTENTIAL FUNCTIONS FOR LINKS 57

Here fij and A, are the meridian and longitude of Kj.

Definition 1.4. We say L is a surgery presentation of L.

Either collection of meridians {nj}j=l „ or {/*,•},=i„ forms a basis for
and B is the transition matrix from the former to the latter. It follows that

if L2 is presented by tl with matrix B2 and L t is presented by L with matrix B1 then L2

is presented by V with matrix BXB2. Here L' has the same underlying link as L and
framings corresponding to the meridians of L2. In particular if L presents L with matrix
B then the meridians of L define a framed link L"1 presenting L with matrix B~l.

Lemma 1.5. Let 1 g i , j^n and c(i,j) be the (i,j) cofactor of B. Set M = x(L), then

Proof. Let aj = c{j,j) and bj=Li^jYdi^Jlii(iU]). Using the identities A 4 =^ , v t / j k ^ j

(1 gfe^n) in H,(X; Q) (where X is the exterior of L), it can be shown that in this group,

bjHJ-aJXj='zUi,j)Xl-(l1lktc(k,j)\\ lgj^n. (1.1)

When q,#0,

c(i,Mi- f I /wc(fc,j)) /i, = (p,/q,)c(i,j)nt + c(i,;)A,. = (l/9()c(U)£« (1 .II)

in / /^X;©). When ^ = 0 , c(ij) = 0 and /*i = P.-A** so that

ii=~(.l/Pl)\ Y /k/C(/c,/) I /I.- O-III)
\k*i J

in H^X-,0). Thus bjfij—ajkj is null homologous in the exterior of Kj. As
jij-(bjnJ—aJA.j)= —\B\, it follows !,-= —(1/|B|)(6^—a;A_,). Now Xj and K; are equal as
rational classes in the exterior of Kh hence when q f #0 reference to (1.1) and (1 .II) shows

B\)c{i,j). When qt = 0 referring to (1.1) and (l.III) shows
D

Definition 1.6. Let LUL2 be two links in M with L2 = L, u7Cn + 1 u - u Km. Define
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58 STEVEN BOYER AND DANIEL LINES

Let s = (sus2,-..,sn) be an n-tuple of indeterminates and A an nxm rational matrix.
Define s • A to be the m-tuple

If B is an mxr matrix then (s• A)• B = s• (AB), thus we have a right-action of GL(n,Q)
on Z[Q"] via f(s)-A=f(s-A). Here we have written Q" exponentially as

lSl S2 •••Sn | X 1 , X 2 , . . . , X n 6 U | .

Lemma 1.7. (i) / / L1^L2 = L1*u Kn+1v-Kj KmsL3 = L2Kj Km + 1u---KJ K, are
//nfcs in M, s = (st,s2,..,sn) and 1 denotes a string of ones then

(ii) / / Lj presents Lt with framing matrix BY and 12 = 1^ K(°l.y-O)v-u
presents L2 with framing matrix B2, then L, is a sublink oft2 and

where e = en + 1en + 2...em.

Proof. Part (i) is straightforward. To prove (ii) we write

A2,i,(s)= 11 foM-S/fsr1) where ft(s) = sJ"s'2"...si"

Let gi be the corresponding function for the pair (L2,LX). For l^j^n, the exponent of
Sj in ^-(s-Bt"1) is (l/|Bi|)Xistsn'*,Ci(/c,j) where cu(fc,y) denotes the (k,j) cofactor of Btt

for u = l,2. For («+ l )^ i^m, q,=0, so that Lemma 1.5 shows if M = #(L) then
/ M ^ ^ > ) = (e/«(|fii|)Zisk!tism'jMC2(fe,j)- ^ is readily verified that c2(fc,j) = ec1(/c,j) when
l^fc^n and is zero otherwise. Thus the exponent of Sj in giis-Bi1) equals
Hence

The result follows. •

Next we recall the definition of the Alexander polynomial of a link in M. Our basic
reference will be Hillman's book [4].

If X is a space let Ty{X) be the torsion subgroup of H^X) and Fl(X) = Hl(X)/Tl(X).
For a link L = KYKJ K2V-KJ KnzM with exterior X, F ^ I J s Z " and Fi(X)®Q is
canonically isomorphic to Q", the ith generator, i, say, corresponding to the meridian ^
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CONWAY POTENTIAL FUNCTIONS FOR LINKS 59

of Kt. Let p:X->X be the cover associated to the surjection ni(X)-*Fl(X) and x a base
point in X. Set R = Z\_Fl(Xy\ and define A(L) to be the J?-module H^X^'^x)). Let
£t(L) be the first elementary ideal of A(L). This is an ideal in R defined as in Chapter
III of [4]. The first Alexander element of L is any generator AL of the smallest principal
ideal of R containing EX(L). The following are straightforward generalisations of
classical results. They are proven using arguments identical to those found in the
theorems cited.

Theorem 1.8 (Theorem (IV.3(i)), [4]). Let I denote the augmentation ideal of
]. Then

(AL)I i fn^Z

If L has (n—1)^0 components and Lt = L<uKn then the inclusion of Xx into X
induces a surjection O:Z[F1(Xx)]^-Z[F1(A

r)]. Let \_KJ be the class of Kn in F^X).

Theorem 1.9 (Theorem (VII.2(i)), [4]).

l l ifn=1 n
i ( L ) if D

Under our identification of F^X) ® Q with Q", there is a natural inclusion
»:H = Z[F1(JQ]-»Z[Q"].

Definition 1.10. The Alexander polynomial of L is the fractional Laurent polynomial

As usual AL(s1,...,sn) is defined only up to multiplication by units of R. This is denoted
by the " = " sign.

One may also prove the analogues of the Torres symmetry properties for Alexander
polynomials (see Theorem (VII. 1) of [4]). For the moment we shall only assume this
property for the polynomials of knots. If K is a knot in M then after multiplying AK(s)
by + an appropriate rational power of s, AK(s) satisfies

Here d=\T1(X)\/\H^M)]. We shall assume that AK(s) has been so normalized in what
follows. The symmetry property for links in general manifolds actually follows from the
results of Section 3.
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60 STEVEN BOYER AND DANIEL LINES

Combining Theorems (1.8) and (1.9) with the expression for [Kn] in terms of the
canonical basis of F^X) ® Q gives:

Theorem 1.11 (Torres restriction formula). / / L [=LuK, («^ l ) then

d i f«=l

ifn = 2 •Atl(s1,s2,...,sn_1,l)=-

Finally note that if L presents L, then L and L have the same exteriors. From the
construction of the Alexander polynomials of L and L it is then clear that these
polynomials differ only by a reparametrisation of Q". Indeed, if B is the framing matrix
of L we have

\'i-B-l) = \B\-lAL{s-B-1). (1.12)

If L is a knot this equation is exact.

2. Definition of Conway potential function for links in Q-homology 3-spheres

In this section we define Conway potential functions for links in Q-homology
3-spheres using the properties of these functions for links in S3. Our main tool is the
following theorem giving a surgery formula for Conway potential functions of links in
S3. This theorem will be proved in Section 4.

Theorem 2.1. Let L be a framed link in S3 such that /(L) is homeomorphic to S3. Let L
be the link presented by L and B be the associated framing matrix. Then

V£(s) = |B|-1VJ,(s-B-1). (2.2)

We shall need the following lemmas:

Lemma 2.3. Let L be a link in a Q-homology 3-sphere M, then there exists a link L*
in M such that:

(i) L is a sublink of L*.
(ii) M\L* is homeomorphic to S3\L° for some link L° in S3.

Proof. Let E be a framed link in S3 such that there is a homeomorphism
//:x(E)-»M. We may isotope L in M so that H(E)nL = 0 and that for each
component C, of E there is a component Kj of L such that //cM(//(C,), K;)#0. The links
L* = L u //(£) and L° = Eu H~\L) satisfy the conditions above. D
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CONWAY POTENTIAL FUNCTIONS FOR LINKS 61

Let M, L, L* and L° be as in Lemma 2.3 and let /i:M\L*->S3\L° be a
homeomorphism. Let L° be the framing of L° associated to the curves h((if) in dT(L°)
where the nf are the meridians of L*. Let B be the framing matrix of 1°. We say that B
is the framing matrix associated to h. Set

Lemma 2.4. Vt. is well-defined.

Proof. If /21:M\L*->S3\L<j' and h2:M\L*^S3\L% are two such homeomorphisms
with associated framing matrices Bl and B2, we must show that

Now h2hil:S3\L°-*S3\L° is a homeomorphism with framing matrix B 2 #f ' (see the
remarks following Definition 1.4). Theorem 2.1 shows that

Setting s = t B i finishes the proof. •

Definition 2.5. Let M, L, L* and L° be as in Lemma 2.3, we define the Conway
potential function VL of the link L in M to be

To see that VL is well-defined we need the following lemma.

Lemma 2.6. Let L be a link in a Q-homology 3-sphere M. Let L\ and L\ be links in
M such that:

(i) LsLfczL?

(ii) M\L* is homeomorphic to S3\L°lfor some link L\ in S3

(»i) /L ; .L(S)#0 and /L5.z.(s)#O,

then

Proof. Let h:M\L^S3\L° be a homeomorphism and let L° be the sublink of L?
corresponding to L. Consider the link /j(LJ\L?) in S3 and set L2 = L? u / J (LJ \Lf ) . Then
the restriction of h to M\L% is a homeomorphism between M\L% and S3\L°. Let Bx

and B2 be the framing matrices associated to L\ and L\, then B2 is of the form

https://doi.org/10.1017/S0013091500005320 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005320


62 STEVEN BOYER AND DANIEL LINES

Bx 0
X I

since the image under h of a meridian of a component of Lf\Lf is a meridian of the
corresponding component of L%. We must show that:

Since

VLS((s, 1) • B~2 ») = VL;((s, 1) • Bl\ 1) = /t,,t?((s, 1) • B r ^ ( ( s , D • Bf ')>

Lemma 1.7 gives the result. •

Theorem 2.7. The function VL is well-defined for any link L in a Q-homology 3-sphere.

Proof. Let L be a link in a Q-homology 3-sphere M. For i = l,2 let Lf be a link in
M such that LsLf, /L,-,L#0 and M\Lf is homeomorphic to 53\Lf for some link L? in
S3. We must show:

V ( 1 } ^ V ( 1} ( Z 8 )

We may suppose that L = L\c\L\. We can isotope if necessary L%\L in M so that
L% = L\ u Lf satisfies

/L5,Lt() and

Note that

Lemma 1.7(i) shows that /L5,L(S)^0 and Lemma 2.6 that both sides of the equality (2.8)
are equal to

^ - r V L . ( s , l ) . •

3. Properties of the Conway potential functions

In this section we prove the properties of the Conway potential functions listed in the
introduction using the analogous properties known to hold for links in S3 (see [3]). We
fix the following notation: Let L be a link in a Q-homology 3-sphere M and let L* be a
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CONWAY POTENTIAL FUNCTIONS FOR LINKS 63

link in M such that LQL*, fL._L^0 and M\L* is homeomorphic to S2\L° with framing
matrix Bo.

(HI) Variance under surgery. Let L be a framing on L with framing matrix B. Let L*
be the image of the link L* in x(L). Then L^L* and x(L)\L* is homeomorphic to Si\L°
with associated framing matrix

By definition

Lemma 1.7(ii) shows that /£.,£(s) = fL.,L(s • B l) / 0 , hence

I " I •—1 , / «\ s nd.\ It

(IV) Restriction. We may suppose that the link L* contains L. By Lemma 1.7(i)

so / L . , L - / 0 and

(V) Symmetry. If L has n components, L* and L° have m components, then VLo is
(— l)m symmetric ([3]) and fL. L ia ( — \)m~" symmetric. Thus Vt is ( — 1)" symmetric.

(I) and (II) Relation to the Alexander polynomial and value at 1. The putative
relationship between AL and VL holds for links in S3 ([3]) and so in particular for L°.
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From the definition of VL. and equation (1.12) it also holds for L*. Using the restriction
formulae for A (Theorem 1.11) and V we see that it holds for L up to units of R when
n~2.2. When L is a knot these restriction formulae plus the symmetry of AL (equation
(1.10)) and that of Vt show that VL(s)= l A J s ^ A ^ - s - " ) .

We show next that

(i) Vt(s) = AL(s2)/(sd-s~d) whenever L is a knot,

(ii) VJL(1, 1) = /12 when L has two components,

(iii) VL(1,1,..., l) = 0 when L has more than two components.

Equation (iii) is an easy consequence of the restriction formula (IV) for V.
When M = S3 (i) and (ii) hold ([3]) and note that any Q-homology 3-sphere may be

realised by a sequence of surgeries on knots in Q-homology 3-spheres starting with S3.
Thus it suffices to prove that if (i) and (ii) are true in M then they are true in M' = x(J)
where J is a knot in M, J = K(p-q) and p#0.

We consider (i) first. Let K' be a knot in M' and let J' denote the knot presented by
J). We may assume that J' and K' are disjoint and that l' = lkM.(K',J')^0. Set
L = J'(JK'. Let K be the knot in M corresponding to K' and set l = Jip-q)u Kll'0). If
l = lkM(K,J) then Lemma 1.5 shows /'=(///>) and that VL.(s,t) = (l/p)VL(s-"Tql',t).
Setting s = 1 gives

( l /p)V i r" ' , t )= /L ' , r (0V r ( t )=+/ r , r ( ( )A J ! . ( ( 2 ) / ( ( J - r J ) . (3.1)

Now by hypothesis Vj,(l, 1) = / and so letting t tend to 1 in equation (3.1) gives
l' = (l/p)=±r. Thus VK.(s) = AK.(s2)/(sd-s-") and as K' was arbitrary, (i) holds in M'.

Now suppose that L = K1 u K2 is an arbitrary 2-component link in M'. Then

Thus (ii) holds in M'. This completes the proof of (I) and (II).

(VI) Orientation change. L = /C(r1>0)u/C(
2

1-0)u---uK<,1>0) presents L and has fram-
ing matrix J where J is the matrix

0 / ,

Hence VL.(s) = |j |-1Vz.(s-J-1)=-VL(sr1,s2, . . . ,sn).

(VII) Ambient orientation change. Let ~L, ~L* and ~L° denote the links L, L*,
and L° in — M and — S3 respectively. Suppose that L has n components, L* and L°
have m components. As ( — M)\(~L*) is homeomorphic to ( —S3)\(~L°) with associated
matrix — Bo,

°
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CONWAY POTENTIAL FUNCTIONS FOR LINKS 65

by (V) symmetry

Since / . t . , _L(s) = ( - l)m-nAM.(s) we have V,Js) = ( - l ) n - 1 VL(s).

(VIII) Skein relation. Let Lj be a link in M such that M\Ll is homeomorphic to
S3\L°. Let L%=L+\JLU L ' U L , and LJ = L o u L 1 . We may assume that Lj was
chosen so that /L;,Lt(s), /L-.L^S) and /L5,LO(S) are each nonzero. Denote by L+, L° and
Lo the links in S3 whose complements are homeomorphic to those of L*+, L* and L$. It
may be verified that L°, L i and L% are skein-related and as they lie in S3 they satisfy
the Conway's skein relation (for a proof, modify the argument in (4.2) in [3]
appropriately). It is now a simple matter using the definition of V to show the skein
relation holds between the potential functions of L\, L* and L%.

As an example, consider the following framed link I in S3:

Using the free differential calculus of Fox, one can see that AL(s1,s2,s3) = s 2 - l so
that Vt(s1,s2,s3) = e(s2 —S2"1) where £= + 1 by property V. Using property IV,
VL(l,s, l)=(s-s~1)2VX2(s) = s - s " 1 , so that e= + l. The framing matrix B of I is

The manifold x(L) is a Seifert fibre space over S2 with at most three exceptional fibres
and is a Q-homology 3-sphere if /? = |l?|#0. Lemma 1.5 shows that lk(Kl,K2) = p3/P
and lk{K1,K3) = pi/p. Properties III and IV show that V£(l,s,l) = l/0VL((l,s,l)-fl-1) =

' M s - s - 1 ) , then An2(u
2p) = l/P(gplpl(u)g^u))/(gPl(u)gPi(u)).

4. The surgery formula for Conway potential functions of links in S3

This section is devoted to the proof of Theorem 2.1. The surgery formula (2.2) is
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66 STEVEN BOYER AND DANIEL LINES

derived from the standard properties of Conway potential functions for links in S3 as
established in [3]. We shall use for the proof Rolfsen's version of the "calculus theorem"
of Kirby [5]. It is worth mentioning that Theorem 2.1 has an elementary (though long)
proof depending only on the basic properties of the potential function.

We mention briefly how Rolfsen moves are defined for oriented framed links (for
more details, see [6]). Let L be an oriented framed link in S3.

(i) Trivial insertion: Add to IL another oriented component with framing (e,0) with
E = ± l .

(ii) Trivial deletion: Delete such a component.

(iii) Twist move: Select a trivial component K} of L, twist t times (t e Z) along a disc
spanning K} and replace the framings as follows:

if i / j change (pf, g,) to (p,, + ty,-/fc(Kj, K})
2, q{),

if i=j change (Pj,q,) to (p

Let L be a framed link in S3 such that x(L) is homeomorphic to S3. We know from
(1.12), symmetry property (V) and the relation between Conway potential functions and
Alexander polynomials that VL(S) = 5(1)\B\~1VL(S-B~1) where <5(L)=±1. To prove
Theorem 2.1, we must show that c5(L)= 1.

Lemma 4.1. Let L be a framed link in S3 such that x(L) is homeomorphic to S3 and
V L #0 , then there exists a sequence L0,L1,...,LN = L of framed links such that:

(i) Q-o is the trivial knot with framing (±1,0),

(ii) V L i .#0, i = 0,...,N,

(iii) for i = 0, . . . , i V — 1 , Li+l is obtained from L, by a Rolfsen move /?,-.

Proof. Since #(L) is homeomorphic to S3, the calculus theorem of Kirby [5,6] shows
that there is a sequence of framed links L, connecting Lo to LN = L as in (iii). It may
happen that for some i, VL. ̂  0 while VL. +, = 0. Denote by R, the Rolfsen move changing
IL( to Q-1 + 1 and note that Rt cannot be a twist move since in this case VLi+1(s) =
+ | B | - 1 VLf(s-JB""1) for some unimodular matrix B.

First case: Rt and Ri+l are insertions or deletions. In the set of links L,, L1+1, L1 + 2,
choose one with the greatest number of components and call it L. Choose an oriented
knot K disjoint from L such that K links each component of L once and consider the
framed links L; = L,(JK( 1-°», L'I+1 = L I + 1 UK ( 1 ' 0 1 , L'i+2 uK(1-0). Since K has linking
number one with all other components, VLi, VLi+1 and VLi + 2 are nonzero polynomials.

Second case: R( is an insertion or deletion, Ri+l is a twist move on a component C of
L1 + 1. Amongst Lh Li+1, choose one with the greatest number of components and call it
L. Choose an oriented knot K disjoint from L such that:
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(i) K links each component of L except C once,

(ii) lk(K,C) = 0, V K u C # 0 and V K U C / 0 , where K denotes the image of K after the
twist move Ri+l.

Set O.J=IL(uK"-0>, L ; + 1 = L 1 . + 1 UK< 1 - 0 » , L;.+2 = Li+2 U/C( 1-0>; then V,.,, VL i t , and Vt<+2

are nonzero polynomials.
In both cases the sequence L0,...,L,-, LJ, Vi+1, t'l+2, LI + 2,...,Ljv has fewer links with

trivial potential functions. Using this argument repeatedly proves Lemma 4.1. •

Lemma 4.2. Let L be a framed link in S3 such that x(L) is homeomorphic to S3. Let L'
be obtained from L by a Rolfsen move R. Suppose that V t # 0 and V L - /0 , then 5(l) = d(l').

Proof. Let B and B' be the framing matrices of L and L'. We know that

1VL(s-B-1) and VL<s)

First case. R is a trivial insertion or deletion. Let

1 , " ) and L'= L u

with e = + 1 . Then |B' |=e |B| and

On the other hand:

Lemma 1.7(ii) shows that:

(a) Suppose first that there is an index i, 1 ^ i ^ n , such that lk(KhJ)^=0, then / t , t # 0
and V L / 0 so that 5(l') = d(l).

(b) If lk(KhJ)=0 for l^i^n, add a component K disjoint from L such that
lk{J,K) = lk(Ki,K) = l for l ^ i g n , then using case (a): <5(fLuK(1O)) = <5([L),
<5(Q_'u/C(1-O)) = <5((L') and ^ ( L u K | 1 ' l ) | ) = ^ ( L ' u / ( ( M ) ) . This shows 3(IL') = <5(IL).

Second case: R is a twist move.

(a) We first show that if K, is a trivial knot and L = /C (
1

l m ) u /C 2
1 ' 0 ) u -u /C^ 1 0 ) is a

framed link in S3, then <5(Q_) = 1.
Let B be the framing matrix of L Insert a component Ko such that //c(/C0,X,) = 1,

l^i^n and consider L * = 4 U ) u L Then V£.(s0,s,,l) = <5((L*)VL.(so,Soms1>l). Let Lo

denote the link K o u K , and Lo denote the corresponding link in x(Q-*), then
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A s / f . t o ^ 0 ' Lemma 1.7(ii) shows that

Setting 50 = 5! = 1 and applying Lemma 1.5 gives <5(L*) = 1. The first case now implies

(b) We consider now the general twist move: Let IL be a framed link in S3 and
suppose that Kx is a trivial knot. Perform a r-twist move along a disc spanning Kt and
let L' be the framed link obtained after the twist. Let B and B' be the framing matrices
of L and 0.'. They satisfy B' = TB where

1 0 0"

tlk(KuK2) 1 0 0

\_tlk(KuKn) 0 l j

Consider the framed link L0 = K (
1

1 - ' ) u /C (
2

1 0 ) u -u /C<, 1 0 ) . Note that L is isotopic to 11
and that L' is isotopic to Lo. This shows that

Setting s-B~i=u-T we get <5(Q_) V J u - T) = 5(l') Vt-(u). Using part (a) we see that

•
Proof of Theorem 2.1. We know that V£(s) = <5(L)|B|-1 V ^ s B ' 1 ) where <5(IL)=±1.

If VL = 0, then (2.2) clearly holds. If V t ^ 0 , let Lo,L1, . . . ,0.A, = L be a sequence of framed
links as in Lemma 4.1. Lemma 4.2 shows that 8(L) = S(LN-1) = ••• =<5(IL0). Obviously
5(lo) = 1 and (2.2) holds for L D
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