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This overview is devoted to splitting methods, a class of numerical integrators inten-
ded for differential equations that can be subdivided into different problems easier to
solve than the original system. Closely connected with this class of integrators are
composition methods, in which one or several low-order schemes are composed to
construct higher-order numerical approximations to the exact solution. We analyse
in detail the order conditions that have to be satisfied by these classes of methods to
achieve a given order, and provide some insight about their qualitative properties in
connection with geometric numerical integration and the treatment of highly oscil-
latory problems. Since splitting methods have received considerable attention in the
realm of partial differential equations, we also cover this subject in the present survey,
with special attention to parabolic equations and their problems. An exhaustive list of
methods of different orders is collected and tested on simple examples. Finally, some
applications of splitting methods in different areas, ranging from celestial mechanics
to statistics, are also provided.
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1. Introduction
1.1. Lie-Trotter and Strang methods

If, as has sometimes been argued, there are only ten big ideas in numerical analysis
and all the rest are merely variations on those themes, splitting is undoubtedly one
of them (MacNamara and Strang 2016). In fact, we could say that, at least since
Descartes stated his four rules of logic in the Discours de la méthode,! the notion of
subdividing a complicated problem into its simpler constituent parts, solving each
one of them separately and combining those separated solutions in a controlled way
to get a solution to the original overall problem, constitutes a guiding principle in
all areas of science and philosophy.

In the realm of numerical analysis of differential equations, this basic principle
can be stated as follows. Suppose we have the abstract initial value problem

& f, x0=x (11)
1

associated to an ordinary differential equation (ODE) or a partial differential equa-
tion (PDE), in which case f is a certain spatial partial differential operator. Further-
more, suppose that f does not depend explicitly on time and can be decomposed

as

xl

f=h++f, m2=2, (1.2)

so that each initial value problem x” = f;(x), x(0) = x is easier to solve than (1.1).

! ‘Le second, de diviser chacune des difficultés que j’examinarais, en autant de parcelles qu’il se
pourrait, et qu’il serait requis pour les mieux résoudre. Le troisi¢me, de conduire par ordre mes
pensées, en commencant par les objets les plus simples et les plus aisés a connaitre, pour monter
peu a peu, comme par degrés, jusques a la connaissance des plus composés; et supposant méme
de I’ordre entre ceux qui ne se précedent point naturellement les uns les autres.” (René Descartes,
Discours de la méthode, Seconde partie).
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SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 3

Most commonly, they can be integrated exactly in closed form. Then it is possible
to take advantage of the decomposition (1.2) to get accurate approximations to the
solution of (1.1) by means of splitting methods.

The best example to start with is perhaps the case of a linear differential equation
defined in R? and m = 2, namely

¥ = fik)+ L) = Fix+Fx, x(0)=xo, (1.3)
where F; and F, are D x D matrices and x € R?. The solution reads
x(1) = &'+,

so that by computing this matrix exponential directly we would have solved (1.3)
without requiring splitting methods. Associated with (1.3), we have the matrix
differential equation
dX
o - v )X, X(0) =1, (1.4)
in the sense that
x(t)=X(xg and X(1) = e 1),

This is useful (mainly) for theoretical purposes, since we usually try to compute
e/ (F1+F2)y, directly instead of first computing the matrix exponential and then
multiplying it by xo.

It often happens that evaluating the action of X(#) on x is difficult or computa-
tionally expensive. If, however, this is not the case for each e’/ separately, then
one may use the well-known Lie product formula (Reed and Simon 1980, p. 295)

t(F1+F2) _ 1; LF JLF\n
e —nh_)rrolo(e e ) . (1.5)
To get an approximate solution of (1.3) at the final time 7 = 75, we subdivide the
interval [0, 77 ] into N steps of length &, with Nh =t and compute the sequence

Xpe1 =2 x>0, (1.6)

so that x,,41 = x(t,41 = (n + 1)h). This is the so-called Lie-Trotter scheme. When
the matrices commute, the sequence produces the exact solution. To put it another
way, if the commutator [Fy, F>] = F1F, — FoF; = 0, then exp(h(F; + F»)) =
exp(hF,)exp(hFy). Otherwise, a direct calculation shows that

D _ M = LR, ] + O(R)

as h — 0, and hence the previous approximation is only of first order of accuracy.
Another version of the method is possible, of course, by reversing the order of Fj
and F>, namely

Xpag =eMre2y >0 (1.7)

has the same order of accuracy and properties as (1.6). Needless to say, for any
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4 S. BLANES, F. Casas AND A. MURUA

m > 2, it results in

Xy = ehFm L M GhF

(or any other permutation of the matrices F).
A higher-order approximation can be achieved by considering a symmetrized
version of (1.6),

h(F1+F2) _ o3hFiehFreshFL — cp3 4 o(h¥y, (1.8)

where the constant C can be obtained either by comparing Taylor series or by
applying the Baker—Campbell-Hausdorft (BCH) formula as (Varadarajan 1984)
C = %([Fy, [F1, F>]] + 2[F», [F1, F»]]). Therefore the sequence

1 1
Xpal = e2FighfagyhFi Xn, n>=0 (1.9)

produces a second-order approximation for the solution of (1.3). This corresponds
to the Strang (splitting) scheme. Again, if the role of F and F; is interchanged, we
have another version of the Strang splitting scheme.

Simple generalizations to the case m > 2 include in particular the product

e1hF1 g3hFy | ohFum | o3hF2 o3hFi

€

Higher-order splitting methods could in principle be constructed by including more
exponentials with their corresponding coeflicients in a time step, namely

lP(h) - eas+th1 ebshFZ eashFl ce ebth2 eathl . (1.10)
The number s as well as the coefficients a, b; are chosen so that
\P(h) — eh(F1+F2) + O(hr+l)

as h — 0 for a given order r. In (1.10), the first and last exponentials correspond
to F1. This format is convenient for implementation, since the last exponential in
one step can be concatenated with the first one at the next step, thus reducing the
number of evaluations by one. This corresponds to the well-known FSAL (first
same as last) property. The situation when we have an exponential of F, as the first
and last term is recovered by taking a; = az41 = 0.

1.2. Flows and differential operators

The Lie—Trotter scheme can be easily generalized to any system (1.1)—(1.2) when
the solution is no longer given by exponentials, as in the linear case. If m = 2, it is
equivalent to the following.

Algorithm 1.1 (Lie-Trotter). Starting from xo = x(0), forn > 0,
e solve yi = fik1), yi(ty) = x,, in [tn, tn+1];
o set yur1/2 = y1(tns1);
e solve y, = fa(y2), y2(tn) = Yn+1/2, 0 [, tns1]s
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SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 5
o finally, set x,,41 = y2(tp+1)-
Alternatively, if we denote the solution of equation (1.1) for each ¢ € R as

x(t) = ‘10t (XO)

then Algorithm 1.1 can be formally expressed as
(01 0 0y ) o), (L1D)

where we have used the simplified notation go,J ](xo) for the solutions y(z) =

Xptl = Xn(Xn) =@ [2] (‘phl](xn))

[f’ (xo) of the subproblems y" = f;(y), y(0) = xo. Analogously, the Strang
sphttmg (1.9) is generalized as follows.

Algorithm 1.2 (Strang). From xg = x(0), forn > 0,

e solve y| = fi(y1), y1(tn) = Xp, in [ty, tyy12], With 410 = (n + %)h;
o set Yui1/2 = Yi(tas1/2)s

e solve y) = f2(y2), y2(tn) = Yns1/2, i [1n, tna ]

o set P12 = Yo(tns1)s

e solve y| = fi(y1), Y1(tnt12) = Sns1/2- 0 [Lng1/2, tner ]

e finally, set x,.11 = y1(f41)

or, in short,
xurt = S0 0n) = (@4 0 937 0 o) (k). (1.12)
Ifequation (1.1) corresponds to a (nonlinear) ordinary differential equation evolving
in RP,
X' = f(x), x(0)=xo€R”, (1.13)

f is called the vector field. 1f (1.13) admits for each x( € RP a unique solution x(z)
defined for all 1 € R, the map

xo +— x(t) = o (xg)

is referred to as the -flow (Arnold 1989). Thus, for each value of the real parameter

t, (pt[f J maps R? in R? in such a way that cp (z) is the value at time ¢ of the

solution of the system with initial value z at time O, whereas, for fixed xo and
varying t, t,Dt (xo) is the solution of the initial value problem (1.13).

It is worth mentioning that the solution x(#) of (1.1) is in general defined for a
maximal time interval (tmin(X0), tmax(x0)) (With —co < tin(x0) < 0 < fmax(x0) <
+00). Furthermore, the vector field f of many systems of ordinary differential
equations is singular (or undefined) for some x € R?. Thus, in general, f is

[f]

defined for some open set i € R”. Hence, for a given 7 € R, the t-flow ¢,” ' is a
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6 S. BLANES, F. Casas AND A. MURUA

map from
Dy ={xo € U: t € (tmin(X0), tmax(X0))}

to . In general, one may have different domains of definition ¢/ (resp. D;) for each

fj (resp. got[ﬁ ]). In this general situation the compositions in (1.11) and (1.12) are
not well-defined for all xo, & and n. In order to avoid these technicalities, we will
assume in what follows that & = RP, fpin = —oo0 and e = +0co, for each vector
field f;.

Associated with the vector field f is the Lie derivative or Lie operator F (Arnold
1989), mapping smooth functions g: R? — R into the real-valued function
F g: RP — R such that, for x € RP,

d
Fow=—| gle’ @),

=0
that is,
(F g)x) = f(x) - Vg(x).

Then the flow of (1.13) verifies (Sanz-Serna and Calvo 1994, Hairer, Lubich and
Wanner 2006)

2o’ 1) = (¢Fg) (0 = (Z aFrs )(x)

k>0

The operator X(¢) = e’ is called Lie transformation, and can be seen as the formal
solution of the operator equation
dXx

o =XF, X(©0) =1I. (1.14)

This can be seen as follows: on the one hand,

) = 7<X<r)g)<x> = (ﬁg) (),

dt< d

and on the other hand

S8(er 1) = (Fe) (e 1) = X()(Fg)(x).

Lie operators satisfy some remarkable properties (Arnold 1989). In particular,
although they do not commute, their commutator is nevertheless a first-order linear
differential operator. Specifically, let F and G be the Lie operators associated with
f and g, respectively, and u: RP — R a given smooth function. Then

o (08 A
[F,Glu=(FG—GF)u = Z(f, & f)ax

8xj fax,

i,j=1
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SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 7

and it is possible to associate a new vector field to this differential operator, w =
(f, g), with components

>, dg  Of;
wi = (f.8) =Z(f,-§’j—gjag>.

J=1

It is called the Lie—Poisson bracket of f and g, and its Lie operator W satisfies
W =[F,G].

Now suppose that f(x) = fi(x) + f>(x), so that each part x" = f;(x) is exactly
solvable (or can be numerically solved up to round-off accuracy) with flow x(¢) =
<pt[] ](xo). Letting F; and F, denote the Lie operators associated with f; and f>,
respectively, it holds that

g(ol'@) = (Tg)@).  g(el) = (e"2g) ().
Then, for the first-order approximation yj = ¢ }fJ o EJ furnished by Algorithm 1.1,
we have g(yn(x)) = (P(h)g)(x), where W(h) is a series of linear differential oper-
ators defined as

Y(h) = e eht2, (1.15)

Notice that the exponentials of Lie derivatives in (1.15) appear in reverse order
with respect to the maps in the integrator (Hairer ef al. 2006, p. 88). Of course, the
same procedure can be applied to the Strang splitting, resulting in the product

W(h) = e2Fiehf2es i, (1.16)

These considerations show that: (i) splitting methods for the problem (1.1)—(1.2)
defined in a certain function space (e.g. with partial differential equations) can be
formulated in terms of the solution of each subproblem (either exact or approximate)
by means of Algorithms 1.1 and 1.2, and (ii) splitting methods applied to nonlinear
ODEs evolving in RP can also be formally expressed as products of exponentials
of differential operators, since it is possible to transform the original nonlinear
problem into a linear one with the Lie formalism. This observation is very useful
when analysing the order conditions for a method to be of a given order. In
particular, we have the same order conditions for linear and nonlinear ODEs (see
Section 2).

The previous integrators are sometimes called multiplicative operator-splitting
methods, especially in the literature concerning the numerical treatment of partial
differential equations. In that area, we still have to specify how to solve each initial
value sub-problem in Algorithms 1.1-1.2 as well as the boundary conditions.
Moreover, we should take into account that, for a given differential equation,
different ways to carry out the splitting in fact lead to different integrators.
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8 S. BLANES, F. Casas AND A. MURUA

1.3. Adjoint method, conjugate method

The flow t,o Vof (1.13) verifies ( [J; ]) = got[f I but this property is not shared
by many numerical integrators, and in particular by the map y;, corresponding to
the Lie—Trotter scheme.

In general, if ¢, (x) represents a numerical method of order at least one, i.e.

() =x +h f(x) + O(h?), then (W_p)~' (x) = x + h f(x) + O(h?), so that
= Won)”!

is also a numerical method of order at least one. It is called the adjoint method
of ¥, (Sanz-Serna and Calvo 1994). In words, stepping forwards with the given
method ¢, is the same as stepping backwards with the inverse of its adjoint . If
Un = xn = [2] ) (ph , then clearly y; = tp}[l]] o tph Additional examples are the
explicit and 1mp1101t Euler methods

Xn+l = lﬁfl(xn) =Xp+ hf(xn), Xn+1 = lp;,(xn) =X+ hf(Xn+1)s

since W;l =)

Whenever an integrator satisfies

U = = W)
it is called a time-symmetric or self-adjoint method. Alternatively, x,,+1 = ¥ p(x,)
is time-symmetric if and only if, exchanging & < —h and x,, < x,.1, we get the
same expression, i.e. ¥_p(x,+1) = Xx,,. The Strang scheme (1.12) is an example of
a time-symmetric method.
It is in fact straightforward to construct time-symmetric methods using the ad-
joint: given an arbitrary method ¢, of order r > 1, then the compositions

Ynpowy, and ¥, o0dnp (1.17)

are time-symmetric methods of order » > 2 (Sanz-Serna and Calvo 1994). Further,
symmetric methods are necessarily of even order, as we will show in Section 2.
Notice that the Strang method (1.12) is simply

2 *
S;[, = Xnyj2 © Xnhj2
where yj, is given by (1.11). Additional examples are the trapezoidal rule 1//2 =

‘%/z oy}, , and the midpoint rule y' = ¥y , o ‘ﬁ;l/z'
The Strang scheme can also be expressed as

2] _ [1] [1] [2] [1]
S =¢. h/2 o (¢, o9, )09"h/2

=7, OX;;Oﬂ'h, (1.18)

with 7, = (,o[ | In the terminology of dynamical systems, the Strang and Lie—

Trotter schemes are said to be conjugate to each other by the (O(h)-near to identity)

1] " which can be considered as a change of coordinates. Furthermore,

map mp = 90;1/2,
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SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 9

the result of n applications of the Strang scheme can be recovered from n applica-
tions of Lie—Trotter by carrying out just an initial transformation at the initial step
and its inverse at the final step.

Since many dynamical properties are invariant under changes of coordinates,
conjugate methods provide the same characterization of these properties. Other
examples of conjugate methods are the trapezoidal and midpoint rules, the map
7, being in this case the implicit Euler method (Hairer er al. 2006). We will treat
conjugate methods in detail in Sections 4 and 5.

1.4. The mathematical pendulum

The simple mathematical pendulum constitutes a standard example of a nonlinear
Hamiltonian system. In appropriate units, the corresponding Hamiltonian function
reads

1
H(q,p) = Epz +(1 - cos q), (1.19)

where g denotes the angle from the vertical suspension point and p is the associated
momentum.

As is well known, the equations of motion of a generic Hamiltonian system with
Hamiltonian H(q, p), and ¢, p € R?, are given by (Goldstein 1980)

dg dp

—=V,H, —=-V,H, 1.20
a7 dr 4 (1.20)
the function H(q, p) remains constant along the evolution, and the corresponding
t-flow, denoted (,ot[H], is a symplectic transformation (Arnold 1989): its Jacobian

matrix ¢, 1 verifies the identity

@HENT JH = 1 fort > 0,

where J is the basic canonical matrix

_(0a la
J = <—1d 0d>' (1.21)
In the particular case of (1.19), d = 1, and the equations of motion are
dg _ dp .
i D, i sing.
Given a Hamiltonian H(q, p) that can be decomposed as
H(q,p) = Hi(q, p) + Ha(q, p), (1.22)

it makes sense to split the equations of motion (1.20) as

d (q> _ (Vle(q,p> ) . (vaz(q,m)
dr \p -VyHi(q.p) —VqH2(q.p))’

so that each subsystem is itself Hamiltonian. In that case, we can then apply
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Algorithm 1.1 by composing both maps and form the first-order scheme

Yot = xn(in) = (@™ 0 @) @n), n=0.1,2...., (1.23)
where x,, = (qn, pn)'. Similarly, Algorithm 1.2 gives the second-order scheme
= 5700 = (g0 o g o @), m=0,1,2,0 (124

Notice that, since both yj, and § ,[l I are defined as compositions of flows of Hamilto-
nian systems and the composition of symplectic maps is also symplectic (Arnold
1989), then both (1.23) and (1.24) are symplectic integrators (Sanz-Serna and Calvo
1994).

The fact that schemes (1.23) and (1.24) share the symplectic property with the
exact flow has remarkable consequences in practice concerning the preservation of
properties and the error propagation for long-time integrations, as we will shortly
illustrate.

For the Hamiltonian (1.19) describing the pendulum (and in fact for many other
mechanical systems), one can separate the contributions of the kinetic energy
T(p)= % p? and the potential energy V(g) = 1 — cos g, so that a natural splitting of
the form (1.22) is then

H(q,p) =T(p) +V(q). (1.25)

This corresponds to splitting the equations of motion (1.20) into the subsystems

q"\ _ (VpT(p) q\ _ 0
()= ("07) e ()= (eing): 020

which in turn implies that

Po pPo

(V1. (40 q0
b <P0> — <Po—tVVq(610)>' (1.28)

Then the first-order scheme (1.23) reduces to

dn+l1 =Qn+hva(pn)a Pn+1 =pn_thV(Qn+1), n=0,1,2... (1.29)

Compared to the explicit Euler method

and

dn+1 = qgn t thT(pn)’ Pn+t1 = Pn — thV(CIn),

it only differs in that V,V is evaluated at the updated value g+ instead of g,,. It
makes sense, then, to call scheme (1.29) the symplectic Euler—VT method: we first
compute the gradient of the kinetic energy 7" and then compute the gradient of the
potential energy V.
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SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 11

In accordance with our treatment in Section 1.3, the adjoint of (1.29) corresponds

to composing the maps <p,[T] and %[V] in reverse order,

Pntl =Pn—h VqV(Qn), qna1 =qn+h VTp(an)a (1.30)

so we call it the symplectic Euler—TV method.

Obviously, our discussion of schemes (1.29) and (1.30) above applies for any
Hamiltonian system whose Hamiltonian function can be written in the (so-called
separable) form (1.25). That is, the Lie—Trotter scheme leads to the two variants of
the symplectic Euler method when it is applied to separable Hamiltonian systems.

As for the Strang splitting scheme, described in Algorithm 1.2 in general, and
in (1.24) for Hamiltonian problems, when H(q, p) = T(p) + V(g) it reduces to
the much celebrated Stormer—Verlet method (Hairer, Lubich and Wanner 2003).
Specifically, depending on the order in which the parts are evaluated, we have the
following two variants.

Algorithm 1.3 (Stormer-Verlet-VTV). From (gg, po) = (¢(0), p(0)), forn > 0,
® Dn+1/2 = Pn — %VqV(CIn)a
® Gdn+l =qnt thT(pn+l/2);
® Dn+l = Pn+1/2 — %VqV(Qn+l)~

Algorithm 1.4 (Stormer-Verlet-TVT). From (gg, po) = (¢(0), p(0)), forn > 0,
® gn+1/2=qn+ %VpT(pn);
® Dn+l = Pn — thV(CIn+l/2);
® gn+l = qns12t+ %VpT(pn+l)~

Clearly, Algorithms 1.3 and 1.4 correspond to time-symmetric methods and can
be obtained by composing the Euler—TV method and its adjoint. Specifically, if y,
corresponds to method (1.30), then

[v] (7] (V]

2 «
S = xhp o xnn=ghs o Lopl) (1.31)
recovers Stormer—Verlet—VTV, whereas the TVT version corresponds to gogg o
V1, 7]
% Ph2

Figure 1.1(a) shows trajectories of the pendulum (1.19), starting from three dif-
ferent initial conditions (qg, po) = (-5, %), (1, 1), (%, 0), corresponding to different
regions of the phase space. For (g, po) = (-5, %) it holds that T(p(t)) > V(q(?)),
whereas for (go, po) = (1, 1) we have T(p(t)) ~ V(q(¢)) on average. Finally, for
(90, po) = (%, 0), the system can be seen as a slightly perturbed harmonic oscillator.
In this case we could consider the following decomposition:

1 1
H=3(p"+q"+ (1 - 54"~ cos q) = Hi(g, p) + Ha(q), (132)
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12 S. BLANES, F. Casas AND A. MuRruA

where H(q, p) = %(p2 + ¢*) corresponds to the harmonic oscillator, whose exact
solution is known (a rotation in phase space). Moreover, |H>(q)| = €|Hi(q, p)|,
with & ~ 1073 along the orbit originated in (%, 0). With splitting (1.32), the map

¢£LH'] o %[le] reads

n+l\ _ qn . [ cosh sinh
(Pn+1> = R(h) <pn + h(g, — sin qn))’ with R(#) = (— sinh cos h>’ (1.33)

[H:1] [H2] [H1]
2

whereas the second-order scheme ¢, no%y, o can be formulated as

h
<qn+1/2) — R(h/2) <Qn> )
Pn+1/2 Pn
p2+1/2 = Pn+1/2 + W(Gni1j2 — Singuy1)2), (1.34)

<Qn+1> = R(h/2) <q11+1/2>‘

Pn+1 P12

To illustrate the different splittings, we take (%, 0) as the initial condition, integrate
until the final time ¢y = 500 and measure the relative error in energy, |H(qn, pn) —
H(qo, po)|/|1H(qo, po)|, along the trajectory. The step size is taken so that all the
methods tested require the same number of evaluations of the potential (and thus
essentially involve the same computational cost): 1200 evaluations (Figure 1.1(b))
and 2400 evaluations (Figure 1.1(c)). The schemes we test are as follows: on the
one hand, the Stormer—Verlet algorithm (1.31) (denoted by S, in the graphs) and
the fourth-order Runge—Kutta—Nystrom splitting method proposed in Blanes and
Moan (2002) (RKNg4), as representatives of the T + V splitting; on the other hand,
the specially adapted schemes (1.34), denoted (2, 2), and the (10, 6,4) integrator
presented in Blanes et al. (2013b), both for the case where H = H| + H,, with H;
small compared with H;. The notation (10, 6, 4) refers to the fact that the local error
of the method is of order O(eh'' +&£2h” + &3 1Y) if H, is & times smaller than H;. For
analogy, we label the Strang method applied to the perturbed harmonic oscillator
(1.32) as (2, 2). Notice that the splitting (1.32) is more advantageous for this initial
condition (the simple method (1.34) behaves better than the fourth-order scheme),
and that the improvement with respect to the 7'+ V splitting is approximately of the
size of €. We therefore see that for this type of problem it is possible to construct
integrators, providing much more accurate results with the same computational
effort.

Since all the schemes are symplectic integrators and the evolution is taking place
in a compact domain, the error in energy is bounded (in contrast to standard non-
symplectic methods, whose error in energy usually grows linearly with ¢), whereas
the error in phase space (q, p) grows linearly when applied to near-integrable
Hamiltonian systems (Hairer et al. 2006). Notice, however, that if the scheme is
conjugate to another more accurate integrator, then the global error in phase space
will remain bounded for some time interval before it starts growing linearly; see
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log,o(Rel. Error in Energy)
log,o(Rel. Error in Energy)

Figure 1.1. Simple pendulum. (a) Phase space and three trajectories with ini-
tial conditions (gq, po) = (-5, %),(1, 1),(%,0). (b,c) Relative error in energy
committed by different splitting methods along the solution with initial condition
(90, po) = ( %, 0) in the interval ¢ € [0, 500] with (b) 1200 evaluations and (c) 2400
evaluations of the potential.

Section 4.5 for more details. This feature is illustrated in Figure 1.2: we integrate
the system starting with the same initial condition and final time 7y = 500 with

h= 15—2 and compute the relative error

1€q(tn), p(1n)) = (Gn> PN/ (g (Ln), P,

with different schemes. The reference solution (g(¢,), p(t,)) is computed numer-
ically with very high accuracy. Specifically, we test the following integrators: the
Lie—Trotter method, equation (1.23) (denoted LT in the graph) and the Stormer—
Verlet (S,) method for the splitting H = T+V, and scheme (2, 2) and (1.33) (LT pert),
which corresponds to the Lie—Trotter method applied to the perturbed harmonic
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Figure 1.2. Pendulum. Relative error in phase space for different splitting methods
along the solution with initial condition (g, po) = (1—10 ,0)intheinterval t € [0, 500]

- _>5
and time step 1 = 75.

oscillator (1.32). We observe that, since LT and S, are conjugate to each other
(see (1.18)), their errors are quite similar after some time interval. On the other
hand, (2,2) and LT} (Which are also conjugate to each other) show a different
behaviour: no linear growth is visible, and the error of LT, is larger than that of
(2,2) by approximately the same factor for the whole time interval considered in
Figure 1.2. This is related to the fact that (2, 2) and LT, are conjugate to another
method with a local error essentially O(h3&?); see Sections 4.5 and 5.7. More
comments on these observations along with additional explanations will be given
in Section 4.5.

1.5. The gravitational N-body problem

Another popular example to illustrate the behaviour and performance of splitting
methods corresponds to the important problem in classical mechanics of a planetary
system modelled as N bodies (a massive star and N — 1 planets) under mutual
gravitational Newtonian interaction. This is also a Hamiltonian system with

N-1i-1

H(g.p) = Z SarPipi=G Z Z I o mc;,ll (1.35)

Here (g, p) denote the ‘supervectors’ composed by the positions g; € R and
momenta p; € R3 ofthe ‘Sun’ (/ = 0) and the N—1 planets(i =1,...,N—1)insome
Cartesian coordinate system: g = (40, q1,..-,gnN-1)"» P = (P0s P1s---»PN-1)".
In (1.35), m; is the mass of the ith body, and G is the universal gravitational
constant.
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SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 15

Now the equations of motion (1.20) read

dg; 1 _

d—tl=Vpl.H=%p,~, i=0,...,N—1, )

dpl m;m; o (1.36)
-V,H=-G ——(qi—9qj), i,j=0,...,N—1.

dr ! leq qJIP /

J#EL

Since the kinetic energy 7'(p) and the potential energy V(g) are in this case

N-1 N-1i-1
m;m:;
T(p) = § pl pi» V(@) = G§ § — (1.37)
2 =1 720 ”% qlll

it also makes sense to separate the Hamiltonian (1.35) as H(gq, p) = T(p)+V(q), so
that the symplectic Euler and the Stérmer—Verlet schemes can be applied to arbitrary
configurations of the bodies. However, this choice is suboptimal for planetary
systems, where planets describe near-Keplerian orbits around the central star. An
alternative procedure taking advantage of the hierarchical nature of the motion of
the planets around the central massive body was first proposed in Wisdom and
Holman (1991), and is known in the literature as the Wisdom—Holman integration
map. It essentially consists in changing coordinates so that the transformed H can
be written as an integrable part H; (corresponding to the Keplerian motion of the
planets) and a small perturbation H; (that accounts for the gravitational interaction
of the planets among themselves), and then applying the second-order scheme
(1.24) to this new Hamiltonian.

Specifically, Wisdom and Holman (1991) consider a linear canonical change
of variables to rewrite (1.35) in the so-called Jacobi coordinates (§;, p;), i =
0,1,...,N — 1. Here gy is the position of the centre of mass of the system, §;
is the relative position of the first planet with respect to the central star, and for
i=2,...,N—1, ¢, is the position of the ith planet relative to the centre of mass of
the central star and the planets with lower indices. That is,

N-1

1 :
— 2, mid _Qi_ﬁizquj’ i=1,....N-1, (1.38)
j=0

J=0

where M; = Z;ZO mj fori =0,...,N — 1. This can be written in a more compact
way as § = Aq, where A is an N X N invertible matrix with mass-dependent entries,
4 =(4o,----4n-1" and g =(qo,....qn-1)".

The conjugate momenta p;, i = 0,1,...,N — 1, are uniquely determined by
the requirement that the change of variables be canonical (i.e. p = AT p), so that
the transformed Hamiltonian function is obtained by rewriting (1.35) in the new
variables: H(§, p) = H(A™'g, ATp).
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16 S. BLANES, F. Casas AND A. MuRruA

It is straightforward to check that the kinetic energy, expressed in terms of p, has
the same diagonal structure as in p:

N-T Ny
T = —nplp; = 51 H
D = 3 i

where

mo=Mn_1, m;=

The Hamiltonian in the new variables H(g, p) can be split as H(§, p) = Hi(q, p) +

H>(g), where
1 AT A +NZ_:1 1 ATA__mOmi
0P L\ 2w P )

mont;

19l

=Gm G
OZ (nq,n lqi - qo||>

and ¢ has to be expressed in terms of § according to g = A™!4.

Observe that the potential energy does not depend on g, so pg is constant (in
fact it is the linear momentum of the system) and therefore we can remove it from
H if we assume that the centre of the mass is at rest.

Clearly, for fixed ¢ and varying mass ratios,

Hi(g,p) =

N-—
Hxq) = V() +G Z (1.39)

N-1i-1
mmj

llgi —q;lI’

i=2 j=1

1
Gi=qi—qo+0(s), Hx§)=0(s) ase=— max m; — 0.
mo 1<i<N-1

Hamiltonian H; can then be considered as a collection of N — 1 two-body problem:s,
and H, as a perturbation. It turns out that the flow t,p[H'] can be computed with the
algorithm proposed in Danby (1988, p. 165), for example, whilst H, only depends
on ¢, and thus its flow (,o[H2] can be explicitly evaluated in an efficient way. Notice
that the number of terms in H; grows linearly with the number of bodies NV, whereas
the number of terms in H, grows quadratically.

As an illustrative example, we next consider the outer Solar System modelled
as a six-body system with the inner Solar System (i = 0), the four giant planets
(i = 1,2,3,4) and Pluto (i = 5), all considered as point masses. The initial
conditions for each planet are taken at Julian time (TDB) 2440400.5 (28 June 1969),
obtained from the DE430 ephemerides (Folkner ez al. 2014) and normalized so that
the centre of mass of the system is at rest. A schematic diagram of the trajectories
is shown in Figure 1.3(a) with the initial (circles) and final (stars) positions of
each object after 200 000 days. For this problem we test the same methods as
for the pendulum in Figure 1.1: on the one hand, Stormer—Verlet (1.31), S»,
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Figure 1.3. (a) Trajectories of the six-body system modelling the outer Solar
System. (b,c) Relative error in energy as a function of time for an interval of
200000 days obtained with different splitting methods with (b) 1200 evaluations
and (c¢) 2400 evaluations of the force.

and the fourth-order Runge—Kutta—Nystrom splitting method of Blanes and Moan
(2002), RKNg4 when the Hamiltonian (1.35) is separated into kinetic and potential
energy (1.37); on the other hand, the specially adapted schemes (1.34) (called in
this setting the Wisdom—Holman integrator, and denoted (2,2) as before) and the
(10, 6,4) integrator presented in Blanes ef al. (2013b) when H is expressed as
H(g,p) = Hi1(G, p) + Hx(g), with (1.39) in Jacobi coordinates. We integrate for
a relatively short time interval, 1y = 200000 days (or approximately 46 periods
of Jupiter and two periods of Pluto), and compute the relative error in the energy
with each integrator with a step size so that all of them require the same number
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Figure 1.4. Outer Solar System. Relative error in position as a function of ¢ for
a time interval [0,7; = 200000] days with & = 7 /1200 obtained with different
splitting methods.

of force evaluations. The results are displayed in Figure 1.3 with (b) 1200 and (c)
2400 evaluations. As in the previous example of the pendulum, the error in energy
remains bounded in all cases, and scheme (2, 2) provides an error energy almost
1000 times smaller than S;. This illustrates the fact that, by taking a splitting
adapted to the structure of the problem and designing integrators taking these
specific features into account, it is possible to greatly improve the efficiency.

In Figure 1.4 we display the relative errors in positions g = (qo, . .., qs5) € R®
along the time integration for the same methods as in Figure 1.2. As in the
pendulum problem, the error for LT is larger than for S, at the beginning of the
integration interval, but they become similar after some time. Here (2,2) is also
more accurate than S» by a factor significantly smaller than €. Compared to the
pendulum problem, the error grows linearly right from the beginning for schemes
LTper and (2, 2) (although with a smaller slope than LT and S,). The curve labelled
by pLTere corresponds to the relative error obtained by applying LTpe;¢ with initial

conditions (gg, po) = 90}[1721](Q(), po)- Notice that the phase errors of pLTe are
very similar to those of (2,2). All these observations will be accounted for in
Section 4.5.

1.6. The time-dependent Schrodinger equation

The basic object to study the time evolution of a system in quantum mechanics is
the (time-dependent) Schrodinger equation. In the case of one particle of unit mass
in a potential V(x), it reads (Messiah 1999)

0 1
iha(x’ D —EAw(x, H+VYx, ), Y, 0)=yolx). (1.40)
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SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 19

Here y: Q ¢ R?® x R — C is the wave function, representing the state of the
system, and 7 is the reduced Planck constant. The quantity [¥(x, 1)|> represents a
probability density for the position of the particle, in the sense that the probability
of the particle to be located in S C Q at time ¢ is /s [ (x, 1)|> dx. The equation is
then defined in the Hilbert space L*(Q,C).

If we introduce the self-adjoint operators 7', V acting on ¢ € L*(Q, C) as

A 1 N
Ty = —EAW, Vi =V,
then a straightforward calculation shows that [V, [T, V]]y = |VV|?y, and therefore

[V, [V,[T,V]]]ly = 0. (1.41)

A standard approach for applying splitting methods in this setting consists in
first discretizing the equation in space. If we consider the one-dimensional case
for simplicity and if the wave function is negligible outside a space interval [a, b]
on the time interval of interest, then we can limit ourselves to the study of the
equation on that finite interval with periodic boundary conditions (Lubich 2008).
After rescaling, the periodic interval can always be restricted to [—m, ]. In this
way, the original problem is transformed into (2 = 1)

2
la—lﬁ(x, H+Vw(x,t), xe[-nn], (1.42)
2 0x?
with Y(—m,t) = y(m,t) for all ¢.

The wave function is then approximated by a trigonometric polynomial u(x, t)
whose coeflicients are obtained by requiring that the approximation satisfies (1.42)
in a grid of M equispaced points x; = =7 + j - 2r/(M — 1) on the interval [-r, 7r].
The vector u = (ug, ...,up—1)’ € CM formed by the grid values uj = y(xj,1),
j=0,1,..., M — 1, then verifies the M-dimensional linear ODE

o
IEIJ/(X,Z') = -

i%u(f) = Hu(t) = (T +V)u@t), u(0)=ugeCM. (1.43)

Here V = diag(V(x;)) and T = —%D, where D is the second-order periodic spectral
differentiation matrix (Trefethen 2000). As is well known, Tu = F~' Dy Fu, where
F and F~! are the forward and backward discrete Fourier transform, and D7 is
also diagonal. The transformations F and F~! are computed with the fast Fourier
transform (FFT) algorithm, requiring O(M log M) operations.

Notice that solving equations iu’ = Tu and iu” = Vu is done trivially by using
exponentials of diagonal matrices and FFTs, namely,

(eTVu)j — eTV(xJ')uj’ eTTu — ]:_leTDT]:M,

for a time step i, with 7 = —ih. Therefore, splitting methods constitute a valid
alternative way to approximate the solution u(t) = e ug = e™™*V)y,, which may
be prohibitively expensive to evaluate for large values of M. Thus the Lie-Trotter
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20 S. BLANES, F. Casas AND A. MuRruA

scheme reads
e‘r(T+V) — e‘rT e‘rV + 0(7’2), (144)

whereas the second-order Strang splitting constructs the numerical approximation
Ups) At time t,41 = t, + At by

T/2V

Upey =72V e 712V . (1.45)

The resulting scheme is called the split-step Fourier method in the chemical lit-
erature (Feit, Fleck Jr and Steiger 1982) and has some remarkable properties. In
particular, it is unitary and time-symmetric (Lubich 2008), as is the exact solution
e ™,

Relation (1.41) still holds for the matrices 7" and V if the number of points M
in the space discretization is sufficiently large, and in fact [V, [T, V]] is diagonal
if the derivatives of the potential are computed first and then evaluated at the
corresponding space grid.

We next illustrate the procedure with the one-dimensional double-well potential

V(x) = 8—10(x2 —-20), (1.46)

and the initial wave function ¥ (x, 0) = Yo(x) = o cos2(x) e 2*~1’ where o is an
appropriate normalizing constant. We take M = 256 discretization points on the
interval x € [—13, 13] and integrate the resulting linear ODE (1.43) in the interval
0 <t <ty =Nh=10. Figure 1.5(a) shows lo(x)]?, |¢(x,tf)|2 and the potential
V(x), whereas Figure 1.5(b) shows an efficiency diagram. Specifically, we display
the error in energy measured at the final time, |u}, Huy — ug Huy|, as a function
of the number of FFT calls (and its inverse) as an estimate of the computational
effort of each method. The lines correspond to the Strang splitting (1.45), S, with
time steps h = 10/2%, k = 1,2,...,12, the fourth-order RKN splitting method
RKNg4 from Blanes and Moan (2002), already illustrated in Figures 1.1 and 1.3,
and another fourth-order scheme including the double commutator [V, [T, V]] into
its formulation (denoted RKNmy4). In this diagram the slope of each line for
sufficiently small /4 indicates the order of the scheme. As in the previous examples,
by taking into account the specific features of the problem at hand it is possible to
construct more accurate and efficient numerical approximations.

The error in energy also remains bounded for these unitary integrators, as in the
previous examples involving classical Hamiltonian problems, whereas the error
in the wave function grows linearly with 7, unless the scheme is conjugate to
another more accurate one, in which case it is bounded for some time before linear
growth takes place. To illustrate this feature, in Figure 1.6 we depict how the
error in the solution ||u(t,) — u,|| evolves with time for a longer integration interval
t € [0, 1000], with step size h = 21—0. As usual, the reference solution is computed
numerically with sufficiently high accuracy, and the tested schemes are as follows:
Lie—Trotter, equation (1.44) (LT), Strang, equation (1.45), and a variant of Strang
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Figure 1.5. Time-dependent Schrodinger equation with a double-well potential.
(a) V(x), initial and final wave function with M = 256 discretization points. (b)
Relative error in energy at the final time vs. number of FFTs for different values of
the time step obtained with the Strang method S, and two fourth-order splitting
schemes: one involving six evaluations of V (RKNg4) and another with four
evaluations of V, and incorporating in addition the double commutator [V, [T, V]]
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Figure 1.6. Time-dependent Schrodinger equation with a double-well potential:
relative error in the wave function as a function of # with 4 = 1/20 for Strang (S>),
Lie—Trotter (LT) and scheme S>m involving a double commutator and conjugate to
a method of order four.
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involving a double commutator, namely

Som: Uy = eT/2V+(T3/48)[V,[T,V]] T eT/2V+(T3/48)[V,[T,V]] ", (1.47)

This scheme does not require any additional FFTs, and in addition it is actually
conjugate to a method of order four. We observe that LT approaches S, after a
transition time, whereas the error for S,m remains bounded for the whole interval.
In fact, its linear error growth only appears when the time interval is doubled.

1.7. Splitting methods as geometric numerical integrators

As the examples of Sections 1.2-1.6 illustrate, splitting schemes, even of low order
of consistency such as Lie—Trotter and Strang methods, preserve by construc-
tion structural properties of the exact solution, such as symplecticity (in classical
Hamiltonian dynamics) and unitarity (in quantum evolution problems). This fea-
ture gives them qualitative superiority with respect to other standard integrators in
practice, especially when long time intervals are concerned. In this sense, splitting
methods constitute an important class of geometric numerical integrators.

Although the idea that numerical integrators applied to an ordinary differential
equation should preserve as many properties of the system as possible has been
implicitly assumed since the early days of numerical analysis, it is fair to say that in
the classical consistency/stability approach the emphasis has been on other issues.
In particular, the goal has mainly been to compute the solution of (1.1) at time
ty = Nh with a global error ||[xy — x(t7)|| smaller than a prescribed tolerance
and as efficiently as possible. To do that, we choose the class of method (one-
step, multistep, extrapolation, etc.), the order (fixed or adaptive) and the time step
(constant or variable). This approach has proved to be very fruitful, giving rise to
highly tuned and thoroughly tested software packages generally available to solve
a great variety of problems.

On the other hand, there are special types of problems arising in many fields
of science and applied mathematics that possess an underlying geometric struc-
ture which influences the qualitative character of their solutions, so we naturally
aim to construct numerical approximations that preserve this structure. Classical
Hamiltonian systems such as those illustrated previously constitute a case in point.
It turns out, however, that many numerical integrators included in standard software
packages do not take into account these distinctive features of the equations to be
solved, and the question is whether it is possible to design, analyse and apply new
schemes providing approximate solutions that share one or several geometric prop-
erties with the exact solution. This is precisely the realm of geometric numerical
integration, a terminology introduced in Sanz-Serna (1997).

According to McLachlan and Quispel (2006):

‘Geometric integration’ is the term used to describe numerical methods for computing
the solution of differential equations, while preserving one or more physical/mathematical
properties of the system exactly (i.e., up to round-off error).
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Thus, rather than primarily taking into account prerequisites such as consistency
and stability, the aim is to reproduce the qualitative features of the solution of
the differential equation being discretized, in particular its geometric properties,
such as the symplectic character (for Hamiltonian systems) and unitarity (quantum
mechanics), but also the phase-space volume (for divergence-free vector fields),
time-reversal symmetries, first integrals of motion (energy, linear and angular
momentum), Casimirs, Lyapunov functions, etc. In these structure-preserving
methods we try to incorporate as many of these properties as possible and, as
a result, they exhibit improved qualitative behaviour. In addition, they typically
allow for a significantly more accurate integration for long-time intervals than with
general-purpose methods (Hairer ef al. 2006, Blanes and Casas 2016).

Although splitting methods have a long history in numerical mathematics and
have been applied, sometimes with different names, in many different contexts (e.g.
partial differential equations, quantum statistical mechanics, chemical physics and
molecular dynamics), it is fair to say that the interest in splitting has revived with
the advent of geometric numerical integration, and new and very efficient schemes
have been put to use to solve a wide variety of problems. The reason is clear:
if the problem (1.3) has some property that is deemed to preserve (symplectic,
unitary, volume-preserving, etc.) and each subproblem x” = f;(x), x(0) = xp
can be integrated exactly or by means of a numerical method preserving these
properties, then the splitting method constructed by composing the solution of
the subproblems is also symplectic, unitary, volume-preserving, etc. In other
words, splitting methods provide by construction approximations lying in the same
group of diffeomorphisms as the system x” = f(x) (McLachlan and Quispel 2002).
Here we assume of course that each subproblem x” = f;(x) possesses the same
characteristic feature as the total problem considered.

1.8. Relevance of splitting methods

Given a certain differential equation x” = f(x), the application of splitting meth-
ods to solve the corresponding initial value problem involves three main steps
(McLachlan and Quispel 2002).

(I) Choosing the set of terms f; such that f = f +- - -+ f;,. Different ways of de-
composing f may give rise to integrators with different qualitative behaviour
and efficiency, as we have seen in the previous examples.

(2) Solving each subproblem x” = f;(x) either exactly or approximately.

(3) Combining these solutions to get an approximation for the original overall
problem.

Being such a simple idea, it is hardly surprising that the splitting principle can
be used in so many different settings. In particular, one may

e split the differential equation into linear and nonlinear parts;
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e in an ODE describing a Hamiltonian system with an additional small dissip-
ation, separate the Hamiltonian part and the dissipation;

e decompose into parts describing different physical processes, for example
diffusion and reaction in partial differential equations;

e get approximations to the original problem by solving one space direction at
a time (dimensional splitting in PDEs).

In addition, splitting methods possess some advantages concerning their imple-
mentation, in particular the following.

e They are typically explicit.

e Their storage requirements are quite small. The algorithms are sequential and
the solution at intermediate stages can be stored in the solution vectors.

e Programming higher-order schemes is no more difficult than Lie-Trotter and
Strang splitting methods, at least in the context of ODEs. Usually, a few more
lines of code is all that is required to deal with the additional stages.

o As stated earlier, they can preserve a wide variety of structures possessed by
the differential equation.

They also present some disadvantages, of course. Among them, we can mention
the following.

e Splitting schemes of order three or higher necessarily involve negative coef-
ficients. In other words, they require substeps that go backwards in time, and
this has severe repercussions when applying them to, for instance, reaction—
diffusion equations (see Section 6).

e Although it is possible to construct accurate high-order splitting methods,
stability can be an issue, in the sense that their stability interval might be
reduced to render them useless in practice. This aspect has to be taken
seriously when designing new methods.

e Ordinary splitting does not capture the correct steady-state solutions (where
these solutions exist) (MacNamara and Strang 2016), in the sense that the
numerical solutions obtained converge to limits that are not steady-state solu-
tions but just approximations of them. This can lead to unacceptable errors,
for instance in the simulation of combustion. In this context, balanced split-
ting techniques have been introduced to correct this flaw (Speth, Green,
MacNamara and Strang 2013).

Splitting methods constitute an important tool in different areas of science where
the evolution of systems is governed by differential equations. In addition to
Hamiltonian systems, they can be successfully applied in the numerical study
of Poisson systems, systems possessing integrals of motion (such as energy and
angular momentum) and systems with (continuous, discrete and time-reversal)
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symmetries. In fact, splitting methods have been designed (often independently)
and extensively used in fields as distant as molecular dynamics, simulation of
storage rings in particle accelerators, celestial mechanics, astronomy, quantum
(statistical) mechanics, plasma physics, hydrodynamics and Markov chain Monte
Carlo methods.

Operator-splitting methods also appear outside the realm of differential equa-
tions, and in particular in optimization, in a variety of different special forms and
different denominations (gradient-projection, proximal-gradient, alternating direc-
tion method of multipliers or ADMM, split Bregman, etc.). All of them are related
to special types of splitting methods, such as Douglas—Rachford and Peaceman—
Rachford schemes. More details can be found in several contributions collected in
the comprehensive book by Glowinski, Osher and Yin (2016a).

1.9. Some historical remarks

There is ample consensus that the beginning of splitting is related to the product
formula (1.5). What is not so clear is the origin of the formula itself. Thus Reed
and Simon (1980, p. 295) establish it as ‘the classical theorem of Lie’, but give
no exact source, whereas Chorin, Huges, Marsden and McCracken (1978) call it
‘the 1875 formula of S. Lie’, citing the classical treatise of Lie (1888), and, based
on this reference, Glowinski et al. (2016a) even ascribe to Lie himself ‘the first
operator-splitting scheme recorded in history’. The problem is that the reference
Lie (1888) is clearly not from 1875, and it is not evident (at least to us) that this
formula appears there explicitly.

On the other hand, as pointed out in Cohen, Friedland, Kato and Kelly (1982),
the result (1.5) can be found in several references published during the 1950s,
namely Butler and Friedman (1955) and Golden (1957), whereas it was Trotter
(1959) who generalized it to self-adjoint linear operators, without mentioning Lie
or these previous references. Subsequently, formula (1.5), even in the matrix case,
has been attributed to Trotter (Bellman 1970, p. 181). In view of the situation,
we believe we are not committing an act of historical injustice by referring to the
approximation (1.6) and Algorithm 1.1 as the Lie—Trotter scheme.

With respect to the splitting method (1.9), it first appeared in print in Strang
(1968) as an alternative way to solve multidimensional problems with one-dimen-
sional operators. We have already seen that, when applied to Hamiltonian systems
of the form H(q, p) = T(p) + V(q), it leads to Algorithm 1.4 when composing the
flows associated to T(p) and V(q). It is called the Stormer—Verlet method since it
was used by the astronomer Carl Stormer (1907) in his computations of the motion
of ionized particles in the Earth’s magnetic field, and by Loup Verlet (1967) in
molecular dynamics. It is also referred to as the leapfrog method in the context
of PDEs describing wave propagation, and as the Wisdom—Holman method when
applied to the splitting (1.39) (Wisdom and Holman 1991). In fact, it can be found
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in several classical references, the oldest one being perhaps Newton’s Principia.?
For a detailed account the reader is referred to the enlightening review by Hairer
et al. (2003).

As well as symplecticity when applied to Hamiltonian systems, the StGrmer—
Verlet method preserves many other geometric properties of the exact flow asso-
ciated with an ordinary differential equation. This includes the preservation of all
linear first integrals (such as the linear momentum), and quadratic first integrals of
the form I(q, p) = p"Cq for Hamiltonian systems, where C is a symmetric matrix.
In other words, (g, p), computed along the numerical trajectory, is constant. A
classical example is the angular momentum in N-body problems if the forces only
depend on the distances of the particles.

All these favourable properties, in addition to its optimal stability property and
reversibility, help us to understand why this method is probably the most widely
used splitting scheme and geometric integrator, especially in molecular dynamics
(Schlick 2010), condensed matter simulations (Ceperley 1995) and sampling with
the hybrid Monte Carlo method (Neal 2011).

The convenience of designing numerical integration methods that, by construc-
tion, preserve the symplectic structure when applied to Hamiltonian systems was
duly recognized during the 1950s in the field of accelerator physics. Thus, in
the words of an early pioneer, ‘if one wishes to examine solutions to differential
equations, adoption of a “Hamiltonian” or “‘canonical” integration algorithm would
be reassuring’ (Laslett 1986). This was the point of view adopted in a pioneering
paper by de Vogelaere (1956),> where he devoted himself to the task of designing
‘a method of integration which, if there was no round-off error, would give a solu-
tion with the contact transformation property’. Here contact transformation has
to be understood as symplectic transformation. The first-order schemes proposed
by de Vogelaere (1956), although implicit in general, turn out to be explicit when
H(q, p) =T(p)+V(q), in which case they reproduce the symplectic Euler schemes
(1.29) and (1.30).

It was another accelerator physicist, Ronald Ruth (1983), who presented what
is probably the first splitting method of order three. This paper can be considered
as the actual starting point in the systematic exploration of symplectic integrators
along several parallel avenues: (i) the use of generating functions in the context
of Hamiltonian mechanics to produce appropriate canonical transformations ap-
proximating the exact flow in each integration step (Feng and Qin 1987, Channell
and Scovel 1990); (ii) the conditions that Runge—Kutta methods have to satisfy
to be symplectic (Sanz-Serna 1988, Lasagni 1988, Suris 1988); (iii) the design
of explicit symplectic methods of order four and higher for Hamiltonian systems
that can be split into two pieces which can be solved exactly when considered as

2 Philosophiae Naturalis Principia Mathematica, Book 1, Section 2, Proposition 1.
3 See also Skeel and Ciesliriski (2020) for the context of the work, and the preprint itself, typeset in
IXTEX.
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independent systems (Neri 1988, Forest 1992), with the help of the Lie formalism.
This approach was further elaborated in Yoshida (1990). Working in the context
of the hybrid Monte Carlo algorithm for dynamical fermions, a splitting method of
order four was also independently proposed around the same time in Campostrini
and Rossi (1990). In parallel developments, what is now called the Suzuki—Yoshida
composition technique for increasing the order of numerical integrators appeared
in Creutz and Gocksch (1989) for Monte Carlo simulations and in Suzuki (1990)
and Yoshida (1990).

We should also mention the papers by de Raedt and de Raedt (1983) and Taka-
hashi and Imada (1984), who pioneered the use of double commutators to get
approximations of higher order than those obtained by the Stormer—Verlet method
in path-integral Monte Carlo simulations: in the first case by constructing a fourth-
order splitting scheme, and in the second, a method that it is also of order four by
conjugation. In fact, scheme (1.47) is conjugate to the one proposed in Takahashi
and Imada (1984). Ruth (1983) also presents a third-order method using double
commutators.

That splitting and composition methods could be used to construct integrators
for problems evolving in groups other than the symplectic group was emphasized
in Forest and Ruth (1990) and further developed in Feng (1992), with the aim of
constructing schemes able to preserve different structures.

The 1990s saw a dramatic increase in the interest and applications of splitting
integrators in several fields, often with spectacular results. We should mention in
particular those achieved in Wisdom and Holman (1991), revealing the existence
of chaotic phenomena in the Solar System by numerically integrating the planetary
equations of motion over very large time intervals.

The state of the art of splitting methods in the context of geometric numerical
integration was masterfully summarized in a review paper by McLachlan and
Quispel (2002), which has greatly influenced subsequent investigation in the field,
as testified by its growing number of citations over the years, in many different
areas.

Among the huge number of published works on splitting methods, the following
surveys are worth highlighting.

e The monograph by Yanenko (1971) (an English translation of the Russian
edition published in 1967) was perhaps the first to be devoted to the method
of splitting (or method of fractional steps) for solving ‘complicated problems
of mathematical physics in several variables’. Those include the numerical
treatment of parabolic and hyperbolic equations, as well as boundary value
problems for the Laplace and Poisson equations, and several applications in
elasticity theory and hydrodynamics. It is based on the early contributions
of Peaceman, Rachford, Douglas and several authors of the Soviet school
(Dyakonov, Marchuk, Samarskii, Yanenko and others).
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e The exhaustive review article by Marchuk (1990), included in Volume I of
the Handbook of Numerical Analysis (Ciarlet and Lions 1990), can be seen as
an update of the previous work, with a systematic study of operator splitting
and alternating direction methods for solving linear and nonlinear partial
differential equations. It includes convergence analyses and new applications
to problems in hydrodynamics, meteorology and oceanography.

e The review paper by McLachlan and Quispel (2002) mainly focused on the
application of splitting methods as geometric numerical integrators for various
classes of ordinary differential equations. In that context, they carried out a
classification of ODEs and their integration methods into different categories,
and also examined the question of how to decompose a given vector field into
much simpler vector fields, as well as the composition of these elementary
flows.

e Books and monographs dealing with geometric numerical integration and
structure-preserving algorithms contain plenty of material on splitting meth-
ods. Among them, we can cite the influential work of Sanz-Serna and Calvo
(1994), the canonical reference by Hairer ef al. (2006), as well as Leimkuhler
and Reich (2004), Leimkuhler and Matthews (2015) and Blanes and Casas
(2016).

e The multi-author book by Glowinski ef al. (2016a) constitutes an excellent
illustration of the ample scope and wide range of applications that today’s
operator-splitting methods are able to deal with. These include the numer-
ical solution of problems modelled by linear and nonlinear partial differential
equations and inequalities, problems in information sciences and image pro-
cessing, and large-scale optimization problems, among others.

1.10. Plan of the paper

In this paper we will focus on splitting methods applied to evolutionary problems,
mostly described by ordinary differential equations. These can directly model the
problem we are interested in, or they can result from evolutionary PDEs previously
discretized in space. Particular attention will be addressed to problems possessing
special properties, very often from a geometric origin, that are worth preserving
via the numerical methods. In so doing, we will follow a strategy similar to that in
Blanes, Casas and Murua (2008b), trying to avoid any duplication of the material
already gathered in the classic references cited above, and including new results,
schemes and applications which have appeared in the literature during the last few
years.

In particular, no general rule is provided here on how to split the defining
operator in (1.1). As mentioned earlier, this issue is further analysed in McLachlan
and Quispel (2002), and in fact some of the open problems listed there are related
to it. We have already seen in the examples provided in this section that several
splittings of the same problem are possible, often leading to methods with very
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different performances. Moreover, in certain cases, the original system has several
geometric properties that are simultaneously preserved along the evolution, whereas
different splittings preserve different properties, and it is generally difficult to find
one splitting that preserves most of them.

With these considerations in mind, the rest of the paper is organized as follows.
In Section 2 we first review the general composition technique and then provide
a detailed analysis of the order conditions required by splitting and composition
methods to achieve a given order of accuracy. There are some relevant problems,
however, whose particular structure allows us to design specially adapted methods,
and some of them are reviewed in Section 3, where we also show how to adapt
existing splitting methods to non-autonomous problems.

In Section 4 we summarize some of the qualitative properties possessed by
splitting methods in the context of geometric numerical integration of ordinary
differential equations, with special attention to the idea of processing, whereas
Section 5 is devoted to the treatment of highly oscillatory problems.

Splitting methods are particularly well adapted to deal with partial differential
equations whose defining operator contains contributions coming from very differ-
ent physical sources, so they have a long history in this area. Section 6 contains
a brief survey, with special emphasis on Schrodinger equations and general para-
bolic evolution equations. The existence of negative coefficients in the methods,
however, leads to an order barrier for parabolic equations, and Section 7 reviews
splitting methods with complex coefficients as a possible way to overcome this
order barrier.

In Section 8 we present an extended list of existing methods, classifying them into
different families and giving the appropriate references. Their corresponding coefli-
cients are also provided as supplementary material at the website www.gicas.uji.es/
SplittingMethods.html. These methods are numerically tested on simple examples
in the Appendix. Finally, some relevant applications of splitting methods in differ-
ent fields are discussed in Section 9.

2. High-order splitting and composition methods

The Lie—Trotter and Strang splitting methods, despite their low order of accuracy,
provide a fairly good description of the systems they are approximately solving. In
fact, for many problems, including molecular dynamics applications and reaction—
diffusion equations, Verlet splitting and Strang splitting are the most popular integ-
rators, perhaps an illustration that, according to MacNamara and Strang (2016), ‘it
is a meta-theorem of numerical analysis that second-order methods often achieve
the right balance between accuracy and complexity’. There are other areas, how-
ever, where a higher degree of precision is required, in addition to the preservation
of qualitative properties. A classical example is the long-term numerical integ-
ration of the Solar System, both forwards (e.g. to analyse the existence of chaos;
see Laskar 1989, Sussman and Wisdom 1992) and backwards in time (to study the
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insolation quantities of the Earth; see Laskar et al. 2004). Thus, in this section,
after reviewing a general technique to get high-order integrators by composing low-
order ones, we analyse from different perspectives the order conditions that have to
be satisfied by a splitting method to achieve a given order. This analysis allows us
to provide complementary information about the integrators: e.g. number of order
conditions, explicit expressions, and remainders in the asymptotic expansions.

2.1. Raising the order by composition

2.1.1. Composition of Strang maps

Starting from the Strang splitting S ,[12] = go,[ll/]z oy ,[12] o 90}[11/]2, the composition

_ ¢l2] [2] [2]
Ui _S%hoS%flho'”oS)’lh (2.1)

is at least of order three if

S S
Dyj=1 and Y yi=0. (2.2)
j=1

J=1

The smallest value of s for which equations (2.2) admit real solutions is s = 3. In
that case, by imposing the symmetry y; = 3, we indeed get a method of order
four, sometimes called the triple jump:

4 _ 21 21 g2 e _
Sh _S’y3h OS)’zh OS‘}’lh’ with Y1 =Y3= m, Y2 = 1 —2’)/1. (23)
In general, the recursion
[2k] _ ol2k-2] _ o[2k-2] [2k-2] . _
S, = Sy]h o S(1_2y1)h o S7 n s with oy = > UaD 2.4)

can be used to get methods of arbitrarily high order 2k (k > 2) (Creutz and Gocksch
1989) starting from the Strang map S ;[12] (notice that such methods can be written in
the form (2.1)). The price to be paid is the existence of large positive and negative
coefficients y; and the great number of elementary flows in (2.4) for high orders.
The alternative formed by the five maps composition (quintuple jump)

2] o[2k=2] _ o[2k=2] _ o[2k=2] [2k-2] _ o[2k-2] 3 1
S =S oS 2SSy T S > M= ey )

also gives methods S,[fk] of order 2k of the form (2.1) with relatively smaller
coefficients y; but even larger numbers of elementary flows.

In general, other choices for the coeflicients y; in (2.1) are more appropriate if
we are interested in achieving orders > 6 with a lower number of elementary flows
and relatively small coefficients.

Condition (2.2), using the approach based on linear differential operators dis-
cussed in Section 1.2, can be derived as follows: the Lie transformation associated
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with the Strang map S1*!, (1.16), can be written as e/2F1 ehF2 ¢h/2F1 = Y (W) \yhere

Y(h) = " h" Yy
n=1
— log(eh/ZF' eth eh/ZF])
h3 h3
=h(F) + F) - ﬂ[Fly [F1, F2]] - E[Fz, [Fi, B2l +- -+,

thatis, Y; = Fy + F», Y3 = =% [F1, [F1, F2]] - 5[ Fa, [ Fi1, F2]], and for each n > 2,
Y>,,_1 is a certain linear combination of (2n — 1)-fold commutators of F; and F5.
In consequence, the Lie transformation W (%) of (2.1) formally satisfies

Y(h) = Y | eY(Ysh)’ (2.6)

sothat g(¥,(x)) = (P(h)g)(x) forany x € RP and any smooth functiong: R? — R.
It is straightforward to check that

lP(h) — e’yth|+’yf’h3Y3+--- .. e’yShY]+)/3h3Y3+---

S
= & T YD1+ | 3 ( y§> Y3 +O(h*). 2.7)
=1

J

This shows that the composition (2.1) of Strang maps is of order at least three if
condition (2.2) holds.

In fact, (2.7) is also true if in (2.1) the Strang map S ;[f] is replaced by any
second-order time-symmetric map. Furthermore, the triple jump recursion (2.4)
(resp. the quintuple jump recursion (2.5)) also gives rise to 2kth-order maps S LZk]
starting from an arbitrary time-symmetric second-order map S LZI. Indeed, this is a
consequence of the following four statements.

(1) Given an arbitrary near-identity map yj, : RP — RP (ie. Xnx) =x+0(h)
as h — 0), there exists a series

Y(h) = Z "y,

n>1

of (first-order) differential operators acting on smooth functions such that,
formally, g(xn(x)) = (e¥™g)(x) for each x € R? and g € CRP,R).
Moreover, yj, is an rth-order integrator for the ODE system x” = f1(x) + f2(x)
if and only if

Yi=Fi+F, Y,=0 for2<n<r. (2.8)

This statement can be proved as follows. Given a basic integrator yj, : RP —
RP | consider the linear differential operators X,, (n > 1) acting on smooth
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functions g € C*(RP,R) as

Xng0) = | 80O,y € R?, (2.9)
so that formally g(yn(x)) = (X (h)g)(x), where
X(h) =1+ Z n"X,, (2.10)
n>1

and / denotes the identity operator. Each X, is an nth-order differential
operator. Thus, the integrator y;, is of order r if

1
Xn=—'(F1+F2)n, I<n<r.
n.

Now consider the series of differential operators

_1\ym+l
Y(h) = Z h"Y, =log(X(h)) = Z D WXy + W2 Xy + -+ )™,
nxl m>1
that is,
( 1)m+1
- Z Z X-Il ’ ij’
m>1 Ji1+ o +jm=n

so that X(h) = exp(Y(h)), and formally, g(yn(x)) = (exp(Y(h))g(x). It can
be shown that each Y, is a first-order differential operator. Clearly, the basic
integrator is of order r if (2.8) holds.

(2) The map yj, is time-symmetric if and only if Y (k) = hY; + h3Ys +-- -, which
implies that time-symmetric methods are necessarily of even order. Indeed,
for the adjoint integrator y, = X:}l’ we obviously get g(x; (x)) = e Y Mg(x).
Hence y, is time-symmetric if and only if —Y(—h) = Y (h).

3 IS ,[12](_2] is a time-symmetric integrator of order at least 2k — 2, then the
composition

[2k 2] gl2k=21 | gl2k-2]
Un=S, oS o 2.11)

is of order at least 2k — 1 1f

Zslyjzl, Z 2k-1 — 0, (2.12)
j=1

In fact, if " F1+F2+h* Yoo+ i the Lie transform of S }[le—2] ,then g(yp,(x)) =
(W(h)g)(x) for any x € RP and any smooth function g: RP? — R, where

W(h) = eylh(F1+F2)+y12k—1h2’<-‘Y2k,.+0(h2k) o eysh(F.+F2)+y§’<-'th-lYZk,1+0(h2k)

= e(Z° VYDEE) | p2k- 1<Z y2k 1)sz-1 +0(h2k)'
Jj=1
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4) If S,[fk_ﬂ is a time-symmetric integrator and the sequence (yi,...,¥s) is
palindromic, in the sense that for all j
75—j+1 = YJa
then clearly the composition (2.11) is time-symmetric, and hence of even
order.

2.1.2. Composition of Lie—Trotter maps

We could consider an analogous composition to (2.1), but this time with the Lie—

Trotter scheme y, = tp}ll] o %[12] as the basic method. In that case, the Lie transform

of yp, is of the form e¥ ™ with
Y(h)= h(Fi + )+ P + BPY3 + -+, (2.13)

so that the Lie transform W(h) associated to the composition x4 00 X5,h © Xy,h
is
Y(h) = eY(Vlh) .. .eY(Vsh)
S
= Eja YDEIHF) | g2 <Z 73) Ys + O(h%).
Jj=1

This shows that such a scheme is of order two if

N S
Zy‘,- =1, Zﬁ =0. (2.14)
j=1 j=1

Obviously, such a system of equations does not admit real solutions.
The situation is different, however, if we compose y; with its adjoint y, =

90512] o (p}[ll], that is,
Ui = Xansh © Xgy 10 © """ © Xash © Xy (2.15)

Ife¥ ™, with Y(h) given by (2.13), is the Lie transform of yy,, then the Lie transform
of its adjoint y is e™¥ "™ and the Lie transform W(h) of (2.15) satisfies

Y(h) = e—Y(—alh)eY(azh) . e—Y(—(lzs—lh)eY(azsh)

2s . S
_ (R anFirE) | g2 <Z (o2, - agj_l)) HHO).,  (216)
Jj=1
whence composition (2.15) is at least of order two if the coefficients satisfy
2s s
2 2
Za’j =1, Z(a’zj' - 0‘2;—1) =0.
j=1 j=1

The argument above also holds when yj, is a first-order integrator other than Lie—
Trotter.
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34 S. BLANES, F. Casas AND A. MuRruA

As mentioned earlier, the simplest situation corresponds to s = 1, in which case

we recover the Strang splitting, S}[lz] = Xnj2° X, s In fact, the general scheme

(2.15) can be rewritten as the splitting method

1 2 1 1 2 1
Ui = Qo 1O Pty © Pk © O P © Py © Py (2.17)
where a; = aj,andfor j =1,...,s,
ajy1 = a2j + @241, bj=anj1 +ay; (2.18)

(with as+1 = 0). Conversely, any integrator of the form (2.17) satisfying the

condition Z;:ll a; = ‘;:1 b; can be expressed in the form (2.15), as shown in
McLachlan (1995b).

Clearly, any splitting scheme (2.17) with a palindromic sequence of coefficients,
that is, satisfying

as-j+2 =aj, bs_j.=0b; forallj,

is time-symmetric, and thus of even order. Written in the composition format
(2.15), it is time-symmetric if

Q25— j+1 = @j.

2.2. Order conditions I: splitting schemes with the BCH formula

In the analysis of the order conditions for splitting methods, and without loss of
generality, we will consider the linear case (1.4), so that the treatment is essentially
based on matrices, or more generally, on linear operators. Thus, the integrator
(2.17) corresponds in this setting to the product of exponentials

W(h) = s+ hF1 gbshFy gashFy | qashFy obihFy qarhFy (2.19)

intended to approximate e/*(F1+F2),

In the case of systems of ODEs x’ = fj(x) + f>(x) with (not necessarily linear)
vector fields fi and f>, one may consider the Lie operators F; of f;, and compare
the Lie transformation e”(F1+F2) with the operator

lP(h) — ethFl eb]th ea2h}7] v eashFl ebshFZ ea.§+thl (220)

associated with the map ¥, (in the sense that g(¥,(x)) = WY(h)g(x) for arbitrary
smooth g € C*(RP,R)). Thus all the formulas derived below for the linear case
can be applied to the Lie transformation (2.20) associated with the map (2.17) just
by reversing the order of the sequence (ay, b1, as,...,as, by, as:1) of coeflicients
of the splitting scheme. Alternatively, we may reverse the order of the products of
the operators in all the expressions involved.

Equivalent results could also be obtained for the ODE case using the concept of
word series and related techniques introduced in Murua and Sanz-Serna (2017).
The Lie transform approach is more general, however, as it can be directly applied
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SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 35

to the case of splitting methods for differential equations on manifolds, as discussed
at the end of Section 4.1.

Generally speaking, the order conditions for a method of order r are systems
of polynomial equations in the coeflicients obtained by requiring that the Taylor
expansions in the step size & of both the exact and numerical solution agree up
to terms in A”. A standard approach to obtain the order conditions of scheme
(2.19) consists in formally using the Baker—Campbell-Hausdorff (BCH) formula
to express W(h) as one exponential of a series of operators in powers of h, and
finally to compare this series with e’ F1+F2)_ In this way, we get

log(P(h)) = k(w1 Fy + waFa) + hPwiaFi + B> (w1 Fio + wi12F112)
+ (w1222 Fiooa + wiia Fiiza + winaFiinn) + O(R), (2.21)

where

Fio = [F1, F»], Fio = [Fi2, F2],  Fiiz = [F1, Fi2],
Fiop = [Fio2, F2],  Friz = [F1, Fi2]l,  Frz = [F1, Fiazl,

and wy, wo, wi2, w122, . . . are polynomials of homogeneous degree in the paramet-
ers aj, b;. In particular,

s+1 s 1
wi =Zai, Wz=zbi, Wiz = SWiwa = Z biaj,
i=1 i=1 1<i<j<s+1

1o, 1
Wi = FWiwy — 5 Z bia by,
1<i<j<k<s

1 1
2
Wiz = Wiw2 — 5 Z aibjay,

12
1<i<j<k<s+l

with by = 0. From (2.21), it is clear that a characterization of the order of
the splitting scheme (2.17) is obtained by requiring the consistency conditions
w1 = wy = 1, that is,

s+l s

Z aj = Z bi=1 (2.22)
j=1 j=1

(ensuring that the scheme (2.17) is at least of order one) and wir = wix = wyip =
-+ =0 up to the required order. The set of order conditions thus obtained will be
independent in the general case if the operators Fy, F», Fio, F122, Fi12, ... form
a basis of the free Lie algebra in the alphabet {1,2}. In (2.21) we considered
the so-called Lyndon basis, associated to the set of Lyndon words in the alphabet

{1,2}:
{1,2,12,122,112,1222,1122, 1112, .. .}. (2.23)
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36 S. BLANES, F. Casas AND A. MuRruA

Table 2.1. Number of independent order conditions for general splitting
methods, c,, and for RKN-type splitting methods, d,,. The number m,,
corresponds to the number of order conditions for compositions of a
second-order time-symmetric method.

Ordern 1 2 3 4 5 © 7 8 9 10 11

Cn 2 1 2 3 6 9 18 30 56 99 186
dy 2 1 4 5 10 14 25 39 69
mpy 1 0 1 1 2 2 4 5 & 11 17

They are defined as follows (Reutenauer 1993): a word ¢; - - - £;;, is a Lyndon word
if (61 €k) < (Lgy1--- ) for each 1 < k < m, where < is the lexicographical
order (i.e. the order used when ordering words in the dictionary) on the set of words
in the alphabet {1,2}. For instance, 112 is a Lyndon word, while neither 211 nor
121 are, as 2 « 11 and as 12 £ 1, respectively.

The element of the basis associated to a Lyndon word ¢; - - -, with m > 2 is
given as Fy,....,, = [F¢,...¢,» Fe,,,---¢,, ], where n is the smallest number such that
both ¢y --- ¢, and {,,41 - - - £}, are themselves Lyndon words.

Casas and Murua (2009) have presented an efficient algorithm (based on the
results in Murua 2006) for the BCH formula and related calculations in the Lyndon
basis (and some other basis) that allows us to obtain (2.21) up to terms of arbitrarily
high degree.

Of course, if another basis of the free Lie algebra in the alphabet {1,2} is
used to expand log(W(h)) in (2.21), a different characterization of the order
conditions will be obtained, with a different set of polynomial functions on
(a1, by,...,as,bs,as+1). In any case, the number of such independent condi-
tions arising at each order n can be obtained just by determining the dimension of
L, (F1, F»), the linear span of all commutators containing n operators Fy, F>. This
number, denoted c,,, is given in Table 2.1; see Munthe-Kaas and Owren (1999) and
McLachlan and Quispel (2002).

2.3. Order conditions I1: splitting schemes with Lyndon words

Whereas the previous characterization of the order of the splitting scheme (2.19)
allows us to easily get the number of order conditions, obtaining explicit expres-
sions for the polynomials wy, ..., is much more difficult when the considered order
increases. The following alternative characterization, based on the direct compar-
ison of the power series expansions of e” F1+F2) and (2.19), tries to ameliorate this
difficulty.
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SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 37
2.3.1. Basic expansions and necessary order conditions
Both e/ (F1+F2) and (2.19) admit an expansion in series indexed by the set
W={1,2,11,12,21,22, 111, 112,121,211, 122, .. .}
of words in the alphabet {1,2}. More precisely, e” F1*F2) can be expanded as
I+ha) Fi+hayFa+h*ay FyFi+h* @ Fy o+ h2 o FaFi+h2aan FaFo+- - -, (2.24)

with @y, ...,, = 1/n!. As for (2.19), it can be expanded, for arbitrary s, as (2.24),
where for each word ¢; - - - £, € VW with n letters, the corresponding coeflicient

ag ..., =ue...c,(a1, by, ... a5, b, as1)

is a homogeneous polynomial of degree n in the variables ay, by, . .., as, bs, as+1-
Itis straightforward to check that such polynomials satisfy the following relations,
which allows us to compute them recursively.

o Iffy=---=(;=1and {;,; # 1 with j > 1,
J ak 1
Mfl"'[n(al’bl""’aS’bS’aS-Fl): ufk.',l"'fn(alabl,"-’aS7bS’O) );_T’
k=0 :
M&'“fn(ala bh cees s, bSa 0) = M&'“fn(ala bl’ s 7as)-
o Iffy=---={;=2and {;, #2with j > 1,
J k
M(l...fn(al, b], e, Ay, bs,as+1) = Z u[k+1...gn(a1, b], I ,as) k_s'
k=0 :
[ ] Iffn:---:fl = 1,
n
ue .¢,(ar) = —1,
o If £ # 1,
ug...¢,(ay) = 0.
In this way (2.19) is at least of order r if and only if the conditions
1
uﬁ---fn(alv b1’~~-9aS9bS7aS+1): ; (225)

hold for each word ¢; - - - £,, with n < r letters in the alphabet {1, 2}. For illustration,
in Table 2.2 we explicitly give these conditions corresponding to words with up to
two letters. Notice that (2.25) for the single-letter words 1 and 2 coincide with the
consistency conditions (2.22).

However, such order conditions are not all independent. For instance, from
Table 2.2, we can check that

2 2
u1:2u11, M2=2M22, Uijuy = u1p + Unq.
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Table 2.2. Conditions (2.25) corresponding to words with up to two indices.

Word Condition Word Condition
s+1 s
1 Daj=1 2 Dibj=1
j=1 j=1
1 s+1 a? 1 1
DI Z aaj=7 | 12 Z biaj =5
j=1 I<i<j<s+l 1<i<j<s+1
1 1 b3 |
21 Z biajzi 22 E . 7'{' Z bjbl:i
1<j<i<s Jj=1 1<j<i<s

For a consistent method, u; = up = 1, hence u;; = %, Uy = %, and

11
Mlz—i = 5‘”21,
which implies that if u#, = %, then automatically uy; = %

A complete characterization of the relations among the order conditions (2.25)
will be obtained in Section 2.3.3 below. As a previous step, we obtain integral rep-
resentations of both e” F1+F2) and (2.19) , which in addition give useful expressions
for the remainders of their truncated series expansions.

2.3.2. Integral representation and remainders
Consider the solution Y (7) of the initial value problem

%Y(T) = hA(D)Y (1), Y(0)=1, (2.26)
with A(7) = d(7)F) + d2(7)F> and

(a;,0) ifre(2i-2,2i—1],ie{l,...,s+1},
(di(1),da(1)) =4(0,b;) ifrte[2i—1,2i],ie€{l,...,s}, (2.27)
0,00 ifrt>2s+1.

It is straightforward to check that

e(T—(zi—Z))hai+1F1 ebthz ea,-hFl e eathl ebthz eathl ,
Y(7) = Te[2i-2,2i—1],
e(T—(Zi—l))hbin eathl . eathl eb]/’le eathl , TE [2l _ 1, 21] .
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SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 39

In particular, W(h) = Y(2s + 1). The solution Y (7) of (2.26) satisfies
T
Y(r)=1+ h/ A(T)Y (7y) dTy. (2.28)
0
From that, we obtain
T T T1
Y(r)=I+h / A(ty)dry + h? / / A(T)A(D)Y (1) dry d1y,
0 0 Jo
and more generally

m T T Tn-1
Y(r)=1+) A" / / / A(T) - A(ry) dry -+ Aoy +h™ Ry (7, h),
o 0o Jo 0

(2.29)
where for each n the remainder R, (7, h) satisfies

R, (. h):/T/Tl ---/T"_] A(T)) - A@)Y (1) dr, - dry. (2.30)
0 0 0

By substituting A(7;) = di(7j)F| + dax(7;)F>, then expanding all the products
and taking constant linear operators out from integral signs, we obtain

m
Y@ =1+ 0" > a0 Fry e Fry + W Ry (7, ),
n=1 lryeny 6,e{1,2}

where

T 71 Tn-1
agl...gn(T)Z/ / / d[l(Tl)-“d[n(Tn)dTn--' dTl. (2.31)
0 0 0

In particular, we have

m
lP(h):I+Zhn Z ugl,,.gn(al,bl,...,as,bs,aﬁ_l)F[l ...F[n
n=l l.bne{l2)

+ "R (2s + 1, D),

where ugl...gn(al, bi,...,as,bg,a5:1) = Q[I...gn(zs + 1), that is,

u[]"'fn(a19 b]) cees s, bs,as+1)

2s+1 T Tn-1
=/ / / de (1) deg, (1) dTy - - d71y.
0 0 0
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40 S. BLANES, F. Casas AND A. MuRruA
We now consider (2.26) with d (1) = da(t) = 1. Clearly, in that case, Y(1) =
eTI’l(F1+F2), and

eh(F1+F2)

/ / / (F] +F2) dTn dT] +hm+1Rm+1(1 h)

:I+Zh" > —'Ffl + " R (1, ),

where for each n, the remainder R, (t, h) is given by

— T T Tn-1
Ru(t, h) = / / .. / (Fi + Fz)neT"h(Fl+F2) dr, - - d
0 0 0

We finally arrive at the following expression for the local error of the splitting
scheme (2.26):

W(h) - eh(Fl +F>)

m
1
=Zh" Z (Wl---fn(al,b1,..-,as,bs,asu)——,) Fe -+ Fy,
€{1,2} n:

+ W (Ryp12s + 1, h) = Rynsr (1, h)).

Hence, if the scheme is of order r (i.e. (2.25) holds for each word (€1, .. ., ¢,) with
n < r letters in the alphabet {1, 2}), then

W(h) — ") - R (25 + 1, 1) = Ru(1, h)).

2.3.3. Iterated integrals and shuffle relations

Iterated integrals of the form (2.31) were first considered and studied in Chen
(1957). Itis well known that the integration-by-parts formula gives (for an arbitrary
integrable path (d(7), d2(7))) the relations

g (T)ag, (1) = ap 6, (T) + @y (7),
e, (T)A0,05(T) = @y 0,0,(T) + @y 0,0, (T) + @y 056, (T),
and more generally,
TN o VORI o E S S 7V ) (2.32)
o €Sh(n,m)

where Sh(n, m) is the set of the (n + m)!/(n!m!) permutations o of (1,...,n +m)
that are obtained by interleaving (1,...,n) and (n+1,...,n+m) while preserving
their respective ordering.

It will be useful to interpret the relations (2.32) in terms of the so-called shuffle
product of words: the shuffle product L of two words £ - - - €, and €41 - - - {1
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defined as the following formal sum of words:

O by W gy - Oy = Z fo-(l) T go-(n+m)-

o €Sh(n,m)

By extending «,, (1) linearly to the case where w is a linear combination of words,
the relations (2.32) can be interpreted as

Ay (T)aw/ (T) = Ay

for arbitrary words w = €1 - - - £,, and w’ = €41 - - - {4 in the alphabet A = {1,2}.

The shuffle product LUl defines a commutative algebra (the so-called shuffle
algebra) over the vector space of formal linear combinations of words in the alphabet
A. The shuffle algebra is freely generated by the set of Lyndon words (Reutenauer
1993).

The fact that the coefficients of the series expansions of both e F1+F2) and W(h)
satisfy the shuffle relations, together with the fact that the set of Lyndon words
freely generate the shuffle algebra, implies that a set of independent conditions for
a consistent splitting scheme to attain order r can be obtained by considering (2.25)
for each Lyndon word (1, ..., ¢,) of length n < r.

2.4. Order conditions IlI: splitting methods with Lyndon multi-indices

Blanes et al. (2013b) have obtained yet another characterization of the order con-
ditions in terms of explicitly given polynomial equations. We next describe this
alternative formulation. To do that, we always assume that the consistency con-
ditions (2.22) hold, so that the method is at least of first order. In this case, the
polynomial equations are expressed in terms of the coefficients by, ..., b and the
coefficients cy, ..., cs given by

i
Cl-:Zaj’ i:1,2,...,s. (233)
j=1

We begin by rewriting (2.19) as

\P(h) — eamhFl ebsth eashFl . eb]hF2 eathl

1
— ohFi (l_[ e~ CihF1 gbjhF ec]-hFl)

J=s
— ehFighshClesh) ., (bihCleih),

where
C(h) = e " p, ehFi = Z W'C,=Cr+hCy+ WPC3+ B3Cy+ -+,  (2.34)
n=1
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with C; = F», and

Ck = [Ck—laFl] for k > 1.

(k=1

Now the order of the scheme (2.17) is established by comparing the expansion
in powers of & of e "F1p(h) with that of e F1eh(Fi+F2),

Clearly, Y(1) := e "7Fie7h(F1+F2) g the solution of (2.26) with A(t) = C(th).
Since the solution Y (7) of (2.26) admits the representation (2.29) with remainder
(2.30), and e "F1ehF1+F2) = y (1), we conclude that

“ L p k)
k=1 0 Jo 0
+ W Ry (1, h),
where for each k,
1 Tk ko)
Rk(l,h):/ / / C(tih) -+ C(rih)Y (1)) dry - - - d1y
o Jo 0

By substitution of (2.34), we obtain that for each k,

1 Tik T
hk/ / / C(teh) - - C(rh)dry - - - d1ye
0
Rl (/ / / RS Ly - di> Ciy. -+~ Ciy

hl]+~~~+lk

= 2 G+ i)+ )i

Ilyeees Ig >

[ lk>1

Ci, -+ Ci.

As for e "F1 (),

e " (p)
k k

= ﬁ elihCleih) — ﬁ (1 £ ]j Clc; h)k>

j=s j=s k>1

=1+ Z ZbkC(c,h)k >

k>1 Jj= ki,ky>1

hk1+k2+k3 P . . .

v ) TS D, BEBRRC(e ) Cle by Cle; )t +
kiaky =1 T2 <)

phi+ke ki ko k k
b b C(Cjzh) 2C(C h)"™!
kitka! | 2

<J1<j2<s

<J2<J3<s

bj -bj,
=1+ Z Rk Z m C(cj h)---C(cj h), (2.35)

k>1 I<j1<<Jjr<s
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where

O'(jl,...,jk)zl 1f]1<<Jk’

o, Ji)=Coests- s ji) i j1=-=je<jer1 <+ < k.
Since

hkC(Cjkh) - C(cjh) = Z hi'+"'+ikc§.'1_1 o C;_,Z—l i Cir,
|

we arrive at

e_hFl lP(h):I-i-Z Z hi1+”'+ik vi],...,ik(bl’ Cl’---ybs’ CS)Cik "'Cil’

k>1ip,.ip 21
(2.36)
where
vil,...,ik(bl’cl"' "bs’cs) = Z Mc?l_l “‘Cj!;;_l. (237)
l<j St s UL 00
In this way, a consistent splitting method is at least of order r if and only if
bi b, . . 1
D, =T = (239
o, ji) N Ik (14 +iE) -+ 020

1<ji<-<jr<s

holds for each multi-index (i1, ..., ix) such that i; + - -- +i; < r. For illustration,
in Table 2.3 we give explicit conditions (2.38) corresponding to multi-indices with
up to three indices.

However, such order conditions are not independent. The situation is very similar
to that of the previous subsection: instead of series indexed by the set of words
in the alphabet {1,2}, now they are indexed by the set of words in the alphabet
N ={1,2,3,4,...}. To distinguish the words of both sets, we will keep referring
to the words in the alphabet N as multi-indices, and will write them as (iy, . .., ig)
instead of ij ---ix. Analogously to the previous subsection, the corresponding
coefficients of the series expansions of both e *F1W(h) and e "F1e"F1+F2) gatisfy
the shuffle relations

vil,-u»invin+l’-u,in+m = Z vi(r(l)a~--,ia'(n+m)' (239)
o eSh(n,m)

This can be seen by showing that such coefficients can be written in both cases
as iterated integrals. From the discussion above, we already know that, for each
multi-index (i1, ..., i), the coefficients

1 1 Tk (P | -
N " " N N :/ / / T{l_ ”'T]l(k_ dTl di
(1+-+ip) -+t Jo Jo 0

—hF1e

of the series expansion of e h(F1+F2) are indeed iterated integrals.
We next show that the coefficients (2.37) of the series expansion (2.36) can also
be defined as iterated integrals.
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Table 2.3. Conditions (2.38) for multi-indices with up to three indices.

Multi-index Condition
)
: 1
. -1
J=1
PR 1 N 2 d1+ir—2 i1—1 ir—1 1
Jj=1 1<j1<ja<s v in

e 3 l]+lz+l; 3 1 Z 2 i1 +ip-2 i3-1
(i1,12,13) 6Zb 2 b5 bjsc, s

I<ji<j3s<s

+_ Z b b2 i1— 1clz+lg 2

2 WPl
I<ji<ja<s
+ b b b Cll 1 l2 1cl’§ 1 1
2 PSSR T v + i) + i

I1<ji<j2<j3<s

We begin by showing that the infinite series expansion (2.35) of e *F1 W(h) can
be represented as a truncated series plus a remainder. For that purpose, we consider
(2.26) with A(7) defined as follows:

2.40
0 if T > s. ( )

A = {bic(hci) ifreli-t,ilie{l,... s

In that case, if 7 € [i,i + 1] withi < s,

Y(1) = e(T=Dhbis1 Clhein) ghbi Chei) ,ehhlc(hcl)’

and in particular e "FiW(h) = Y(s). Since the solution Y(7) of (2.26) admits the
representation (2.29) with remainder (2.30), then

n K Tk ko)
e M) =1+ Z h* / / = / A(T)A(T-1) - A(ry) dry -+ - dry
=1 0 Jo 0

+ "R (s, ),

where for each n,

Rn(s’h):/S/Tn"'/TzA(Tn)A(Tn—l)'"A(T1)Y(T1)d71"'dTn
0 Jo 0
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By comparison with (2.35), we conclude that

Z bf'—bfk) C(cj h)---Clc; h)
9 k

1<j1 < <jp<s Ut

=/ / / AGOAT) - Al dry -+ - dry.
0 0 0

Now, A(7) can be written as
A(T) = d](T)C] + hdz(T)Cz + h2d3(T)C3 +--

where d (1) = bic{_l if 7 € [i,i+ 1] with i < 5. Proceeding as in the previous
section, we obtain

(2.41)
which implies that the shuffle relations (2.39) hold for the polynomials v;,, __;, .
As in the previous subsection, a set of independent conditions that imply the
order conditions (2.38) can be obtained by considering (2.38) for each Lyndon
multi-index (iq,...,ir)suchthat 1 <i;+---+i; < r. Here, we exclude the multi-
index (1) as in that case (2.38) coincides with the second equality in the consistency
condition (2.22). For instance, the subset of Lyndon multi-indices (i1, . . ., i) such
that 1 <ij+---+ix <5is

{(2),(3),(4),(5),(1,2),(1,3),(1,4),(2,3),(1,1,2),(1,1,3),(1,2,2),(1, 1, 1,2)}.

For time-symmetric splitting methods, a set of independent order conditions will
be obtained by considering (2.38) restricted to Lyndon multi-indices (i1, . . .,ig)
with odd weight 7] + --- + ix. For instance, the subset of Lyndon multi-indices
(i1,...,ig)suchthat 1 <ij +---+i; <5 with odd weighti; + - - - +ig is

{(3),(5),(1,2),(1,4),(2,3),(1,1,3),(1,2,2), (1,1, 1,2)}.

Notice that the treatment carried out in this subsection may also be formally
applied when F; is an unbounded operator. In that case, however, we have to
get rigorous estimates of the remainders to prove stability and convergence of the
corresponding schemes, as is done in Thalhammer (2008), for example.

2.5. Order conditions 1V: composition methods with Lyndon multi-indices

We now turn our attention to compositions (2.1) of a basic second-order time-
symmetric scheme S;[lz] with appropriate coefficients yy, ...,y chosen to achieve
higher orders. Of course, a set of conditions that guarantee that the scheme (2.1)
attains a given order can be obtained by rewriting that composition in terms of basic
maps, such as (2.19), and using the characterization of the order of the splitting
method (2.19) described in Section 2.4. The corresponding parameters a, b; can
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46 S. BLANES, F. Casas AND A. MuRruA

be obtained in terms of 7y, ...,y as follows: a; = y;/2, and

Yit Y+l
s
with yg41 = 0. However, the resulting polynomial equations for any given order
r, once written in terms of the coefficients 1, ..., v, are no longer independent.
An alternative formulation of the order of (2.1) in terms of explicit independent
algebraic equations in the coefficients yy, . . ., ys will be presented in Section 2.5.2
below. This characterization is based on the treatment of the more general com-
position (2.15), which is treated next.

aji = bj=7j fOI'j=1,...,S,

2.5.1. Order conditions of compositions of a basic method and its adjoint
The composition (2.15) is at least of order r if W(h) — exp(h(F| + F2)) = O(h™"),
where W(h) is the associated Lie transformation (2.16).

To get the series expansion of W(%), we first consider the expansion in powers
of h of the Lie transformation X' (h) = I + hX; + h*X» + - - - associated to the basic

integrator yy,. If yy, is the Lie-Trotter scheme, v, = 90][11] o (,DLZ], then

1 1
X(h) = ehF2ehF1 I+ h(F, +F2)+h2(§F12+F2F1 + §F22> +ee

To deal with the most general problem, however, from now on we only assume that
X1 is a smooth consistent integrator, so that X; = Fj + F», and each X,, can be
defined so that for each smooth function g, X,,g is a new smooth function given by
2.9).
Let us consider Wy(h) = I, and for each j > 1,
Woj1(h) = X (a1 )™ X(aah) - X(=azj1h)7",
Waj(h) = X(—a1 ) X(azh) - - X(=apj-1h) ™ X(azjh),

so that in particular, W(h) = W,s(h). Notice that

(2.42)

X(_h)_l =1+ Z(—l)k(—hxl + h2X2 - h3X3 4. )k
k>1
=T+ hX; + I* (X} = X2) + B3 (X? = X1 X2 — Xo X1 + X3) + -+,

which implies that for each k > 1 there exist polynomials w;, . ; (a1,...,ax) on
the coefficients a1, . . ., ai such that
Wiy =1+ K" > 3 w0 Xy X, (243)
n>1 m>1ii+-+i;=n
We next determine the polynomial coefficients w;, . ;, (@1, ..., ax) recursively

from the relations ¥ (h) = X (—a/zj—lh)_1 and

Wy i1(h) = Wa2(WX (—azj1h)™",  Wa(h) = Wa,1 (WX (a2,h),
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or equivalently, ¥, (h)X(—a1h) = I and
Wojm1(WX (—agj-1h) = Waj-a(h), Wa(h) =W 1(h)X (a;h). (2.44)

Specifically, for arbitrary coeflicients w;, .. ;, and A we have

<I+Zh”2 >, wil,...,imxil---X,-m>2cuh>

nx>1 m>1ij+-+i;=n

=1+ Z R (w; + )X,

i>1

+ Z h" Z Z Wiosin + A" Wi i) Xiy -+ X

nx1 m>2 i1+ +i,=n

so that, taking this expression into account, (2.44) leads to the following identities:

wi(er) = —(—a1),

wiat, ..., @-1) = wi@i, ..., @j-2) — (—2j-1),

wilay,...,a) =wilay,...,a2j-1) +a/£j,

Wiy, im(@1) = =(=a)™wiy i, (@),

Wi im( @1, @) = wiy (@, a0-2)

= (—2j- )" Wiy i (@1, a2jo1),

Win i (@1, @) = wiy (@, .. @0-1)

+C¥;'}'Wi1,...,im_1(al, ce,jo1).

Clearly, (2.43) holds for the coefficients w;, .. ;, (@1,...,ax) determined by the
relations above. Equivalently, the functions w;, ;. can be defined as

N
wilay, ..., @) = Z(szj — (—a2j-1)"),
j=1
S
Winoim (@1, ..., @20) = Z(a;’;‘ = (2= )"™ Wiy (@1, - - @2j1).
j=1

(2.45)

Notice that

Witoig (@15 o @i, 0,000, 0) = wyy (s, @),
as expected from (2.42), (2.43) and X(0) = 1.
Comparing the series expansion of W(h) = Wy (h) with

hn
exp(h (Fi + F2)) =exp(h X1) =1 + Z Fxn’

n>1
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we finally conclude that the scheme (2.15) is of order at least r if and only if

m
——

Wil ..... im(al,---,azs): ﬁ if(i],...,im) =(1,...,1), (2.46)

0 otherwise,

for each multi-index (i1, ...,ix)suchthat 1 <ij+---+ip <r.

Furthermore, the order conditions (2.46) are not all independent. For instance,
it is straightforward to check from (2.45) that w;, ;, + Wi, i, + Wi+i, = Wi, Wi,
for arbitrary indices iy,i2. In particular, 2wy | + wy = w%, which implies that
if the order conditions (2.46) for the multi-indices (1) and (2) are satisfied, then
the condition for the multi-index (1, 1) is automatically fulfilled. Actually, such
dependences are similar to the shuffle relations (2.32) that hold for the coefficients

Vi,.....i,, considered in Section 2.4. Indeed,
Wil ----- inwin+l’---vin+m = Z wi(r(l),---si(r(n+m) + ’ (247)
o €Sh(n,m)

where - - - refers to sums of products of coefficients corresponding to multi-indices
with m — 1 or fewer indices. In fact, as shown in Chartier and Murua (2009), the
dependences (2.47) are directly related to the quasi-shuffle product * on the linear
span of multi-indices introduced in Hoffman (2000), and due to such dependences,
it is enough to consider (2.46) for Lyndon multi-indices (iy,...,i,) such that
i1+---+i; <r. Thatis, the scheme (2.15) is of order at least r if @1 +- - -+ aps = 1
and for each Lyndon multi-index (i1, ...,ig) suchthat 1 <ij +---+i; <r,

Wit,oim (@15 -5 @25) = 0. (2.48)

In particular, a method of order three must satisfy, besides consistency, the condi-
tions wp =wz =wj o =0.

This provides an alternative characterization of the order conditions of general
splitting schemes (2.17) in terms of the coeflicients a; obtained from the method
parameters a ;, b; from (2.18). Most importantly, this also allows us to characterize
the order of the scheme (2.1) obtained by composing Strang maps. This will be
presented next in Section 2.5.2.

2.5.2. Explicit characterization of the order conditions of scheme (2.1)

Murua and Sanz-Serna (1999) have obtained such an explicit characterization in
terms of a set of polynomials indexed by certain sets of rooted trees decorated
by the set of odd positive integers. We now describe a related formulation in
terms of polynomials indexed by the set of Lyndon multi-indices with odd indices
based on the formalism developed in the previous subsection for the more general
composition (2.15).

We begin by considering (2.1) as the particular case of (2.15) with

azj_lzazj:yjﬂ fOI‘jZI,...,S. (2.49)
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For each multi-index (i1, . . ., ix), we define the function u;,
sequences (yy, . . ., ¥s) of real numbers as follows:

i, on the set of finite

.....

Ui i (Vs e ooy ys) = 205 Hm ™y (@), - - -, @25), (2.50)

with azj_1 = @p; = y;/2. Clearly, scheme (2.1) is of order at least r if and only if
yi+---+vys=1and

Uiposiy (V15 -+, Ys) =0 (2.51)

for each Lyndon multi-index (iy, ...,i{x) such that 1 < i; +---+i; < r. However,
by definition, u;,,.._;, (y1,...,¥s) = 0if i,;, is even. Moreover, for any multi-index
(i1,...,ix) with some even index, (2.51) holds provided that it holds for every
Lyndon multi-index with fewer indices.

Therefore, scheme (2.1) is of order at least r if and only if y; +--- +7ys =1
and (2.51) for each Lyndon multi-index (iy,...,i{x) with odd indices such that
1 <iy+---+ix <r. For instance, the set of Lyndon multi-indices (iy, ..., ix) of
odd indices such that 1 <ij +---+ip < 7is

{(3),(5),(7),(1,3),(1,5),(1,1,3),(1,1,5),(1,3,3), (1,1, 1,3),(1, 1, 1, 1, 3)}.

The resulting number of order conditions, denoted as m,,, is gathered in Table 2.1.

For multi-indices (iy,...,i,) with odd indices, the functions u;, ;A can be
written more explicitly as follows:
ol .
iy oy = )Y (2.52)
j=1
s pr
i sy = YR A (2.53)
J2=1 J1=1
s B pr
Ui i s (V1 ¥s) = DY D YRS AL (2.54)
J3=1 J2=1 J1=1
s Jax o 3E o pE
Wi iy s V17 = D VR YR S Y2 Ny, (2.55)
Ja=l =l =l =l
and so on. Here, as in Murua and Sanz-Serna (1999), we have used the notation
ks k-1
Ak
Z Aj=5+ Z A;
j=1 j=1

fOI‘A],...,Ak e R.

For time-symmetric integration schemes (2.1), a set of independent conditions
for even order r will be obtained by considering (2.51) restricted to Lyndon multi-
indices (iy, . . . , ix) of odd indices and odd weighti; + - - - +i; < r. For instance, for
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order eight, we only need to consider the following subset of Lyndon multi-indices:
{(3),5). (D, (1, 1,3),(1,1,5),(1,3,3),(1, 1,1, 1, 3)}.

The above characterization of the order of the scheme (2.1) is also true in the more
general case where the Strang map S }[lz] is replaced by an arbitrary time-symmetric
integrator of order 2¢. In that case, only Lyndon multi-indices with indices from
the set {1,2¢+ 1,2+ 3,20 +5, ...} have to be taken into account.

2.6. Negative time steps

Splitting and composition methods of order r > 3 necessarily involve some negative
coefficients. This can already be observed in the simple triple jump scheme (2.3),
and in fact has been established as a general theorem by Goldman and Kaper (1996),
Sheng (1989) and Suzuki (1991). A simple proof can be obtained as follows (Blanes
and Casas 2005): given the existing relationship between the splitting method (2.17)
and the composition (2.15), it is clear that any splitting scheme of order r > 3 has
to verify the condition w3 = 0, where, by virtue of (2.45),
S
wiar, .., a0 = ) (3, = (an1)), (2.56)
j=1

where the coefficients a; are related to a, b; via (2.18). Since, for all x,y € R, it
is true that x> + y3 < 0 implies x + y < 0, then there must exist some j € {1,...,s}
in the sum of (2.56) such that

3 3 —b.
a/2]._1+a/2j<0 and thus  ap;_ 1 +ap; =b; <O0.

Obviously, we can also write (by taking ag = 0, a2s+1 = 0)
S
wilay, ..., ax) = Z(a;j + a§j+1) =0
i=0
just by grouping terms in a different way, and thus, by repeating the argument, there
must exist some j € {0, ..., s} such that

@t @i =aj; < 0.

This proof clearly shows the origin of the existence of backward time steps: the
equation w3 = 0 can only be satisfied if at least one a; and one b are negative.

3. Splitting methods for special problems

Whereas the analysis carried out in Section 2 is completely general, there are
important problems arising in applications whose particular structure allows us to
simplify the treatment and design schemes without taking into account all the order
conditions. Some of them are reviewed in this section, where we also show how to
adapt splitting methods to deal with explicitly time-dependent systems.
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3.1. RKN splitting methods

Many differential equations of practical interest are of the form

y' =g, (3.1

where y € R? and g: R — R4, An example in point corresponds to Hamiltonian
systems of the form H(q, p) = T(p) + V(q), where the kinetic energy T(p) is quad-
ratic in the momenta p, i.e. T(p) = % pTM~'p for a constant invertible symmetric
matrix M, and V(q) is the potential. In that case, the corresponding Hamiltonian
system can be written in the form (3.1) with y = ¢, g(y) = —M~'VV(y).

By transforming (3.1) into a first-order ODE system (of dimension D = 2d) in

the new variables x = (y,v)", with v = y’, it is clear that the resulting equation

,_diyN_ (v
YT (V>_<g(y)>

can be expressed as x’ = fj(x) + fo(x), with

HGv) =0,8007, L) =107, (3.2)

(1]

and splitting methods of the form (2.17) can be applied, with the exact h-flows ¢,

and ¢ Lz] given by

1. (Yo Yo [21. (Yo yo+hvo
P (Vo> '_> <V0+hg(YO)>’ “n (vo) '_>< Vo ) (3-3)

Just as the class of Runge—Kutta methods can be conveniently adapted to (3.1) to get
more efficient schemes (the so-called Runge—Kutta—Nystrém or RKN methods; see
Hairer, Ngrsett and Wanner 1993), special splitting methods can also be designed
to improve the accuracy whilst reducing the computational cost with respect to
the general composition (2.17). For analogy, they are sometimes called splitting
methods of RKN type. The key point here is that the differential operators F; and
F> associated with (3.2) satisfy [Fy, [F1, [F1, F2]] = 0 identically. In other words,
Fi112 = 0 in (2.21), which introduces linear dependences among higher-order
terms in the expansion of log(¥'(%)) (McLachlan and Quispel 2002) and therefore
contributes to a reduction in the number of order conditions. In the notation of
Section 2.4, 6C4 = —[F}, [F1, [F1, F>]], and thus we have that C;, = O for k > 4.
Hence, the order conditions (2.38) for multi-indices (i, ..., ix) with some index
i; > 4 need not be considered in that case. In particular, a splitting scheme is at
least of order five provided that (2.38) holds for the Lyndon multi-indices

{(2),(3),(1,2),(1,3),(2,3),(1,1,2),(1, 1,3),(1,2,2),(1, 1, 1,2)}.

Here, we have excluded the Lyndon multi-indices (4), (5), (1,4) from the set of
Lyndon multi-indices (i1, ..., ix) with i; + - - - +ix < 5. For order six, in addition,
we have to consider (2.38) for the following Lyndon multi-indices:

(1,1,1,1,2),(1,1,1,3),(1,2,3),(1,1,2,2),(1, 3,2).
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They are obtained by excluding from the set of nine Lyndon multi-indices with
i1+ -+ +i; = 6, the Lyndon multi-indices (2,4), (1, 1,4),(1,5),(6). Similarly,
for order seven, in addition, we have to consider (2.38) for the following Lyndon
multi-indices:

(1,1,1,1,1,2),(1, 1, 1, 1,3),(1, 1,2,3),(1, 1, 1,2,2),(1, 1, 3, 2),
(2,2,3),(1,2,1,3),(1, 1,2,3),(1,3,3),(1,2,2,2).

For orders higher than seven, more reductions of the order conditions occur, in
addition to those obtained by excluding Lyndon multi-indices (i, . . .,ix) having
some index i; > 4, due to additional dependences among nested commutators of
C1, C, Cs. For instance, it is straightforward to check that [C3, [C2, C3]] vanishes
identically, which implies that for order eight we can also exclude the Lyndon
multi-index (2, 3, 3).

The class of problems for which the reduction in order conditions discussed
above is in fact more general than (3.2). In particular, it includes the situation
where f; depends only on y and f>(y,v) is linear in v. For Hamiltonian systems,
this generalization corresponds to H(q,p) = V(q) + T(q, p), where T(q, p) is
quadratic in p. In that case, the flow associated with T'(g, p) should be easily
computed for the RKN splitting methods to be advantageous.

Actually, such a reduction of the order conditions also holds for certain PDE:s,
and, in particular, for the time-dependent Schrodinger equation considered in Sec-
tion 1.6 (with F| = V and F, = T), since the corresponding graded Lie algebra
is isomorphic to the classes of problems discussed above (McLachlan and Murua
2019). In fact, McLachlan and Murua (2019) conjectured (and checked up to order
20) that the case (3.2) (where f>(y,v) = v) and the more general case (where
f2(y,v) is linear in v but may depend on y) give rise to the same reduction in the
order conditions.

The actual number d, of order conditions for orders r < 11 are given in Table 2.1.
Since the order conditions up to order three are identical as in the general case, the
results for negative time steps still apply.

This reduction in the number of order conditions allows us to design schemes
involving a smaller number of elementary flows than in the general case, eventually
leading to greater efficiency. We have already illustrated a popular fourth-order
method within this class (scheme RKNg4 in the examples of Section 1).

3.2. Methods with commutators

Another possible way to improve the efficiency of splitting methods consists in
incorporating into the scheme not only the flows of F| and F, but also the flows of
some of their commutators [Fy, F>], [[Fi, F2], F1], etc., or convenient approxim-
ations of these flows. Of course, the strategy makes sense if the gain in accuracy,
stability or any other favourable property compensates the extra computational
cost due to the presence of these additional flows. A popular fourth-order method
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belonging to this class is

_ 1] [2] [1] [112] [1] [2] [1]

Yn=Parn ®Ppin © Parh ® Pays © Pash © Porh © Py G4
with
1 1 1 1
~ b = %> =3 d = —ZF
e 1Ty T3 2T7p

first proposed by Koseleff (1993) and Chin (1997). Here %[1112] denotes the h-
flow corresponding to Fij» = [Fy, [F1, F2]] (or Fijp = 2C3 in the notation of
Section 2.4).

We next analyse the family of schemes (3.4). The Lie transformation W(#) is

(3.5

ap =

lp(h) — ehalFl ehb1F2 ehazFl eh32d2C3 eha2F1 ehb1F2 ehalFl .

Under the assumption that a; + a; = % we have

e hFi W(h) = ehb1C(hes) eh3d2D(hcz) ehb;C(hcl),

where ¢ = ay, ¢c» = aj + ap, c3 = aj +2ay, C(h) is given by (2.34), and

(o]
D(h) =2e7"1 Cye"t = 1 (n+ DnCopa,
n=1
so that
e FIg(p) = hb1(Ci+he3Coth?c3C3) 2P dyCs Ghbi(Cr+he Coth?c1Cs) | oM.

Expanding the right-hand side in powers of 4 and comparing the coefficients multi-
plying hCy, h>C,, h3C1C, and h3Cs respectively (corresponding to the Lyndon
multi-indices (1), (2), (1, 2), (3)) with those in the expansion

2 3 3 3

h h h
€MJW%ELMQ+?Q+?Q+FQQ+?QQ+m#x

we conclude that the time-symmetric scheme (3.4) is at least of order four if

1 1 1
by = > bi(c1+c3) = 3 3 bi(ci +c3)+bjc =

1
bﬂﬁ+%%&@:§.

85

That system of polynomial equations has a unique solution, corresponding to the
choice (3.5), as expected. The order conditions of more general products of scaled
exponentials of hF, hF> and I3[ Fy, [F, F»]] can be derived similarly.

Recall that in the RKN case C4 = [C3, F1] = 0, which implies that go}[ll] and

<p}[l] 2] commute. Hence, the three central terms in (3.4) can be merged into one,
the h-flow of the differential operator 2a, F| + d» h2F1,, which is of the form

0
;GJ-(q, Dt
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In the case of (3.2),
0
il ool ool (v v) = (y, v+ 2har g(y) + hdy ﬁ(y)g(y)) . (36

For Hamiltonian systems H(p, q) = V(q) + % pTM~'p, Fyy; is the operator associ-
ated to the Hamiltonian function (VV)T M~1VV, depending only on ¢. Thus (3.6)
is the i-flow of the Hamiltonian

2a, V(q) +da *(VV(q))M™'VV(g), (3.7)

which reduces to the potential V(g) when a; = 1/2 and d, = 0. This explains the
term ‘splitting methods with modified potentials’ frequently used in the literature
(Loépez-Marcos, Sanz-Serna and Skeel 1997, Rowlands 1991, Wisdom, Holman
and Touma 1996). One such method has been illustrated in practice in Section 1.6
(Figure 1.5).

In addition to the reduction in the number of force evaluations, including flows
associated with commutators has another advantage: since the coefficients a;, b;
do not have to satisfy all the order conditions at order » > 3, the results for negative
time steps do not apply here, and in fact methods of order greater than two do exist
within this class. In addition to (3.4), other ‘forward’ fourth-order methods (i.e.
withalla; > 0 and b; > 0) involving second derivatives of the potential have been
published (Omelyan, Mryglod and Folk 2002, 2003) and applied to systems where
the presence of negative coefficients leads to severe stability problems (Bader,
Blanes and Casas 2013). Although it has been shown that achieving order six in
general requires some negative coeflicients (Chin 2005), it is indeed possible to
construct a sixth-order processed method for cubic potentials with all a, b ; being
positive (Blanes, Casas, Gonzdlez and Thalhammer 2023).

Additional flows corresponding to commutators involving more operators can
in principle be incorporated into the scheme. Thus, for instance, the operator
[F12, F112] = =2[C,, C3] is also of the form

51, 1y 9
;g] (Qah)avjy

which allows us to compute its ~-flow explicitly; see Blanes, Casas and Ros (2001a)
and Blanes, Casas and Murua (2008b) for more details. Again, this procedure
allows us to introduce additional free parameters into the scheme and construct more
efficient integrators as long as the simultaneous evaluation of g(y), (0g/9y)(y)g(y),
g 5] (»), etc., is not substantially more expensive than the evaluation of g(y) itself.

3.3. Near-integrable systems

Very often in applications we have to deal with differential equations such as

x' = filo) + e fo(x), (3.8)
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where || < 1 and the h-flows ¢ ,[11] ,Q ,[12] corresponding to f; and ¢ f>, respectively,
are readily available. In classical Hamiltonian mechanics, in particular, it is rather
common to have a Hamiltonian function H which is a small perturbation of an
exactly integrable Hamiltonian Hi, that is, H = H| + ¢H,, with 0 < ¢ <« 1
(Goldstein 1980, Pars 1979). A canonical example corresponds to the gravitational
N-body problem in Jacobi coordinates, already considered in Section 1.5.

For this type of problem, splitting methods of the form (2.17),

U= G ® Lo © Parh © O Panh © Port © ey

are especially well adapted. On the one hand, the error is at most O(g) and vanishes
with g, since in that case the scheme reproduces the exact solution. On the other
hand, typically, || < h (or at least |¢| ~ h), so that we are mainly interested
in eliminating error terms with small powers of &, and its number grows as a
polynomial in the order r, rather than exponentially. Thus there is only one error
term of order eh¥ (namely, the term h*ewy...12F1;...12 in the expansion (2.21)),
|_%(k - l)J terms of order O(&2h*) and [%(k - D)k - 2)J terms of order O(g3h*)
(McLachlan 1995a).

In the treatment of splitting methods for near-integrable systems it is convenient
to introduce the notion of generalized order, following McLachlan (1995a). Thus,
we say that ¢, is of generalized order (r, 72, ..., 7y), Withry > 1y > -+ > 1y, if

Un(x) = pp(x) = O (e + 202 4o 4 &™) as (h, &) — (0,0).

With this notation, a method such that the local error is O(h?"*! + £2h3) is said to
be of generalized order (2n,2). In this sense, the Strang scheme is of order (2, 2),
whereas the (10, 6, 4) integrator ¢;, used in Sections 1.4 and 1.5 satisfies

Un(x) — on(x) = O (eh' + %17 + £1°).

The general analysis of the order conditions carried out in Section 2.4 in terms of
Lyndon multi-indices readily allows us to characterize the generalized order of a
given splitting scheme. We simply need to observe that, by replacing F> with e F; in
the expansions derived in Section 2.4, a series expansion of e "1 (W(h)—eh(F1+£F2))
is obtained, where the term associated to a multi-index (iy, ..., ix) with k indices
is affected by a kth power of &. In particular, we get Table 3.1, which contains the
Lyndon multi-indices involved in several consistent palindromic splitting methods
of the given generalized order.

3.4. Splitting methods for linear systems

In the numerical integration of the Schrodinger equation implemented in Sec-
tion 1.6, we separated the system into kinetic and potential energy and then applied
several schemes based on this splitting. It has long been recognized, however, that
there exist other possibilities for splitting such a system. Given the N-dimensional
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Table 3.1. Lyndon multi-indices corresponding to consistent
palindromic splitting methods of a given generalized order.

Generalized order Lyndon multi-indices
(2n,2) 3),(5),....,2n-1)
8,4 (3), (5. (D, (1,2)
(10,4) (3), (5). (D, 9), (1,2)
(8,6,4) (3), 5), (1), (1,2), (1,4), (2,3)
(10,6,4) (3), 5), (1, 9), (1,2), (1,4), (2,3)
linear ODE
i%u(r) = Hu(t), u(0)=uyeCN (3.9)

resulting from the space discretization of equation (1.42), with H real and sym-
metric, Gray and Verosky (1994) and Gray and Manolopoulos (1996) separate u
into its real and imaginary parts, ¢ = Re (#), p = Im («). Then, in terms of ¢, p,
equation (3.9) leads to

d d
—g=Hp, —p=-Hg, 3.10
a4 P P q (3.10)

so that they can be seen as the classical evolution equations corresponding to the
Hamiltonian function

. 1 1
H(q,p) = EPTHP + EqTHq (3.11)

in terms of canonical variables ¢ and p. The exact solution of (3.10) is given by

g\ _ q0 [ cos(tH) sin(tH)
<P(t)> = OCH) (]?0)’ where - O(H) = (— sin(tH) cos(tH)) (3.12)

is an orthogonal and symplectic 2N X 2N matrix. As with the formal solution
u(t) = e" "y of (3.9), O(tH) may be very expensive to compute, so that suitable
approximations might be necessary, such as those provided by splitting methods
applied to (3.11). In this respect, notice that if we introduce the nilpotent matrices

A and B,
_ (0 H (0 0
A= <O 0), B= (—H 0>, (3.13)

then it is clear that the symplectic Euler—VT method of Section 1.4 is simply

Pn+l Pn
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whereas the Stormer—Verlet Algorithm 1.3 corresponds to
X =etBeM et By, x=(q,p)7 (3.15)

for a given time step /. Notice that all schemes based on this splitting are automat-
ically symplectic.

At this point, nothing prevents us from using any of the RKN splitting methods
treated in Section 3.1, even with nested commutators as in Section 3.2. It turns
out, however, that the particularly simple algebraic structure of the system (3.11)
makes it possible to design more efficient schemes. Specifically, there is only one
independent condition to increase the order from r = 2k — 1 to r = 2k, and only
two to increase the order from r = 2k tor = 2k + 1 for a given k; see Blanes, Casas
and Murua (2008a) for more details. As a result, splitting methods of the form

Xpal = ehaSHA ehbSB L. ehazA ehblB ehalen (316)
of order r for r = 2, 4, 6, 8, 10 and 12 can be obtained with s = r exponentials
e/?iB (Gray and Manolopoulos 1996). By contrast, at least 15 and 31 exponentials
are needed in general to attain orders eight and ten, respectively.

A couple of comments are worth making. First, this class of symplectic methods
do not preserve the orthogonal character of the exact solution given by O(¢H) (or
alternatively the unitarity of (3.9)). Nevertheless, Blanes ef al. (2008a) have shown
that the average relative errors due to the lack of preservation of orthogonality or
unitarity do not grow with time, since the schemes are conjugate to orthogonal
or unitary methods for sufficiently small values of 4. Second, although initially
motivated by the time integration of the Schrodinger equation, methods (3.16) can
be generalized in several ways. Thus they have been used to construct an algorithm
to approximate e /v for any real symmetric matrix H and any complex vector v
by only carrying out matrix—vector products of the form Hv. As shown in Blanes,
Casas and Murua (2015), the algorithm is more efficient than schemes based on
Chebyshev polynomials for all tolerances and values of 4. These methods can also
be adapted for systems of the form

x'=My, y =-Nx,

with x € R%1, y e R%, M € R4*d2 gnd N € Ré2xd1

3.5. Splitting methods for non-autonomous systems

So far we have restricted our attention to splitting methods for autonomous differen-
tial equations. The question we analyse next is whether the same techniques can be
applied when there is an explicit time dependence in the equation to integrate. The
ideal situation would be that the methods designed for x” = f(x) could also be used
(maybe with only minor modifications) when we have x” = f(¢, x). In addition, we
would like the schemes previously considered in this section for special problems
to remain valid in the non-autonomous case.
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Let us first consider the general situation, corresponding to a system of the form

x'=f(t,x)= filt,x)+- -+ fr(t,x), x(0) = xo, (3.17)

that is, when the explicit time dependence is present in each part. Then we can
take ¢ as a new coordinate and transform (3.17) into an equivalent autonomous
equation to which standard splitting algorithms can subsequently be applied. More
specifically, equation (3.17) is equivalent to the enlarged system

d/x\_/(0 Si(xas1,x) Fin(Xds1,X)
E(xd+1>‘ <1>+< 0 >+“'+< 0 ) (3.18)

P Sy 2 SO v—

o h Jn
with xgz41 € R. If the resulting (autonomous) equations
v =fiy), i=0,1,....m with y=(x,xgs1)

can be solved, then we may use any splitting method of the form (2.17), since x4+
advances only with fj and remains constant for the rest of the system.
It turns out that, for problems which are separable into just two parts, that is,

x' = ft,x) = fit,x) + fo(t,x),  x(0) = xo, (3.19)

we can do better: if 7 is taken as a new coordinate twice, and we write

d [ * Jixas1,x) f2(xas2, x)
— | Xa+1 = 0 + 1 , (320)
dr
Xd+2 1 0
A A

with xg41,x4+2 € R, then we can apply the same splitting schemes designed for
autonomous systems separable into two pieces to

Y =A0), ¥ =H0) with y =000, Xa40).

This is so because x4, is constant when integrating the first equation and x 447 is
constant when solving the second one. The procedure can be viewed as a generaliza-
tion of the one proposed in Sanz-Serna and Portillo (1996) for Hamiltonian systems
H(t,q,p) =T(t,p) + V(¢, q): by introducing two new coordinates ¢q 4.1, g4+2 and
their associated momenta p 41, p4+2, we instead deal with the formally autonomous
Hamiltonian

H(qas1, 9a+2- 4> Past> Pas2s P) = T(Pasas p) + pa1) + V(qas1, @) — qas2)-

In the special case of the non-autonomous second-order differential equation

y’ =gt y), (3.21)
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it is convenient to split the system in the extended phase space as

d y v 0
rrl O 0]+ 18&0ar1,y) |,
Yd+1 1 0

since then we have an autonomous system with the same algebraic structure as
those considered in Section 3.1, so that RKN splitting methods (even including
commutators) can also be used.

For Hamiltonian systems H(¢, g, p) = T(p) + V(¢, q), this is equivalent to intro-
ducing a new coordinate g44+; = t and its associated momentum p 4. = —H, and
considering the extended (autonomous) Hamiltonian function

H(qd+19 q7 Pd+19p) = (T(p) + pd+1) + V(Qd+1’ q)a

which is still quadratic in momenta, so that symplectic RKN methods can be used.
Notice that A is only linear in p 4, and modified potentials only involve derivatives
of the potential with respect to ¢ but not with respect to g 4.1, i.e. they do not require
time derivatives. In this case the evolution for p 4. is irrelevant, so there is no need
to compute it.

Finally, if we take ¢ as two new coordinates in the non-autonomous near-
integrable system

x' = f(t,x) = fi(t,x) +efo(t,x), x(0) = xo, (3.22)

then the special structure of a near-integrable system is destroyed. A partial remedy
consists in separating the system as

d /x \ _ (filxas1,x) Jo(Xas1,x)
N N

i eh

which requires us to numerically solve the non-autonomous unperturbed system.

We should bear in mind that taking time as an additional coordinate is of interest
only if the time dependence in f;,i = 1,...,m is cheap to compute. Otherwise the
resulting algorithm may be computationally costly, since these functions have to be
evaluated s times per time step. This drawback can be avoided by approximating the
exact solution at each step by a composition of maps that in some sense incorporates
average values of the vector fields with different weights on the subinterval [, £,,+1 ]
(Blanes and Casas 2006). Specifically, the schemes read

Ay By Ag A B A
(j/hzgp}[l l]o‘pi[z ]o()af[z ]o---oga}[lZ]ogp][l']ogo}[l 1], (3.24)

where the maps (,oi[lA"'], <p}[lB"'] are the exact 1-flows corresponding to the time-
independent differential equations

X' =Aix), x' =Bix), i=12,... (3.25)
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respectively, with

k k
Aixy=nh Zpijfl (tj,x), Bi(x)=h Z oij f2(T, x). (3.26)
Jj=1 Jj=1
Here 7; = t,, + ¢ jh and the (real) constants c;, p;j, o;; are chosen in such a way
that y;, provides an approximation of order r. These methods have the additional
advantage that, when applied to (3.19) with the time frozen, they reproduce the
standard splitting (2.17), since ), jpij =a; and D j 0ij = b;. The same technique
can be applied to the splitting methods analysed in Section 3.4 when the linear
system (3.9) is explicitly time-dependent. In that case, the resulting scheme involves

linear combinations of H evaluated at some intermediate times (Blanes, Casas and
Murua 2017a).

4. Qualitative properties of splitting methods
4.1. Changes of variables and differential equations on smooth manifolds

Given a smooth autonomous differential equation in R,

x' = fl), (4.1)

a smooth change of variables x = 6(X) transforms (4.1) into a new autonomous
differential equation in R”,

2= f@),
such that their #-flows are related as follows: for all xo € RP,

o 00)) = 0(o 1 (R0)),  with %0 = 67" (xo).

This implies that a similar property holds for the map ¥, = ¢ }[lf I defined by the
splitting method (2.17) applied to (4.1) when f(x) = Z?:l fi(x). That is, if the
change of variables x = 6(X) transforms each equation x” = f;(x) into £’ = fj()?),

then the map ¥, ~ ¢ Lf I obtained by applying the splitting method with the same
aj, b; coefficients in the new variables £ is related to ), by

Yr(0(R0)) = 0(Fi(%0)).

In words, the following two procedures give exactly the same numerical results:
(i) applying the splitting method to the ODE corresponding to the new variables X
with the initial condition £(0) = £y € R? and then transforming the result to the
old variables x, and (ii) applying the splitting method to the ODE formulated in the
old variables x with the initial condition x(0) = xo := 6(Xy) € R”. This property
does not hold in general for other integration schemes. For instance, in the case of
Runge—Kutta methods it is true if the change of variables 8: R? — RP? is an affine
map, but not in general.
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The above property can be stated in a more abstract way by saying that splitting
methods constitute a particular class of numerical integrators for differential equa-
tions defined on smooth manifolds: since the t-flow of a smooth vector field on
a smooth manifold M is coordinate-independent, then splitting methods applied
to a differential equation on M can also be naturally defined in a coordinate-

independent way. More precisely, ¢, : M — M defined by (2.17) gives a natural

approximation of the A-flow ¢ }[Lfl *£1 51 the smooth manifold M, described only in

terms of objects related to the manifold itself. This is in contrast to other approaches
for the numerical integration of differential equations on manifolds, which depend
on particular choices of global or local charts, or particular embeddings of the
manifold in a higher-dimensional Euclidean space (Hairer et al. 2006).

In fact, the treatment of the order conditions for splitting methods carried out in
Section 2 is also valid in this more abstract setting. Suppose we have two smooth
vector fields f; and f> on M, and let F; (i = 1,2) be the linear operators on
C*®(M,R) defined as follows: for each g € C*°(M,R), F;g € C*°(M,R) is the
fi-directional derivative of g. Then the z-flow got[ﬁ] (or t,Ot[i] for short) satisfies, for
allg e C*(M,R)and r € R,

d i i
Eg(wt = Fig(soz[ h.

This implies that the series in powers of ¢ of g(got[l]) can be represented as e'fig,
that is, we are in the same situation as in the case of differential equations on RD,
discussed in Section 1.2. Consequently, the series in powers of & of g(y(x)) for
the map ¢, : M — M defined by (2.17) can be obtained by expanding ¥(h)g,
where W(h) is given by (2.20), so the analysis of the order conditions of Section 2
can be formally applied here as well.

4.2. Stability

An important characteristic of numerical integrators is their stability. Generally
speaking, the numerical solution provided by a stable method does not tend to
infinity when the exact solution is bounded. To analyse the (linear) stability of a
given integrator, a model problem is typically chosen, so that both the numerical
and exact solutions can be explicitly written out. In the case of a splitting method
like (2.17), the model problem is the simple harmonic oscillator y” + w?y = 0,
w > 0 (Lopez-Marcos, Sanz-Serna and Skeel 1996b, McLachlan and Gray 1997),
with the standard (x = (¢, p) = (wy, y’)) splitting

()16 )+ (% o)l () =

A B
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and exact solution at time ¢t = h

Q(h) _ q(O) _ CcOS z SinZ 3
<P(h)> =M, <p(o)>’ M, = (_ sinz  cos Z), 7 = hw. 4.3)

There are at least two reasons for this choice of model. First, if a numerical method
already provides unbounded numerical solutions for a given A on this system,
we cannot expect good behaviour for more general problems. Second, there are
physically relevant problems that, once formulated in appropriate coordinates,
are expressed as a system of uncoupled harmonic oscillators. Thus, a precise
characterization of the stability of a splitting method on (4.2) can be useful to build
accurate and stable algorithms for their numerical treatment. The linear system
(3.10) considered in Section 3.4 belongs to this category. This is also the case of
the more general equation

q = M_lp, p' =-Ng, (4.4)

where M and N are d X d symmetric positive definite matrices. Writing M =
LL™ and introducing new variables § = L7q, then ¢ = —L™'"NL™T4. Since
N is symmetric positive definite, then L~'NL™T is diagonalizable with positive
eigenvalues. A new change of variables reduces the system to a set of d uncoupled
scalar harmonic oscillators y!" = —w?y,-, with w% the eigenvalues of LINLT
(Bou-Rabee and Sanz-Serna 2018).

Application of the splitting method (3.16) to (4.2) results in the map

dn1\ _ 4 (4n - (Ki(z) K>(2)
(pnﬂ)‘Mz <p> MZ‘(I@(z) K4(z)>’ (*3)

where K(z) and K4(z) (resp. K»2(z), K3(z)) are even (resp. odd) polynomials in z,
detM, =1, K;(0)=K40)=1,

and, if the scheme is time-symmetric, then K;(z) = K4(z). An essential role in the
analysis is played by the stability polynomial, defined as

| B 1
p2) = St Mz = 5 (Ki(2) + Ka(2)).

The eigenvalues of M, are the zeros of 1> — 2p(z)A + 1 and they determine the
stability of the given method: if z is such that |p(z)| < 1, then M, has complex
conjugate eigenvalues of modulus 1 and the powers M, n > 0, remain bounded,
whereasif |p(z)| > 1, then M ' grows exponentially with n. Linear instability occurs
when +1 or —1 is an eigenvalue with multiplicity 2 and M, is not diagonalizable.

Notice that the stability polynomial of a consistent splitting method is an even
polynomial satisfying

Zz 4
p(z)=1—5+0(z ) asz— 0,

so that for sufficiently small z = hw > 0 the scheme will be stable. The stability
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interval is defined as the longest interval (0, z,) such that M ' is bounded for all the
iterations n.
In the particular case of the Stormer—Verlet method (3.15), we have

2 3
z Z
Ki@)=Kix)=p)=1-=. Kio)=2z K3(@)=-z+,
and thus z, = 2. This is also true for Algorithm 1.4, or x,4; = erAehB e%Axn,

since both have the same stability polynomial p(z).

It is important to stress that for systems of the form (4.4) that can be reduced to
a collection of d scalar harmonic oscillators with frequencies w;, i = 1,...,d, the
stability interval of Stormer—Verlet is restricted to & < 2/wmax, Where wmax is the
largest frequency of the system.

Suppose now that, given an integer k, we concatenate k steps of length h/k
of the Stoérmer—Verlet method to our model problem (4.2). The resulting scheme
is stable for 0 < z/k < 2, or alternatively, its stability interval is (0,2k). It
is remarkable that this is in fact the longest stability interval we can achieve by
considering any splitting method (2.17) with s = k stages. An elementary proof of
this statement is presented in Bou-Rabee and Sanz-Serna (2018). In consequence,
the Stormer—Verlet method may be applied with longer scaled time steps z/k than
any other splitting method with k stages. This makes it the method of choice in
applications such as molecular dynamics, where high accuracy is not required and
we are interested in using time steps as large as possible (Leimkuhler, Reich and
Skeel 1996).

The problem of designing splitting methods of order, say, 2r, with extended
stability intervals can be addressed by first determining the coefficients c; in

r . 21 S )
PO = 2 g+ 2 e 46)
]:

j=r+1

so that p(z) has the largest possible value of z.. Thus a fourth-order integrator with
maximal stability interval is presented in Lépez-Marcos et al. (1996b), whereas in
McLachlan and Gray (1997) the analysis is generalized to any order and number
of stages. On the other hand, Blanes ef al. (2008a) propose a different strategy
to determine the coefficients c; in (4.6), based on interpolatory conditions and
minimization of the difference (p(z) — cos z)/z>"*? in the stability interval. This
results in high-order methods with a large number of stages whose stability and
accuracy do not deteriorate for larger values of z. It also allows us to construct
very efficient second-order methods for linear systems that outperform high-order
methods for a wide range of values of the time step.
Problems of the form

g =M7"'p, p'=-Ng+f(q) (4.7)
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derived from the Hamiltonian function

1 _ 1
H(g,p)=5p"M"'p+35q"Nq+U(q), (4.8)

with f(q) = =V,U(q), also appear frequently in applications. The simple pen-
dulum considered in Section 1.4 belongs to this class. Instead of the usual
splitting into kinetic and potential energy, it may be advantageous to split H as

H(q,p) = Hi(q, p) + Hy(q), with

1 _ 1
Hi(g,p) = 5p"M™'p+54"Na,  H(9) = U(q), (4.9)

or alternatively to separate (4.7) as
q'=M"p, q' =0,
, and
p'=-Ng, P = 1@,
and consider Strang integrators

[RKR] _ [R] [K] [R] [KRK] _ [K] [R] (K]
Sh =R % °Pups Sy =Pup2 °%n °Pup (4.10)

based on the maps

[R]. (40 A [ 40 . 0 M!
: , th A= ,

ol (p) e (p) wi (_N ;

[K]. [ 40 qo

A <Po> — (po+ff(%)>'

Integrators (4.10) and other splitting methods based on sequences of rotations ¢

4.11)

[R]
t

and kicks (,at[K] are specially suitable when f(g) is a small perturbation of —Ng,
since they provide the exact solution when the perturbation vanishes. This happens
in particular in the Hamiltonian Monte Carlo method, when we deal with target
densities that are perturbations of a Gaussian density (see Section 9.6). Section 5
is devoted to the analysis of splitting methods for this type of system.

In view of the applications, it is relevant to analyse the stability of compositions of
tpt[RJ and got[KJ . Asin the previous case, a sequence of linear transformations render
(4.7) into a more simplified form which is used as a model problem. Specifically,
the one-dimensional oscillator

124

q" =—q—-¢egq, &>-1

is the appropriate model here (Bou-Rabee 2017). It turns out that the Strang
integrators (4.10) are also optimal concerning stability, in the following sense
(Casas, Sanz-Serna and Shaw 2023). Let h; be the smallest positive root of the

equation
kh . (hY _ T h
7 sin . = cos . cos k
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Then, for each fixed h* < hy, h* # n,2n,...,(k — 1)x, the intersection of the
stability region in the (g, #) domain with the line &7 = h* is strictly larger for a
sequence of k integrators (4.10) than for any other splitting method with k stages
based on rotations and kicks. One could say, therefore, that for each given step size
h, schemes (4.10) remain stable for larger perturbations than any other splitting
method based on rotations and kicks. The value of € where instabilities arise may
be very small indeed, as shown in Casas et al. (2023) for the particular case of
k = 3 stages.

4.3. Modified equations

The concept of backward error analysis (BEA), arising in several branches of
numerical analysis, has also shown its effectiveness for explaining the good beha-
viour of splitting and composition methods in long-time integrations (Sanz-Serna
1992, Hairer 1994, Reich 1999). Generally speaking, given a problem P with
true solution S, when a suitable numerical solver is applied, we end up with an
approximate solution S. Backward error analysis thus consists in showing that S
is indeed the exact solution of a problem P which is in some sense close to P.
This is in contrast to forward error analysis, where the aim consists in estimating
an appropriate distance between S and S.

In the domain of numerical analysis of differential equations, what lies at the
heart of BEA is the idea of a modified differential equation: given the initial value
problem x” = f(x), x(0) = x¢ and a consistent numerical integrator y;, producing
the sequence of approximations x,, at ¢, = nh, n = 0,1, ..., we look for another
differential equation

X = fr(®) (4.12)
whose vector field is defined as a formal series in powers of £,
fo® = @ +hfP@+ 2 fPI@ + - (4.13)

and such that x,, = X(¢,,) (Griffiths and Sanz-Serna 1986, Hairer et al. 2006). In this
way, by analysing the difference of the vector fields f(x) and f;,(x), it is possible to
extract useful information about the qualitative behaviour of the numerical solution
and the global error e,, = x,, — x(t,) = X(nh) — x(t,).

In the case of a splitting method, obtaining f}, is quite straightforward if we use
the BCH formula to get the formal operator associated with the whole method, as
was done in Section 2.2 for the order conditions. Thus, for the operator W(h) =
exp(hF(h)) associated with a scheme (2.17) of order r, we have

sl Cr+i
F(h) = h(Fy+ )+ " 0™ wy jEpei ), (4.14)

i=1 j=1
where E,,; ; denotes the element j of the Lyndon basis of the subspace £,.;(F1, F>)
and w; ; are fixed real numbers determined by the actual coefficients of the method.
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Since F'(h) lies in the same Lie algebra as F and F>, the numerical solution inherits
the properties of the exact flow associated with this feature (e.g. Hamiltonian or
volume-preserving). Now, from (4.14), we can easily determine the expression of
each fl/1in (4.13).

A similar procedure can be applied to composition methods by determining the
formal series 4~! log W(h), with W(h) the operator associated to the scheme.

In the case of a Hamiltonian system of the form H(q, p) = T(p) + V(q), the
operators F| and F; are the Lie derivatives associated with the kinetic and potential
energy, respectively, so that (4.14) is itself an operator associated with a modified
Hamiltonian A. This is yet another reflection of the fact that splitting methods
applied to a Hamiltonian system produce maps that are symplectic.

For linear problems, the series defining the modified Hamiltonian A associated
with the numerical solution is no longer formal, and A can be explicitly determined
in closed form. Thus the matrix M, in the map (4.5), obtained with a time-
symmetric splitting method when |K;(z)| < 1, can be expressed as

i = cos b, vy, sinf,
“7 \~y;l'sing, coso, )

where 6, and vy, are real functions such that p(z) = cos 8, and K»(z) = —y%l@(z)
(see (4.5) and the subsequent discussion), and 6_, = -6, y_, = —y,. Itis then
straightforward to verify that the map M, is precisely the z-flow of the modified
Hamiltonian (Blanes, Casas and Sanz-Serna 2014, Bou-Rabee and Sanz-Serna
2018)

N 0 1
H(q,p) = 2—; (yzpz + y—q2>-
Z

4.4. Modified equations and long-term behaviour

Convergence of the series (4.13) defining the modified equation, apart from the
linear case, is the exception rather than the general rule. In consequence, an
alternative strategy has to be pursued to get rigorous estimates concerning the
long-time behaviour of the numerical solutions. Specifically, we first give bounds
on the coefficient functions f1/1(x) of the modified equation, then determine an
optimal truncation index, and finally estimate the difference between the numerical
solution x,, and the exact solution %(t,) of the truncated modified equation. Here
we summarize only the main results, and refer the reader to Hairer e al. (2006),
Moan (2002) and references therein for a more comprehensive treatment.
Suppose f(x), fi(x) and fo(x) are analytic in a complex neighbourhood of xq
verifying || f(x)|| < K forall x € By, (xo), where B,,(x¢) = {x € C: |lx—xo|| < p},
and the same is true for the functions f /] (x) of the modified equation on B, />(xo).
If a suitable truncation index for the formal series (4.13) is selected, so that we have

F=f@®+hPIE®+ 2B E + -+ VT IV R, (4.15)
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with ¥(0) = x¢ and exact flow @,[N], then there exist constants 4y with h < hy/4

and y > 0 such that
[n o) = gLV xo)| < hyKeholm, (4.16)

In other words, the difference between the numerical solution ¢/, (xo) and the exact
solution ¢ ;lN] (x0) of the truncated modified equation (4.15) is exponentially small.

Based on this result it is possible to get some insight into the long-time behaviour
of the numerical scheme. Thus, for instance, suppose our splitting method of order
r is applied to a Hamiltonian system with step size /. Then the modified equation
can be derived from a (truncated) Hamiltonian

HXx)=HX) + W Hep () + -+ hN THy (x),

where now x = (g, p). Letting ¢,[N] denote the flow of the truncated modified
equation as before, it is clear that I:I(gﬁt[N](xo)) = H(xo) for all t. Taking into
account (4.16) and the bounds on the functions appearing in the modified equation
(derivatives of the H in this case), it follows that

H(xpi1) — I:I((ﬁi[lN](xn)) = O(he—ho/h)
and
H(xy) = H(xo) + O(e™"/*")  for nh < e"/?".
If we assume in addition that the numerical solution stays in a compact set K, then

H,p1(x) + -+ hN 77" Hy (x) is uniformly bounded on K independently of / and
N (Hairer et al. 2006, p. 367) and finally

H(x,) = H(xp) + O(h").

Equivalently, the error in the energy corresponding to the numerical solution is of
order r over exponentially long time intervals when a splitting method is applied
with constant step size in a compact region of the phase space (Moan 2004).

With respect to the behaviour of the error in position, as shown in Calvo and
Hairer (1995) and Hairer et al. (2006), if the Hamiltonian system is integrable and
certain conditions on the frequencies at the initial point are satisfied, then

1(qn, Pn) = (q(®), p@)|| < Cth™  fort=nh < h™", C = const.,

that is, the global error grows at most linearly in time, whereas first integrals
1(g, p) that only depend on the action variables are well preserved on exponentially
long-time intervals,

1(gn, pn) = I(qo, po)ll < Ch" fort=nh <h™".

In contrast, for a non-symplectic method (non-conjugate to a symplectic one) of
order r we have

H(x,) — H(xo) = O(nh"™*") = O(th"),
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that is, the error of the energy grows linearly, whereas the global error in the
solution typically increases quadratically with time. We have seen illustrations of
this feature in Section 1.

It is important to remark that the modified differential equation of a numerical
scheme depends explicitly on the step size used, so that if / is changed, then we
have a different modified equation. This fact helps to explain the poor long-time
behaviour observed in practice when a symplectic scheme is implemented directly
with a standard variable step size strategy; see e.g. Calvo and Sanz-Serna (1993a).

4.5. Processing and long-term precision

The concept of conjugacy plays a fundamental role in the study of the long term
behaviour of both discrete and continuous dynamical systems. In the context of
splitting methods (or more generally, numerical integration methods) for systems
of ODEs, we replace the h-flow ¢y, of the original system with a map i, depending
on the small parameter / (the step size) such that ¥, = ¢, for h small enough. The
precision of the numerical approximations x,, = 1//Z(x0) ~ SOZ(XO) = x(nh) can be
analysed in one of two ways.

(i) We use standard techniques of numerical integration of ODEs to estimate the
local error ||y, (x) — ¢p(x)|| and then study how this local error is propagated
(Hairer et al. 1993),

(ii) As described in the previous subsection, we consider a truncated modified
equation (4.15) of the numerical integration map ¥, and then study the effect
of replacing the original system with the modified one, in addition to the
propagation of the modified local error (4.16) (the local error between the

map ¢, and the h-flow gothJ of the truncated modified equation).

In both cases, a better understanding of the long-term behaviour of the numerical
error (of the application of a given integration scheme with constant step size) can
be obtained by combining such techniques with the idea of processing a numerical
integrator (L6pez-Marcos, Sanz-Serna and Skeel 1996a). The main idea consists
in analysing how close ¥, and ¢}, are to being conjugate to each other, and using
that to estimate the long-term evolution of the errors. This is closely related to
the concept of effective order (Butcher 1969, Butcher and Sanz-Serna 1996) and
the idea of enhancing numerical integrators with correctors (Wisdom et al. 1996).
Essentially, the procedure is as follows.

e Given ¢, we find a near-identity conjugacy map 7, : RP — RP (i.e. m is
the identity map) such that i, = n;ll oy o my, is as close as possible to the
h-flow ¢, of the original system of ODEs.

e We estimate the propagated error ||/} (xo) — ¢} (xo)|| as

7 (x0) — @ o)l < W) (xo) — & o)l + 11} (xo) — @ (xo).-
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e We analyse the propagated error ||$Z(x0) — ¢} (x0)|| of the processed integrator
Y, either by standard techniques or with the modified equation of ;,.

e We estimate the difference between the original numerical solution x,, =
Y, (x0) and the numerical approximation £, = z/A/;’l(xo) that would be obtained
if the processed integrator were used instead of the original integration map
Y. More precisely, using the notation

Xn =YRX0),  En =YL (R(x0)), X = Yx0) = 1, (%), x(nh) = @] (x0),
for n > 0, we have
£ = xall < [l7," ) = Tl + 150 = xal-
Summing up, the propagated error of the integrator i}, can be estimated as
[l = x| < 175" @) = Tall + %0 = 2all + [|£0 = x(mb)]. (4.17)

If the original method is of order r, that is, ¥, (x) — @ (x) = O(K"*') as h — 0,
then it makes sense to choose a conjugacy map satisfying m,(x) = x + O(h").
Hence, provided that the sequence {X,} stays in a compact set, we can see that
[|X = Xl = ||7r;1(fn) — X,|| = O(h") with a constant independent of n. Therefore,
for sufficiently large time intervals, the right-hand side of (4.17) will be dominated
either by ||X, —x, || = [[¢};(Xo) =¥}, (xo)|| (the propagation along successive iterations
of Y, of a perturbation of size O(h") in x¢) or by ||X;, —x(nh)|| = ||$Z(xo) — @ o)l
(the sum of the propagated local errors of the processed method ). Typically,
the latter dominates over the former if the integration interval is sufficiently large.
In that case, the precision of the numerical scheme i, for sufficiently long-term
integrations will depend on the size of the local errors ||7rz1 oyp(x)omy — ()|
of the processed method for an appropriately chosen conjugacy map (or processor
map) 7y, rather than on the local errors ||/ (x) — ¢p(x)|| of the method itself.
This is illustrated by the evolution of the error in phase space of LT and S, dis-
played in Figures 1.2 and 1.4 for the pendulum problem and the six-body problem,
respectively. Recall that the Lie—Trotter method is conjugate to the Strang splitting
(see Section 1.3). In this case, x, = (¢,,, pn) " is the numerical solution provided by

LT, whereas £, = (4, Pn)" corresponds to S,, with the processor map 7, = (,0}[172]

In both examples, ||7r;1(in) — X, || = O(h), which is bounded for all n provided that
| 72| remains bounded.

For the pendulum problem, the error [|%, — x,|| = [[{};(X0) — ¢} (x0)|| due to the
propagation of the initial difference |[(go — g0, Po — po)|l = O(h) does not exhibit
any significant increment, because (for the considered initial value) the pendulum
behaves as a perturbed harmonic oscillator. On the other hand, the global error
|| %, —x(nh)|| of S» behaves as O(th?). Therefore the global error ||x,, —x(nh)|| of LT
is dominated at the beginning of the integration interval by ||£,, — x, || = ||%, — X5 ]|
(with no clear growth over time), until it is overcome by the linearly increasing
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global error of Sy, resulting in errors of similar size at the end of the interval for
LT and S».

For the six-body problem, the propagation error [|X, — xx || = ||} (X0) — ¥}, (xo)|
increases linearly, because now H; corresponds to a collection of Keplerian prob-
lems, where perturbations in initial states are propagated linearly. However, the
slope of that linear increase is smaller than that of the propagation of the global er-
ror ||X;,, —x(nh)|| of S». Therefore, the global error for LT is dominated by ||.£,, — x|
during most of the integration interval in Figure 1.4, and only at the end does it
reach the global error of S,. For longer times (not shown there), the global errors
of LT and S, will be of similar size.

So far we have focused on studying the long-term performance of a given splitting
method ¢, with the help of a conjugacy map mj,. In practice, we may actually
enhance the performance of a given splitting method (Rowlands 1991, Wisdom
etal. 1996, McLachlan 1996, Laskar and Robutel 2001), effectively integrating the
problem with the processed integration map i, = n;l o Yp(x) o my. Indeed, if
output is needed only every m steps, the computation of

Znm =1, oY o TR Ru-nym)s 1 =123, (4.18)
(with Xo = xg), will not require substantially more CPU time than computing

xn,m = l//Zl(x(n—l),m)’ n= 19 27 3’ R

provided that the evaluation of m;,(x) is computationally cheap compared to m
evaluations of ¥, (x). Moreover, even if frequent output is required, we might
approximate x(nh) by

In =y (Fno1), n=1,2,3,...,

with Xo = mp(xg). For sufficiently long integrations, this will cost essentially
the same as applying the original integrator ¢ in a standard way, and will be
nearly as accurate as X, (the full application of the processed integrator), since
[|X, = %] = ||7r;ll()2n) — x|l = O(h") will be negligible compared to ||X,, — x(nh)||
for n large enough.

This is again illustrated in Figure 1.4 for the six-body problem written in Jacobi
coordinates as a perturbation of Keplerian problems. Indeed, if x,, is the numerical
solution labelled by LT e and 7rp, = ¢ }[52‘] then X,, corresponds to scheme (2, 2)
while pLTe stands for X,,. Notice that the position error of pLT ey is very similar
to that of (2, 2), as expected from the preceding discussion.

The enhancement of splitting integrators by processing is particularly effective
for problems of the form x” = fj(x)+& f>2(x) with || < 1. Such enhancing was first
considered in Wisdom et al. (1996) in the context of N-body problems modelling
planetary systems. Several processors mr;, were constructed for the Strang method,
leading to processed (corrected) methods i}, of generalized order (2k, 2) for several
k > 1 (see also McLachlan 1996, Laskar and Robutel 2001), so that their local
errors are O(sh***! + £2h?) for a prescribed time integration.
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In Section 5.7 we construct a different processor map that effectively reduces the
local error to O(&2h?) in the case where /1 is derived from a Hamiltonian H;(q, p)
of a harmonic oscillator (or a collection of harmonic oscillators whose frequencies
are integer multiples of a basic frequency) and f, comes from a Hamiltonian
e£H>(q) which is a polynomial in g. This means, going back to the results displayed
in Figure 1.2 for the pendulum problem, that both methods LT} and (2,2) are
conjugate to a more accurate integrator yj, (with global error of order O(ts?h?))
obtained from them with an appropriate processor map .

Assume that, in the previous notation, (2,2) (resp. LTer) corresponds to the
numerical solution x,, and %, to the processed method. Then the error (4.17)
is dominated by ||X, — x,||, which does not show secular growth in this case.
Eventually, for long enough integration intervals, (4.17) will be dominated by the
linearly increasing error ||X;,, — x(nh)|| of the more accurate processed integrator.*
The situation is very similar for the evolution of errors in position displayed for
the six-body problem in Figure 1.4, the only difference being that the propagation
||X, — x5 || of differences in initial values now grows linearly. The error ||X;, —x(nh)||
will eventually dominate in (4.17) because ||X,, — x,|| increases linearly with a
smaller slope than ||X,, — x(nh)||.

Instead of enhancing a previously existing rth-order integrator by processing,
we may also design a processed splitting method from scratch (Lépez-Marcos

et al. 1997, Blanes, Casas and Ros 1999b): determine the h-parametric maps ¢,
(1]
ajh

coefficients a; and b, such that the processed map b = 77;1 oY, o my, is a good
approximation of ¢, for sufficiently small step sizes h. Typically, we require that
71;1 oy o mp(x) — pp(x) = O(h"*1), so that the processed integrator is of order
r. In that case, if we intend to compute the approximations (4.18) of x(km) (for
k =1,2,3...), there is no need for the map v, (referred to in this context as the
kernel) to be an rth order approximation of ¢y,.

In any of the situations considered above (either analysing the performance of
a given splitting integrator with the help of a conjugacy map nj, or enhancing
an existing rth-order splitting integrator by processing, or designing a splitting
processing integrator from scratch), we need to study the effective order conditions
of ;. These are the conditions on the parameters a;, b; that guarantee that there
exists a processor map 7, such that ﬂ;ll oyp o mp(x) — pp(x) = oY, A
general treatment of the effective order conditions of several classes of numerical
integrators including splitting methods and composition methods can be found in
Blanes, Casas and Murua (2004, 2006a). That treatment is based on the series
expansion (2.21) of the formal logarithm of the Lie transformation W¥(#), and it
is shown that the conditions for effective order r can be written in terms of the
coeflicients wy, wo, wia, w2, ... featuring in (2.21). In addition, the formal

and 7, as compositions of basic flows ¢’ 7 and ¢ Lﬂh with different sequences of
J

4 This can also be checked in Figure 5.1, where the same problem is integrated with scheme (2, 2)
and processed Strang with a larger time step and a longer time interval.
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logarithm of the Lie transformation P(%) of the map rj, is determined as

log(P(h)) = h(p1 Fi + p2F>) + h*p1aFia + B (p122Fio2 + p112Fi12)
+ ' (pranFioo + prinFiio + prnFin) + -+ 0™,

with the coefficients pg,...,, given as polynomials of the coefficients in (2.21).
Alternative ways of obtaining the effective order conditions of splitting methods
can be derived following the different approaches considered in Section 2 for
analysing the standard order conditions. However, this is beyond the scope of the
present work. In any case, the analysis shows that many of the order conditions
of the processed method i, can be satisfied by 7, so that ¢, must fulfil a greatly
reduced set of restrictions, also of lower complexity. As a result, it is possible
to construct processed schemes as compositions of basic maps with a reduced
computational cost.

5. Highly oscillatory problems

In this section we consider Hamiltonian systems of the form (4.8) with the splitting
(4.9), that is,

1 _ 1
H=Hi+H, Hiq.p)=5p"M'p+54"Ng, Hg.p)=Ul@), .1
when M and N are real symmetric matrices, and U: RY — R is a polynomial
function. The corresponding equations of motion (4.7) can be rewritten as

X' = A+ HE), with fi(0) = Ax, ) = (_Vg(q)) (5:2)

in terms of x = (g, p)" and the matrix A given in (4.11). Splitting methods are
advantageous for system (5.1) provided e’4x can be cheaply computed for each
xe€RP,D=2d.

For the time being, we assume that A is fully diagonalizable and the eigenvalues
of A are integer multiples of wi (with i the imaginary unit). (The more general
case where the eigenvalues of A lie on the imaginary axis will be considered
in Section 5.8.) This implies that e’4 is 27 /w-periodic in ¢. For system (5.1),
the present assumption is equivalent to stating that the matrix M~'N is fully
diagonalizable with all its eigenvalues of the form —(wk)?, with k € Z. In other
words, Hj in (5.1) is just a collection of harmonic oscillators whose frequencies
are integer multiples of a basic frequency w.

Splitting methods applied to (5.2) can be analysed by considering series expan-
sions in powers of /4 and using standard tools, in particular the material presented
in the previous sections. Thus Section 3.3 is particularly relevant if the basic fre-
quency w is large compared to the size of the potential U(q) (or more generally, the
size of the components of f>(x)). Indeed, rescaling time from ¢ to 7 = w ¢, system
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(5.2) is transformed into

%x = it +ep),  fik) = Ax,

where & = 1/w and A = A, so that all the eigenvalues of A are integer multiples
of the imaginary unit /. This approach nevertheless has an important limitation: it
is meaningful only when wh = h/¢ is sufficiently small.

Different approaches have been adopted in the literature to overcome this limit-
ation and obtain results that remain valid when wh is large (provided that the step
size h is small enough compared to the size of the perturbing potential U(g) and
its partial derivatives). Among them, we mention modulated Fourier expansions
(see Hairer er al. 2006 and references therein) and extended word series (Murua
and Sanz-Serna 2017, 2016). Extended word series were introduced in Murua
and Sanz-Serna (2017) to analyse splitting methods for a class of problems that
is equivalent to (5.2) under the more general assumption that all the eigenvalues
of A lie on the imaginary axis. Such expansions were further used in Murua
and Sanz-Serna (2016) to analyse normal forms and formal invariants of more
general classes of problems. The formalism of extended word series allows us to
work with asymptotic expansions valid for step sizes & that are sufficiently small
independently of the frequencies of e’4.

In the present section we provide an elementary derivation of second-order
versions in & of such expansions, taking the Strang splitting as a case study.
In particular, we provide a theoretical justification for the results presented in
Section 1.4 for the simple pendulum and analyse the processing technique as a
way to further improve those results, which are indeed valid for the general system
(5.1). This is done by first constructing an asymptotic expansion of the exact
solution of (5.2) and then comparing with the expansion corresponding to the
numerical approximation obtained by a general splitting method. We also get the
modified equation satisfied by the numerical scheme (exact up to terms in /°), with
explicit formulas for the coefficients, and the corresponding modified Hamiltonian.
Furthermore, we explicitly construct a processor for the Strang splitting so that
the resulting scheme leads to a better approximation to the solution of (5.2) (in
particular, with a better preservation of the energy H for large time intervals).
Finally, we indicate how the preceding results can be generalized to the more
general case where the eigenvalues of A lie on the imaginary axis (so that, in
general, e’/ is quasi-periodic in ).

For the analysis it is convenient to reformulate the problem (5.2) into the new
variables y(¢) given through x(r) = e’4y(t), so that now y’ = e "4 f,(e’y). Let us
write

e A e ) = ) e gy (), (5.3)

kezZ

that is, the right-hand side of (5.3) is the Fourier series expansion of e™* A f e Ax).
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The map f> being real implies that gz : RP — CP is such that each component of
g-k(x) is the complex conjugate of the corresponding component of gz (x).

Since we have assumed that U(g) is a polynomial, each component of f,(x) is
also a polynomial in the variables x, which guarantees that there is a finite number
of non-zero terms in (5.3). We will use the notation

IL=A{keZ: gy +#0}. 5.4)
Remarks.

e The assumption that U(g) and each component of f>(x) are polynomials in the
variables x might seem too restrictive. However, for more general assumptions
(e.g. real-analyticity), we can always replace U(q) and f>(x) with sufficiently
accurate polynomial approximations. Furthermore, the material in the present
section is formally valid for more general assumptions on U(g) and f>(x) if
we allow the set (5.4) to be infinite. In that case, (5.3) will be an infinite
series, several of the formulae derived here will also involve infinite series,
and appropriate assumptions should be made so as to guarantee convergence.

e The assumptions that A is a real matrix and that f,: R? — RP are not
essential. We could consider a complex matrix A and f>: CP — CP, with
no changes in the formulae that follow.

By substitution of # = 0 into (5.3), we get fo(x) = X ;7 &k (x). Thus, the solution
of the initial value problem defined by (5.2) and x(0) = x¢ € RP can be expressed
as x(t) = ¢! Ay(t), where y(r) is the solution of

d ik wt
= E , 0) = xo. 5.5
dty kde gr(y),  ¥(0)=xo (5.5)

From the definition of the Fourier coefficients g4 in (5.3), we can prove that

gk(x), fork €T, (5.6)

C_tAgk(etAX) — eikwt
and, by applying the operator (d/dt)|;=o to both sides, this is equivalent to (Murua
and Sanz-Serna 2016)

(fi,g0) =ikwg, forkel. (5.7)

Here, (-, ) represents the usual Lie—Poisson bracket already defined in Section 1:

(f1, 81)(x¥) = g1 () f1(x) = f{(X)gx(x).

5.1. Expansion of the exact solution

We next obtain an approximate representation of the flow ¢ p[lf‘ *RI of (5.2) with initial

condition xo € RP that is valid for sufficiently small values of | 4| independently of
the basic frequency w. This is done by getting an expansion of the solution y(#) of
(5.5) valid for |¢| < h. To begin with, we apply the substitution y(¢) = xo + O(f) on
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the right-hand side of the integral form

v =xo+ Y [ as

kel

of the initial value problem. This gives

YO =x0+ Y /0 @S gy (x0) ds + O(t?). (5.8)

kel

Furthermore, y(&) admits the estimate

h
v =xo+ ) /0 e (g (x0) + g (x)(¥(1) — x0)) dt + O(Y),  (5.9)

el

where gé(xo) is the value at x = x( of the Jacobian matrix of g,(x).
Substitution of (5.8) into the right-hand side of (5.9) finally leads to

h
Yy =xo+ ) < /0 ekt dr> 8(xo)

kel
hopto
+ Z < / / lli+ks)w dsdt) 85(x0)gk (x0) + O(h°).
Ktex \WO0 70
Equivalently,
Yy =x0+h )" ar(gr(xo) + 1 )" are(h)g)(xo)gi(xo) + O(),  (5.10)
kel k,leT

where the coeflicients are defined as follows.

e Fork eT,
1 1 if k =0,
ay(h) =/ ek @hT qr = { gikwh _ (5.11)
0 ——  otherwise.
ikwh
e Fork,l €T,
1 T
are(h) = / / e NOkTI+T) 47 dr. (5.12)
0o Jo
Specifically, ago(k) = 1/2, and the following recursions hold:
ikwh _ h h) — h
aor(h) = S~ gy = B0l g pe o).
ikwh ikwh

(5.13)

e The constant in the O(h?) term depends on upper bounds of the norm of gy
and its partial derivatives, but is independent of the basic frequency w.
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From this we conclude that

¢n(x) = " (Xo +h ) ar(g(xo) + 1 ) awe(hg)(xo)gx(xo) + 0(h3>>,
kel k,teT
(5.14)

where we have dropped the upper index in ¢, for clarity. Observe that
_ 1

lai(m)] = Isinc(khw/2)] < 1, lare(W)] < 5.

5.2. Expansion of the discrete solution given by Strang splitting

We next proceed to construct an analogous expansion for the (discrete) solution
furnished by the Strang splitting given in (4.10), namely

[RKR] _ [R] [K] [R]
Sh =l °%n °Phpe

based on the maps (4.11). In fact, it is straightforward to check that the approxim-

ation X(h) = S}[ZRKR](xo) satisfies X(h) = e"45(h), where ¥(¢) is the solution of

d . _h hog ikw ~ ~
gi=e g2 45(1) = ) M g (5(1),  §(0) = xo.
kel

In consequence, proceeding as in the previous subsection, we get

F(hy=xo+h )" @(h)gk(xo) +h* " Ge(h)g)(xo)gi(xo) + O(h),
kel k,teT

where for k, € € Z,

d’k(h) — elkwh/Z’ are(h) = Eel(k+€)wh/2’ (5.15)

and finally

Sh(xo) =" (Xo +h ) ar(gi(xo) + b ) Gxe(h)g)(xo)g(xo) + 0<h3)>,
kel k,leT
(5.16)

where we have also dropped the upper index in Sj. Notice that, from (5.15),
~ - 1
@M < 1, Jaxe(m)] < 5

and

are(h) + aer(h) = ar(h)ae(h), k,tel. (5.17)

5.3. Composition formulae

If we are interested in extending the previous analysis to more general splitting
methods of the form (2.17), then a composition rule concatenating the expansions
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corresponding to different basic methods is clearly needed. This can be obtained
as follows.
Suppose the map ¢, : R? — RP can be expanded as

() =x+h Y ki gre(0) + 0 > ki gp(0)gr(x) + O(h), (5.18)
kel k,leT

for some coeflicients kg, ki ¢. Then, from (5.6), we have for all s € R that

Yn(ex) = esA (x +h Z elkws gr(x)

kel

w02 ED g gl (gi(x) + 0(h3)>. (5.19)
k,teT

If in addition the map i, : R — RP can be expanded as

In(e) =x+h Y R gr()+h? " ki gp(0)gr(x) + O(h),

kel k,leT

then we have the following expression for the composition ¢, o i,

UnWn() = x+h ) (ki + Re) g ()
kel

# B D" (Kke + Ric Ke + Rie) 8008k (x) + O,
k,LeT

This is also valid if the coefficients «x, Kx, kx¢ and K¢ depend on h, although
in that case the constant in the O(h%) term will also depend on the bounds of the
coefficients.

By combining the previous results we finally arrive at the following composition
rule:

e Ay (e n(x)) = 94 <x+ B vk g+ > yie g0k () + 0(h3)> :
kel k, el
(5.20)

where

yr =¥ kg + Ry,

o . (5.21)
Yie = elsu)(k+€) Kie + elswt’ KAk ke + KAk[-

5.4. Expansions for arbitrary splitting methods

We now have all the required ingredients to extend the expansion (5.16) for Strang
to a more general splitting method of the form (2.17) based on kicks and rotations,
i.e. on the maps (4.11). Specifically, if ¢, denotes such a splitting, then y;,(xo) can
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be expanded as

el @ raanA (Xo +h ) ar(g(xo) + ) @xe(h)g)(xo)g(xo) + 0<h3))
kel k,leT
(5.22)

with the following coefficients:

o fork e,

S
ar(h) = bjeikcf‘*’h, with cj=ai+---+aj;, forj=1,...s;
J=1

(5.23)

o fork,{ €T,
&kf(h) — Z b]bm el(Cjk+Cmf)a)h + Z 5 b? ele(k+f)a)h, (524)

I<j<m<s 1<j<r

so that they again satisfy the relation (5.17), since it is preserved under compositions
(5.20)—(5.21).

We can now estimate the local error of a consistent splitting method by taking
into account (5.22) and (5.14) as

Yn(0)—n(x) = e <x0+h PRGOS 6ke(h>g;<xo>gk(xo>+0<h3>>,

kel k,tel

where

s 1
5k(h) — Z b_] eikcja)h _ / eika)hT dT,
0

j=1
6k[(l’l) — Z b]bm ei(Cjk+Cm€)wh + Z %b? eiCj(k+f)a)h (525)
I<j<m<s 1<j<r

1 ™
B / / eih@(kTIHT) 4o
o Jo

It is worth remarking that if we expand the exponentials in (5.25) in series of
powers of & up to a certain degree r, then we recover the order conditions obtained
in Section 2.4 for multi-indices with one and two indices. In other words, using the
terminology introduced in Section 3.3 to analyse perturbed problems of the form
(3.8), we obtain the conditions for a splitting method to be of generalized order
(r1,r2, 1) (or (r1,r2,2) in the case of time-symmetric splitting methods). Notice,
however, that replacing these exponentials with such truncated series expansions
will only give useful information about the size of the local error coefficients o (%)
and 8¢(h) provided that the scaled step sizes {|k|wh: k € T} are sufficiently small.

Downloaded from https://www.cambridge.org/core. IP address: 18.222.162.244, on 08 Sep 2024 at 20:02:34, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50962492923000077


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492923000077
https://www.cambridge.org/core

SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 79

5.5. Modified ODE for the discrete flow furnished by a splitting method

At this point it is useful to formulate a modified differential equation whose /-flow
is closer in a certain sense to the map ¢ corresponding to a general splitting
method admitting an expansion of the form (5.22). More precisely, the idea is to
construct a modified ODE whose A-flow is O(h3) close to Uh.

From the composition formula (5.20), the nth iterate of the map ¥, admits an
expansion of the form

Wh(xg) = e (x0+h D vk geGo)+h? " yre(n, h)g@(xo)gk(xo>+0<h3)>,
kel k,tel

where yi(0,7) = 0, yie(0, h) = 0, yi(1, h) = @r(h), yre(l, h) = @re(h). Thus,
to find a suitable modified ODE, it makes sense to assume that its corresponding
t-flow @, can be expanded for all # € R as

Fi(xg) = ' <x0+h D it/ gr(xo)+ > Y yre(t/h, )g)(xo)gr(xo)+- )

kel k,tel
(5.26)
Then the right-hand side of the corresponding ODE must be of the form
d /
SO = Axt Y Buhgr@) +h Y Bre(hg @)+
! t=0 keT
€ k,leT
where
d d
Bith) = -vi(@. ) . Bre(h) = ——¥ie(T. 1) (5.27)
T =0 dr =0

We are then bound to study the family of perturbed ODEs

d
—x=Ax+ ) B gr@ +h D Bre(h) gj@g(), (528

dr kel k,beT

with initial condition x(0) = x¢. The coefficients B (k) and B¢ (h) are, for fixed h,
arbitrary complex numbers. Notice that this equation generalizes the original ODE
(5.2), which corresponds to the case where S (h) = 1 and Sie(h) = 0.

Assuming that the ¢-flow ¢, of (5.28) can be expanded as in (5.26), the group
property of the flow (i.e. @;+5 = @; o @5), together with the composition formula
(5.20), lead to

iwhtk

Yi(t+o,h)=¢ Yi(o, h) +yi(z, h),

Yre(T + 0, h) = e 0 o (o, h) + €My (T, h) ye(om, B) + yre(T, B).

(5.29)
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Now, applying the operator (d/do)|,=¢ to both sides of (5.29) and using (5.27), we
obtain the following system of ODEs for the coeflicients yi (7, k), yie(T, h):

d .
(@) = etk gy (h),

d ) .
k(T ) = e hT®+0 gy (h) + T Bo(h) yi(T, h).

This, together with the initial conditions (0, h) = 0, yx¢(0, h) = 0, allows us
to express (7, h), yxe(7, h) in terms of the coefficients Sx(h), Bre(h) of the
perturbed ODE (5.28):

yi(z, h) = B (h) /0 e hok 4o = 7 Bi(h) ar(th),

Yie(T, h) = 7 Bre(h) arse(Th) + 72 Be(h) age(Th).

Specifying these equations to the case 7 = 1, and replacing yx (1, h) and yx,(1, h)
with @i (h) and @, (h) (the coefficients corresponding to ¢y, ), respectively, we have

ar(h) = Br(h) ar(h),
are(h) = Bre(h) @pre(h) + Br(h) Be(h) ake(h),
where the expression of ay(h), for all k € Z, is given by (5.11). Hence ag(h) = 1

and, for any k # 0, ax(h) # 0 if and only if kh # 2nj for all j € Z. Therefore, if
we assume that 4 € R is such that, for all k, £ € Z\{0},

kwh k +Owh
xwh ¢ Z\{0} and k+Owh
2r 2
(so that ay(h) # 0 and ag.e(h) # 0), then equations (5.30) can be solved in the
Bi(h) and Bric(h) coefficients. Thus, for each k, ¢ € Z, we have

ag(h) are(h) — axe(h) Br(h)Be(h)
h) =
any P wirc ()

and the i-flow of the corresponding modified equation (5.28) agrees up to terms of
order O(h?) with the expansion (5.22) of the splitting method 1j,. Moreover, the
identity (5.17) satisfied by the coefficients in the expansions of both the splitting
method ¢, and the exact solution, equations (5.11)—(5.12), implies

Bre(h) + Ber(h) =0, k, €T, (5.33)

(5.30)

¢ 7\{0} (5.31)

Bi(h) =

, (5.32)

so that the modified equation (5.28) can also be expressed as

d h
Fr Ax+ Z Br(h) gi(x) + 3 Z Bre(h) (g;(x)gr(x) — g5 (x)ge(x))

kel k,teT
h
= Ax+ I;Iﬂkm) g1+ 5 k;‘zﬁ“(h) (8k» 80)(). (5.34)
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In fact, equation (5.34) is itself Hamiltonian, in the sense that there exists a Hamilto-
nian function H(x; k) such that

d i
%= J VAR, (5.35)

where J is the canonical symplectic matrix (1.21). This can be seen as follows.
First, H; in the Hamiltonian (5.1) can be written as

1 - . (N 0
Hi(x) = Ex Ox, with Q= (0 M‘l)’ (5.36)
whereas H»(e'4x) has a Fourier expansion of the form
Ho(e'x) = Z ek Gr(x), with gr(x) =J VGr(x), (5.37)
kel

and furthermore, for all k € Z,
Gi(e'x) = X G (x), (5.38)
so that (5.7) is equivalent to
{H|,Gy} =ikw Gy, forkel. (5.39)

Here {A, B} stands for the Poisson bracket of A, B € C'(RP) defined as follows:
for each x € RP,

{A, B}(x) = (VA(x))"J VB(x).
It is then clear that the modified ODE (5.34) can be written like (5.35) with
- 1 h
A h) = 5xT0x+ ) ) Ge) + 5 > Bre(h) {Gi, Gehx).  (5.40)
2 kel 2 k, el

We should stress that both (5.28) and the modified Hamiltonian H(x; &) are well-
defined as long as the non-resonance assumptions (5.31) hold.

5.6. Splitting methods with processing

In the spirit of Section 4.5, we now consider a processed splitting integrator
» -1
Ynp=m, oypompy,

where ), is a composition of type (2.17) based on kicks and rotations and
nn: RP — RP is a near-to-identity map with an expansion of the form

1) =x+h ) k(B g0+ 7 ) kie(h) g/ (¥)ge(x) + OU).  (5.41)
kel k,beT

In contrast to Section 4.5, where the processor map 7, is analysed by its power
series expansion in h, the coefficients «i(h) and kge(h) featuring in (5.41) will
depend on /4 and the frequency w in a non-polynomial way. This will allow us
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to find appropriate processors valid for step sizes & that are not necessarily small
compared with w.

Appllcatlon of the composmon rule (5.20)—(5.21) to both sides of the identity
7p oYy, = Yy, o my, implies that 4/, can be expanded as

dn(x) = (x +h Y g0+ ) dre(hgp(x)gex)+ 0(h3>> , (5.42)

kel k,lel
where
ar(h) = (1 — My K (h) + ax(h),

are(h) = (1= e®O0Cny 1 o (h) + ki (h) e (h) — €M ie(h) i (h) + @xe(h).
(5.43)

The expansion of the processed scheme i, coincides with that of the exact flow
(5.14) if @ (h) = ar(h) for each k € Z\{0}, and this is possible only when the
following non-resonance condition holds,

kwh

— ¢7Z, 5.44
o (5.44)

in which case
@ (h) — ag(h)

Observe that, for k = 0, @x(h) = ar(h) regardless of the chosen value of «y(h),
since @o(h) = ap(h) = 1. For simplicity, it makes sense to choose the processor
map in such a way that xo(h) =0

In consequence, if A satisfies the non-resonance condition (5.44) for all k €
Z\{0}, and the coefficients k() for k # 0 are chosen as (5.45), then the local error
of the processed scheme reads

Un(x) = on(x) = e (h2 D (@relh) = ke (h)g)(x) g (x) + 0<h3)>
k,leT

and the h-flow of lﬁh is also Hamiltonian, with the modified Hamiltonian function

N 1 A h A
AGch) = Sx70x + ) B G + 5 3 Bre(W) (G Ge)),

kel k,leT
where
N N Are(h) — h
Bi(h) =1,  PBre(h) = M. (5.46)
e (h)
Equivalently,
A h A
Ay = H+ 5 ) Bre() {Gr. Ge} ), (5.47)
k,lel
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which is an O(h) perturbation of the original Hamiltonian, and thus we may expect
that the value of the H(x) (typically the energy of the original system) will be well
approximated for relatively large time intervals. A word of caution is in order here:
by construction, the difference between the processed map i, and the z-flow of the
modified Hamiltonian (5.47) is formally of order O(4?), but the constant in O(h?)
depends on the size of the modulus of the coefficients

ke(h),  kie(h),  Bre(h) fork,teT.
For near-resonant step sizes h, that is, for step sizes such that e*“" — 1 is small for
some index k belonging to Z or Z +Z, the size of some of these critical coefficients
may become large. In such cases, we cannot expect that the processed map v, will
be close from the i-flow of the modified Hamiltonian (5.47).

5.7. A processed Strang scheme

In the particular case in which , is the Strang splitting SLRKR], the coeflicients
ki (h) in the corresponding expansion (5.41) verifying (5.45) read

ki (h) = ﬁ(l —sinc(kwh/2)™), k€ T\{0}, (5.48)

and k_r(h) = —kr(h) for all k # 0.
Assuming that the potential function U(g) in (5.1) is a polynomial of degree m,

so that
Zc{-m,...,—-1,0,1,...m},
we next construct a fully explicit processor 7, for S [RKR]. We define it as a
composition of basic flows as follows:
(R] K] [R] , IK] (K] [R] K]
Th=¢a °@ m)°Pa P )° O Phm°Pa P (,,)osoa , (5.49)

where & = (27)/(2m + 1), and the coefficients b;(h), j = 1,...,2m, depend on
h. Since S ,[lRKR] is time-symmetric, then it makes sense to construct the processor

7, such that zﬁh = ﬂ;ll oy, o my, is also time-symmetric. This can be achieved
by requiring that 7_;, = 7, or equivalently, by requiring that b ;(=h) = b ;(h) for
j =1,...,2m. This condition, together with

ko(h) =0, ax(h) = ax(h) forallk € {-m,...,—1,0,1,...m},

uniquely determines the b ;(h) coeflicients as

2 vl _ ( 2kjm
bj(h) = ~ban-ju1(h) = 5—— ; L Gsinc(kwh/2)™ = 1) sm<2m . 1),
(5.50)
for j = 1,...,m. This can be seen as follows: successive application of the
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composition rule (5.21) shows that (5.49) admits the expansion (5.41) with

2m

hki(h) = Z bi(h) e ImCm D) = 1,0, 1, m, (5.51)
Jj=1

and for k,l € Z,

Ry = Y bj(h) by(h) e knt/Cms)

1<j<n<2m

" Z % bj(h)z eiZﬂ'j(k+€)/(2m+1). (5.52)
1<j<2m
We can check that ko(h) = 0 and the symmetry condition «_r(h) = —ki(h) (k # 0)
that holds for (5.48) imply that b;(h) = —byy,—j11(h) for j = 1,...,2m. Now,
(5.51) means that application of the inverse discrete Fourier transform to the vector
©,b1,b3,...,bm,—bm,...,—b1) gives the vector

(O’ Kiseo s Kms —Kms oo oy _Kl)

Equivalently, the former is obtained by applying the discrete Fourier transform to
the latter. Rearranging terms, we finally arrive at (5.50).

The modified Hamiltonian (5.47) can be obtained in the following way: first
the coefficients (5.52) can be used to compute &x¢(h) from (5.43), and then the
coeflicients ,ékg(h) are determined from (5.46).

Example: simple pendulum. As an illustrative example we again consider the
simple pendulum of Section 1.4, described by the Hamiltonian function (1.19).
As we saw there, for initial conditions in a neighbourhood of the stable equilibrium
(0, 0) it is advantageous to decompose H as in (1.32), so it constitutes a particular
example of system (5.1):

1, 1 1
H=H +H,, Hq.p)= zpz + qu, Hy(q,p)=U(g) =1~ zqz ~cosq.

Although U(g) is not a polynomial, and therefore the set Z in (5.4) is infin-
ite, we can truncate the Fourier expansion (5.37) and work instead with Z =
{-m,...,—-1,0,1,...,m} for a given m to construct a processed Strang scheme
based on kicks and rotations as proposed earlier. Specifically, we take m = 4, a step
size h = 5/6, then determine the corresponding coefficients b;(h) and form the

1, Sl[lRKR]

integrator 1[/;1 =7, oy, with my, given by (5.49) (with m = 4), whereas

S,[lRKR] corresponds to the map (1.34).

Figure 5.1 shows the relative error in energy (a) and phase space (b) over the time
interval [0, 500] corresponding to the solution initiated at (go, po) = (1/10,0). As
usual, S, denotes the Stérmer—Verlet method applied to (1.19), (2,2) is the Strang
splitting S ;[lRKR], and P(2, 2) is the processed S l[lRKR] scheme with step size h = 5/6.
Since the integrator (2, 2) is conjugate to P(2, 2), the error of the former is eventually
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log,o(Rel. Err. in (q,p))

log,(t)
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Figure 5.1. Pendulum. Evolution of relative errors in energy (a) and in phase
space (b) obtained with Stormer—Verlet, S;, scheme § ,[lRKR], denoted (2,2), and the
processed (2,2), P(2, 2) with initial state (g, po) = (1/10,0) and step size h = 5/6.

log,4(Error)

L L L L L
0 05 1 15 2 25 3
him

Figure 5.2. Pendulum. Maximum relative energy error in the time interval [0, 500],
initial state (go, po) = (1/10,0), and step sizes in the range [0, 37] committed by
the Strang splitting S LRKRJ and its processed version P(2, 2).

dominated by the error of the latter, as expected from the discussion in Section 4.5.
Observe that the step size used here is larger than those taken in Figure 1.1.

Next, we consider the Strang method § }[IRKR] and its processed version P(2,2)
for the same initial condition and a time interval [0, 500], and show the maximum
energy error in this interval for step sizes in the range [0, 3] (Figure 5.2). The
spikes in the curve of the error of Strang correspond to the step sizes violating
the non-resonance condition (5.44) for w = 1 and k = 2,4. Indeed, the potential
U(g) can be well approximated near the origin by ¢*/24, which implies that
7 ={-4,-2,0,2,4}. The curve of the error of processed Strang also has spikes for
such resonant step sizes, and additionally, for the step sizes /& such that 34/(2n) € Z,
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which is due to the fact that the processor map 75, has been designed to work well for
problems for which 7 = {-4,-3,-2,-1,0,1,2,3,4}. Away from such resonant
step sizes, the energy error of processed Strang is considerably smaller than that of
unprocessed Strang.

5.8. More general assumptions

The results given in the present section are also valid with small modifications in
the more general setting of systems (5.2) such that the eigenvalues of A lie on the
imaginary axis. In the most general case, where such eigenvalues are not integer
multiples of w i, the exponential e’ is quasi-periodic with a finite number of basic
frequencies (wi,...,w,;) € R". Under such conditions, e A fr(e Ax) admits a
multi-variable Fourier expansion

D e g (), (5.53)
kezr
where k now denotes an r-tuple of integers k = (ky,..., k) € Z", 0w = (wy, . .., w;)
is the vector of basic frequencies, and (k, w) = kjw|+- - -+k,w,. The set of indices
7 is then defined as

T={keZ : g %0}

Under these more general assumptions and notation, all previous formulae are valid
if each occurrence of kw with k € 7 is replaced by (k, w), the only exception being
the explicit construction of the processing map m;, carried out in Section 5.7. It
is worth remarking that, compared to the periodic case, in the quasi-periodic one
there are typically more resonant step sizes, that is, step sizes & such that
(k,w)h ((k+10),w)h
2m

——— € Z\{0}

= € Z\{0}

for some k,{ € 1.

6. Splitting methods for PDEs
6.1. Splitting, LOD and ADI methods

Splitting methods can also be applied to partial differential equations (PDEs), in
which case equation (1.1) has to be viewed as the abstract system associated with
the PDE initial value problem in autonomous form, and f as a spatial partial
differential operator. For clarity, in this section we write

u(x,t) = f(x,u(x,1), u(x,0)=up(x) (6.1)

to distinguish between the unknown u(x, ¢) defined in a certain function space and
the spatial variable x € R?, but for notational purposes it is convenient to drop the
dependence of u and f on x. To introduce the basic concepts and methods it is
not necessary at this stage to specify the dimension d, the number of components
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of u, the relevant function space and the boundary conditions. These will be
considered when analysing particular applications. Moreover, for simplicity in the
presentation, only the autonomous case will be treated. If f depends explicitly on
time, then we can take ¢ as a new coordinate, as is done in Section 3.5.

Very often, the operator f contains contributions coming from very different
physical sources, so we may decompose it into two (or more) parts, and use
different schemes to solve each sub-problem approximately. For instance, in a
reaction—diffusion system, f(u) = V - (DVu) + g(u), where D and g may also
depend on x, it makes sense to split the diffusion from the reaction terms, that is,

f) = fi(w) + fo(w),  with  fi(u) =V -(DVu), fo(u)=gu).

Algorithm 1.1 can of course be used in this setting, but we still have to specify
how to solve each initial value sub-problem in practice with appropriate boundary
conditions. A simple possibility consists in applying the backward Euler scheme,
thus resulting in the so-called Marchuk—Yanenko operator-splitting scheme

Uni1)2 = Un + M f1(Upg1)2),
un+l/2+hf2(un+l), n=0’ 1’2,"'5

where, for consistency with the rest of the paper, we have denoted & = At, the
time step size. In spite of its low order of consistency (order one)’ and the fact
that the intermediate stage u,41/2 is not a consistent approximation to the exact
solution, its simplicity and robustness make it a useful alternative way to deal with
complicated problems and even non-smooth operators (Glowinski et al. 2016a).
It is also appropriate for parabolic problems, since it incorporates the damping
properties of the backward Euler method (Hundsdorfer and Verwer 2003).

If, instead of using the backward Euler scheme to integrate each sub-problem
in Algorithm 1.1, we apply the second-order implicit trapezoidal rule, it results
in Yanenko’s Crank—Nicolson method (Hundsdorfer and Verwer 2003, Marchuk
1990):

(6.2)

Upn+1

h h
Upil)2 = Up + Efl (un) + Efl (Unt1/2)s
(6.3)

h h
Uptl = Upy12 + Efz(unn/z) + EfZ(unH), n=0,1,2,...

In the end, however, it is also of first order of consistency.

Another widely popular class of spitting methods in the domain of PDEs is the
Peaceman—Rachford scheme and its variants. Although initially designed for the
numerical solution of elliptic and parabolic equations (Peaceman and Rachford
1955, Douglas and Rachford 1956), they also apply to more general situations. The
procedure goes as follows. Given an approximation u,, for the solution of (6.1)

5 Here ‘order’ should be understood as the order of consistency with respect to the solution of the
ODE problem on a fixed spatial grid, not with respect to the underlying PDE solution (Hundsdorfer
and Verwer 2003).
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att = t,, the approximation u,4; is computed using the backward (resp. forward)
Euler scheme with respect to fi (resp. f>) on the sub-interval [#,,%,4+1/2]. Then
the roles of fi and f, are interchanged on the sub-interval [#,41/2,#,+1]. In other
words, the Peaceman—Rachford scheme corresponds to the sequence

h h
Upil)2 = Up + 5f1(”n+1/2) + EfZ(un),
(6.4)

h h
Uptl = Upy)2 + Efl (tns12) + EfZ(unH), n=0,12,...,

which is of second order of consistency. Notice that, in contrast to methods (6.2)
and (6.3), both f; and f> appear in each of the two stages, and thus the intermediate
value u,,,1 /2 provides a consistent approximation at # = #,,,1 /2. On the other hand, it
does not possess a natural formulation where f is split into more than two operators.
In general, fi and f> can be nonlinear, unbounded and even multi-valued. For a
more detailed treatment, the reader is addressed to Glowinski, Pan and Tai (20165b)
and references therein.

A classical alternative to scheme (6.4), of first order, is the Douglas—Rachford
method (Douglas and Rachford 1956), which instead reads

Apel = Uy + hfl (lins1) + hfl(un)a

A (6.5)
Up+1 =un+hf1(un+l)+hf2(”n+l)a n:(), 192',-'-9

and can be generalized to decompositions of f involving more than two operators.
Notice that the roles of f; and f, in (6.5) are not symmetric, in contrast to the
Peaceman—Rachford method. On the basis of many numerical experiments, Glow-
inski et al. (2016b) conclude that the scheme (6.5) is faster and more robust than
(6.4) for problems where one of the operators is non-smooth, in particular when
we are interested in approximating steady-state solutions.

Let us now analyse the particular case when f in (6.1) is a linear spatial differen-
tial operator. Assuming that an appropriate semidiscretization of (6.1) in the space
variable x has been carried out, we end up with the system

dU

— =FU+FU, (6.6)

dr
where F, F, € CM*M F\F, + F>F} in general, and U € cM approximates u on
the space grid points x1, . . ., xas (see below). Then a step of the Marchuk—Yanenko
scheme (6.2) reads

Upst = (I = hF)™ (I = hFy) U, (6.7)

where U, ~ (u(xy,t,),...,u(xp,1,))". Notice that (6.7) corresponds to applying
the [0/1] Padé approximant to the exponentials in the Lie—Trotter scheme U, =
e'f2 "1y, whence the first order of the approximation is obtained at once. On the
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other hand, applying (6.3) results in the sequence

Uy = (1-"F B 1+ (1-tF B 1+ U (6.8)
n+l = 22 22 21 21 ne .

In other words, it corresponds to the application of the [1/1] Padé approximant
to the exponentials in the Lie—Trotter scheme. It is then clear that, although a
second-order Crank—Nicolson method is carried out for each exponential, their
combination (6.8) is of first order, since in the end we are using only a variant of
the Lie-Trotter scheme.

By the same token, a straightforward computation shows that the Peaceman—
Rachford scheme (6.4) applied to the linear equation (6.6) can be written as

Upi = (1-2F h 1+ e ) (1-lF B 1+25)\ U (6.9)
n+l — ) 2 ) 1 ) 1 2 2 n- .

As a matter of fact, all these algorithms can be formulated by applying properly
chosen compositions of the implicit and explicit Euler methods. This observation
may eventually lead to the construction of methods of higher order or improved
behaviour, but in the same family. Suppose f in (6.1) is of the form f = f; + f> and
that the solution of each equation u; = fi (1), k = 1, 2, is numerically approximated
by the maps

Uns1 = W (up) =ty + hfi(uy),  explicit Euler,

Uns1 = W) (Un) =ty + hfi(nse1),  implicit Euler,

so that by combining all variants, we form the following first-order schemes (and
their corresponding adjoints):

1 1 2 2% o li
¢h:'ﬁhe°¢he, (bh*:lﬁhlowhl,
2 _ g le 2i x _ g 2e 1i
&n =Yy, oYy, @, =Yy oYy,
3 li 2 3 2% 1
Gp =Wy oWy’ By =Y oYy,
4 li 2 4 2 1
Gn=n oWy By =Y oW

Then we can conclude the following.

(6.10)

e The Marchuk—Yanenko operator-splitting scheme (6.2) can be expressed as
Upsel = ¢}1*(un). Therefore compositions

Un+l = ¢}1*/2 o ¢;1,l/2(un) and  upy1 = ¢},/2 o ¢%:}2(un)
yield time-symmetric second-order approximations.
e Yanenko’s Crank—Nicolson method (6.3) corresponds to the composition
Unt = Wi © Wiy © Wiy © U5 (itn), (6.11)

which is not time-symmetric and therefore only of first order. Notice, however,
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that (6.11) can also be expressed as

_ 2 2 2 2 -1
Un+l = Y © (¢h/2 °© ¢h/2) °© (Wh/z) (tn),
so it is conjugate to a time-symmetric second-order method. This feature

could account for its observed good behaviour in practice.

o The Peaceman—Rachford scheme (6.4) is just the symmetric composition

Up+l = ¢i*/2 ° ¢Z/2(un),

and is therefore of second order. It is also worth mentioning that whereas all
symmetric second-order compositions

£ t 4 % _
¢h/2°¢h/2 and ¢h/20¢h/2’ t=1,...,4
provide consistent approximations at the midpoint, the steady-state solution
is captured only when ¢ = 3: if f(w) = 0, then
¢272 ° ‘152[/2(“’) = ¢i/2 ° ¢i*/z(w) =w.

The Douglas—Rachford method (6.5) can be alternatively formulated as a splitting
method in an extended space as follows. Consider the enlarged system

_ (@ _ (Hi@+ ) 0\
e <> ) < 0 ) i <f1<m+f2<v>> =i+ (W), (6.12)

with initial condition w(0) = (1(0), v(0)) = (ug, ug) and solution w(z) = (ii(z), v(t)) =
(u(t),u(t)). Take w,, = (u,, u,) and form the composition

Wnat = )" (Wn) =¥ oy i(wy), n 20,

providing W41 = (@41, Va+1). Then scheme (6.5) is recovered by taking u,,+; =
Va1, and considering w1 = (441, Un+1) as the starting point for the next iteration.

Example. The two-dimensional heat equation with source term and Dirichlet
boundary conditions on the unit square may serve as an illustration of these methods
(Hundsdorfer and Verwer 2003). Specifically, the system reads

Up = Uxx +ityy +g(x,y,1) onQ=(0,1)x(0,1),
u(x, y, 1) = ur(x, y, 1) onl =99, (6.13)
u(x, y,0) = uo(x, y) on Q.

Suppose we take a Cartesian grid in € based on M + 1 equally spaced intervals in
the x and y directions, so that Ax = Ay = 1/(M + 1) and apply finite differences
to approximate the space derivatives. Then we end up with M? interior points and
the aim is to get approximations of u at these points, i.e. to determine u; ;(f) =
u(x;,yj,t)fori,j =1,2,..., M. The problem can be conveniently formulated in
terms of the ‘supervector’ U = (u[,...,uy,)", with u; = (u;1,...,u;pm)", and
M? components

Ue(t) = I/ti,j(l‘), C=7+MG-1).
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Using standard second-order finite differences for d, and d,, we get a linear
system of the form U’ = F U + s(t), where s(¢) contains sources and boundary data,
and F = F; + F,, with

2 1 - 0

Fi=1y®By, FKh=By®Ily, By=—— ’ ’
@F | o

0 1 -2

Here 1), is the identity matrix, By, the differentiation matrix and ® denotes the
tensor product. Notice that F acts in the x-direction and F, in the y-direction, so
both F; and F, are essentially one-dimensional. Since F| is a tridiagonal matrix,
the linear system resulting from the application of the previous implicit schemes
can be solved in an efficient way, whereas F; is equivalent to a tridiagonal matrix,
so the same considerations apply (Iserles 1996).

First consider the homogeneous equation with zero Dirichlet boundary condi-
tions. The solution for one time step is

Uty + h) = " P2 g,

whereas the application of the Peaceman—Rachford scheme leads to the approxim-
ation (6.8):

Upsl = (¢h/2 o ¢2/2) U, =P 4 o).

When a dimensional splitting is done, as in this case, applying schemes (6.7) and
(6.8) corresponds essentially to carrying out computations in only one dimension.
This is the reason why (6.2) and (6.3) are called locally one-dimensional (LOD)
methods. Analogously, given the alternate use of F| and F, in this setting, the
name alternating direction implicit (AD]) is usually attached to methods (6.4) and
(6.5).

Regarding these ADI/LOD methods as composition schemes allows us to get
approximations in the non-homogeneous case too, with only minor changes, while
keeping any favourable properties (if no order reduction occurs due to the Dirichlet
boundary conditions). To illustrate this point, we again apply the explicit and impli-
cit Euler methods to the equation U’ = s(¢) corresponding to the non-homogeneous
term

rL+1 wh (U ) - U + hs(tn) Un+1 lﬁ (Un) - U + hs(tn+l)

and consider the first-order scheme ¢> . =yl A /2 o l//h i 1//Se. Then

Un+1 = (¢h/20¢32/2) (‘/’h/z ‘/’h/z ¢’h/2 Un © ‘/’h/z 9-/’h/z)

—h 1 hF B 1 hF 1 hF B 1 hF U
—Es(tn+])+ -5k + 55 -5h + 55 n+§s(tn)

produces a symmetric second-order scheme.
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It is not only reaction—diffusion problems that can be treated in this way. For
instance, systems of hyperbolic conservation laws in three dimensions, such as

ut+V'f(u):0a M(X,y,ZeO)ZMO(X,y’Z),

can be numerically approximated with dimensional splitting by applying a specially
tailored numerical scheme to each scalar conservation law u; + f(u), = 0, etc.
(Holden, Karlsen, Lie and Risebro 2010).

The one-dimensional convection—diffusion problem

ur + f)x = A)xx,  u(x,0) = uo(x)

with a scalar non-decreasing function A(-), A(0) = 0, possesses a rich set of
phenomena depending on the interplay of the different nonlinearities. In this
case we can split the problem into a convective and a diffusion part and apply
Algorithm 1.1. This formally results in the so-called Godunov split (Holden et al.

2010). Specifically, letting Z/{,El] denote the solution operator corresponding to the

scalar conservation law u; + f (1), = 0, and letting U,Ez] denote the solution operator
corresponding to the (weak) solution of the nonlinear heat equation u; = A(u)yyx,
the scheme then reads

st + ) ~ ey = U (U ).
Of course, we can also use the Strang splitting
(1] (7 412]
(U, (Uh/z(“")))-

To get a numerical approximation, each of the two operators must be approximated.
This can be done, for example, by a front-tracking method for M,El] and by a standard

ux,t, +h) ~ upy = U,E%

implicit finite-difference method for the parabolic operator Z/I}EZ]. A convergence
analysis of such schemes has been carried out in Holden et al. (2010).

Although the analysis of splitting methods can be done by power series expan-
sions and the formalism of Lie operators, there are fundamental differences with
respect to the ODE case. Nonlinear PDEs in general possess solutions that exhibit
complex behaviour in small regions of space and time, such as sharp transitions and
discontinuities, and thus they lack the usual smoothness required for the analysis.
Moreover, even if the exact solution of the original problem is smooth, it may well
happen that the composition defining the splitting method provides non-smooth
approximations. Therefore, it is necessary to develop an appropriate mathematical
framework to analyse the convergence of the numerical solution to the correct solu-
tion of the original problem, and this has to be done very often on a case by case
basis; see e.g. Holden et al. (2010) and references therein. Thus, in particular, the
first- and second-order convergence of the Godunov and Strang splitting methods
on the Korteweg—de Vries equation u; —uu + i, = 0 has been proved in Holden,
Karlsen, Risebro and Tao (2011) if the initial data are sufficiently regular, whereas
the result has been extended in Holden, Lubich and Risebro (2013) to equations
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of the form u, = Au + uu,, when A is a linear differential operator such that the
full equation is well-posed. More recently, convergence results and error estimates
have also been obtained for initial conditions with low regularity, namely uy € H*®
with 0 < s < 3/2, where H® denotes the Sobolev space (Rousset and Schratz
2022).

Another source of difficulties related to the application of splitting methods to
PDEs is the treatment of boundary conditions. In this respect, we should take into
account that the boundary conditions are defined for the whole operator f in (6.1),
and they do not necessarily hold for the subproblems defined by each part f; and
f>. Therefore, we cannot expect the numerical solution obtained by a splitting
method to belong to the domain of f. This results in severe order reductions in
reaction—diffusion problems when Dirichlet or Neumann boundary conditions are
considered (Hansen and Ostermann 2009b, Hundsdorfer and Verwer 2003). In
particular, the order reduction for the Strang splitting is one in the infinity norm.
Similar order reductions for advection—reaction problems have also been reported
(Hundsdorfer and Verwer 1995).

Several procedures have been considered in the literature to avoid this order
reduction in the case of reaction—diffusion problems. One possibility, proposed
in Einkemmer and Ostermann (2015, 2016), consists in introducing a smooth
correction function in such a way that the new reaction flow is compatible with the
prescribed boundary conditions. For time-invariant Dirichlet boundary conditions,
this correction can be computed only once at the beginning of the simulation, but for
time-dependent Dirichlet, Neumann or Robin boundary conditions, the correction
is time-dependent and has to be computed at each time step. Various techniques
to deal with this problem are explored in Einkemmer, Moccaldi and Ostermann
(2018). An alternative approach requiring additional calculations with grid values
on the boundaries, and not on grid values on the total domain, is proposed in
Alonso-Mallo, Cano and Reguera (2018, 2019).

6.2. IMEX methods

IMEX schemes are suitable combinations of implicit and explicit schemes and
constitute a popular technique for approximating the solution of PDEs that involve
terms of a different nature (Ascher, Ruuth and Wetton 1995, Ascher, Ruuth and
Spiteri 1997, Hundsdorfer and Verwer 2003). Thus, for convection—diffusion or
reaction—diffusion problems where the convection or reaction terms are moderately
stiff, it might be appropriate to use an explicit scheme for these parts and an implicit
scheme for the diffusion term. We next analyse the connections of some popular
IMEX methods with splitting and composition methods.

Suppose we have the semidiscrete system u; = fj(u) + f2(u), where fi is (still)
a diffusion term and f, a nonlinear term suitable for explicit integration. Then the
simple composition (see (6.10))

Uns1 = 3 () = W) 0 Wi (Uy) = thy + I (fi(ns1) + fo(in))
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corresponds to the linear one-step IMEX scheme of Ascher et al. (1997).

Letting ¢;[12’k], k > 2, denote an explicit kth-order (Runge—Kutta or multistep)
method for the equation u, = f»(u), it turns out that many IMEX methods from the
literature have the structure

it = Prhi 0 1 0 01 ), (6.14)
thus yielding second-order approximations.

Let us consider, for instance, the popular Crank—Nicolson—leapfrog (IMEX-
CNLF) method (Hundsdorfer and Verwer 2003)

Unsl = Un—1 + 20 fo(un) + h(fi(ne1) + fi(Un-1)), (6.15)

to be initiated with, for example, u; = ug + h(fi(uo) + f2(up)). It is equivalent to
the one-step method

h*
Upt] = Up + h*fZ(unH/Z) + ?(fl(unﬂ) + f1(un)), (6.16)

with 1" = 2h, which requires us to compute the approximation at the midpoint and
so advances every half time step. If we take the explicit second-order midpoint rule

as ¢}[12’2] in (6.14), then we get the following sequence of maps:

h
Uit U= tn+ 2 filun),

h
[2.2]. V=U+3fU)
¢, A 2 ,
V=U-+hf(V)

: . h
11/1111/2 DoUp =V H+ Efl (tn+1)s

or equivalently

h
U=u,+ Efl(”n),

V=U+§ﬁW) (6.17)

h
Uptl = Up + hfZ(V) + E(fl(un) + fl(un+l))-

This scheme is in fact quite similar to (6.16) for h = h* since V is a first-order
approximation to u,.1/2, the solution at the midpoint. Notice that by replacing
f2(ttp41/2) in (6.16) with fo(V), where V depends explicitly on u,, it allows us to
advance from u,,4 to u,., without evaluating the solutions at u,,,3,, and therefore
halving the computational cost to solve the implicit equations involved.

Although the method is not symmetric (due to the lack of symmetry of the
explicit scheme ¢;[12’2]), by instead using an explicit method of order k > 2, the
overall scheme will be time-symmetric up to this order k and therefore we can

apply extrapolation to get a method of order & in an efficient way.

Downloaded from https://www.cambridge.org/core. IP address: 18.222.162.244, on 08 Sep 2024 at 20:02:34, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50962492923000077


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492923000077
https://www.cambridge.org/core

SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS 95

Another IMEX Runge-Kutta method that combines the implicit and expli-
cit trapezoidal methods and shows a fairly good performance on examples is
(Hundsdorfer and Verwer 2003)

U=u,+ h(fi(u,) + fr(un)),

h h (6.18)
Unptl = Up + E(fl(un) + foun)) + E(fl (ns1) + f2(U)).

If we take the system

W = ((L}) _ (fl(u)J(r)fz(U)> + <f1(u)-|(-)f2(u)> =g1(w)+g2(w), (6.19)

and form, as before, the composition
Waet = Ui 0 617 0 0y (), (6.20)

where ¢,[12] denotes the exact solution of w’ = go(w), and w,, = (Uy, uy,) = (up, uy),
then we get

h

Uy =up+ E(fl(”n) + fa(un)),

Un+1 = un + h(f1(u12) + f2(u12)), (6.21)
h h

Upil = Up + E(fl (un) + f2(un)) + E(fl (Uns1) + fo(Uns1)).

Scheme (6.18) is recovered by replacing u,, with u, in the expression of U,.
However, if in (6.21) we do not restart the value of U,, at each step, the method will
be symmetric and therefore we can apply extrapolation to increase its order.

Higher-order IMEX methods have been built involving implicit multistep or
Runge—Kutta methods. Although splitting methods are no longer appropriate to
advance the diffusion term due to the presence of negative coefficients for orders
higher than two, we can incorporate higher derivatives or complex coefficients and
form new higher-order splitting IMEX methods (or consider extrapolation from a
basic symmetric second-order method).

6.3. Schrédinger equations

T-V splitting. Until now, in the context of PDEs, we have dealt with splitting
methods of orders one and two. There are, however, relevant problems where high-
order splitting methods can be and have been safely used, and where a rigorous
convergence analysis can be established. This is the case, in particular, for the
time-dependent Schrodinger equation, already considered in Section 1.6. The
numerical experiments presented there clearly indicate that the Strang splitting
based on kinetic and potential energy in combination with a pseudo-spectral space
discretization, i.e. method (1.45), provides approximations of order two in the time
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step, in accordance with
efVe eV =™ ™V L o (IT) +IVIDY). (6.22)

where 7 = —ih. Be aware, however, that this error estimate only makes sense for
bounded 7 and V. In fact, when the norm of 7" or V is very large (as is usually
the case when the number of space discretization points M is large), then (6.22) is
of no practical use, and thus other estimates are necessary to explain the observed
good behaviour.

Error bounds for the Strang splitting are actually derived in Jahnke and Lubich
(2000). They clearly show that the method is indeed of order two when applied to
pseudo-spectral discretizations of the time-dependent Schrodinger equation under
some regularity conditions and periodic boundary conditions. Specifically, assume
that the potential V(x) is C°-smooth, periodic and bounded, ||V < Bll¥|l, B > O.
Then, if u(x, t) denotes the trigonometric interpolation polynomial of the solution
of the pseudo-spectral method and u,(x) is the corresponding trigonometric inter-
polation polynomial built from the numerical approximations obtained from the
Strang splitting (1.45) at time ¢t = ¢, = nh, for the local and global errors we get
the following bounds:

lur = uC, D)2 < CrlrlPlluollye, 623
lttn — uC, t)ll2 < Calr*|luoll g,

respectively. Here || - |2 denotes the usual Sobolev norm, and the constants Cj,
C, are independent of the initial data u( and the discretization parameters M, n and
7, with 0 < 7, < 17 for some finite 77. The case when V is time-dependent and
bounded for any ¢ has been recently treated in del Valle and Kropielnicka (2023),
where new schemes are proposed and analysed.

The previous results for the Strang splitting have been extended in Thalhammer
(2008) to splitting methods of the general form

s
Upsl = 1—[ ebjTV eaj‘rT u, = ebS‘rV eas‘rT . eb]TV eal‘rT Uy, (624)
J=1

whose coeflicients a, b satisfy the order conditions up to order r. In that case
lun = uCt)ll2 < Cllu-,0) = uollz2 + Clel luC, O)llar, 0 <ty <tp (6.25)

is valid with some constant C depending on 77, but not on n and h. This error
bound implies, in particular, that the splitting methods of Section 8 retain their order
of convergence when applied to the Schrodinger equation with periodic boundary
conditions, provided that the data are sufficiently differentiable; see also Hansen
and Ostermann (2009a). Otherwise, an order reduction may occur.

We can also take advantage of the property (1.41) and include the commutator
[V, [T, V]] in the composition (6.24), as in RKN splitting methods, so that we end
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up with
)
Upi] = nebjTV+CjT3[V,[T,V]]eajTT u,,. (626)
j=1
Even in this case the resulting schemes retain their order of convergence if the
solution is sufficiently regular, as shown in Kieri (2015). It is then also possible to
apply the RKN schemes presented in Section 8.

Symplectic splitting. In Section 3.4 we reviewed the symplectic structure involved
in the (semidiscretized) Schrodinger equation and illustrated how the Strang split-
ting (and, for that matter, all methods presented in Section 8) can be applied if H
is a real and symmetric matrix. They are formulated as products of exponentials
of the nilpotent matrices A and B given in (3.13),

Gn+1 \ _ > bjhB LajhA (dn ) _ h 0 H qn\ L onr+!
<pn+l> lj:lle ¢ (pn) expl <_H 0 Pn ( )

(6.27)
and orders r = 2,4, 6, 8, 10 and 12 have been achieved with only s = r exponentials
edihA and ebihB (Gray and Manolopoulos 1996, Zhu, Zhao and Tang 1996, Liu,
Ding, Hong and Wang 2005).

The processing technique has also been used to construct splitting schemes with
two different goals in mind: to attain maximal stability and maximal accuracy. They
have the general structure P Y (hH)K(hH)P(hH), where K (the kernel) is built as a
composition (6.27) with a large number of stages s, and P (the processor) is taken
as a polynomial. Although these methods are neither unitary nor unconditionally
stable, they are symplectic and conjugate to unitary schemes. In consequence,
neither the average error in energy nor the norm of the solution increases with time.
Specifically, Blanes, Casas and Murua (20065, 2008a) have proposed kernels with
up to 19, 32 and 38 stages, either to construct methods of orders r = 10, 16 and
20, or to bring highly accurate second-order methods with an enlarged stability
domain.

This approach to approximating e™ u is closely related to other polynomial
approximations of the form

e My~ P, (hH)u, (6.28)

where P,,(y) is a polynomial in y approximating the exponential e~". Different
choices for such P, (y) are available: truncated Taylor or Chebyshev series ex-
pansions of e~ for an appropriate real interval of y, or a Lanczos approximation,
where the polynomial is determined by a Galerkin approximation on the Krylov
space spanned by u, Hu, . .., H™'v (Lubich 2008).

Given a prescribed error tolerance, some appropriate estimates of the upper
and lower bounds of the eigenvalues of the matrix H, En;, and Enyx, and a time
integration interval, [fo,77 ], in the Chebyshev approach we choose, according to
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some known error bounds, the lowest-degree polynomial that provides the solution
with such accuracy. The coefficients of the polynomial are determined for each
case and the action of the polynomial on a vector is computed recursively using
the Clenshaw algorithm (Lubich 2008). On the other hand, in the Taylor approach
we have to adjust the maximum degree allowed with the time step A to reach
the desired accuracy with the minimum number of matrix—vector products. As a
result, in general, Chebyshev turns out to be between two and three times faster
than Taylor, depending on the final time at which the output is desired. Chebyshev
and Lanczos approximations have quite similar error bounds (see Lubich 2008)
and their relative performance depends on the particular problem considered.

It is worth remarking that, whereas in the approach (6.28) the approximation
of e™H y is constructed by computing products of the form Hu, where u € CM |
with symplectic splitting methods of the form (6.27) we proceed by successively
computing real matrix—vector products Hg and Hp with different weights. With
splitting methods, the real and imaginary parts of e™™u = e "H (4 + ip) are
approximated in a different way, with a considerably reduced computational cost.

Blanes et al. (2015) construct several optimized symplectic splitting methods and
present an algorithm that automatically selects the most efficient one for a prescribed
error tolerance under the same conditions as when using the Chebyshev method.
The resulting algorithm is between 1.4 and 2 times faster than the Chebyshev
method for the same accuracy, with reduced energy and unitarity errors for large
values of 4. The computation of the coefficients of the schemes is largely based
on the stability and error analysis of splitting methods carried out in Blanes, Casas
and Murua (2008a, 2011).

In contrast to 7-V splitting methods, which preserve unitarity by construction
and are thus unconditionally stable, the previous polynomial approximations suffer
from a step size restriction. Given &, Ax and m, the degree of the polynomial, these
methods must satisfy the restriction

h
<C,
mAx?
so the time interval that one can advance per matrix—vector product is proportional
to Ax? or, equivalently, the number of matrix—vector products to reach the final
time is inversely proportional to Ax.

Time-dependent potentials. We have assumed so far that the potential in the
Schrodinger equation (1.40) does not depend explicitly on time or, if it does, it
only varies slowly with time, so that in each sub-interval [, f,,+1 ] the correspond-
ing matrix V is obtained from the average of V(x,t) on this interval. In general,
however, we have to deal with situations in which this approximation is no longer
valid. In that case, and in contrast to other approaches based on Chebyshev or
Lanczos approximations, splitting methods can still be applied with some appro-
priate modifications.
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In a similar way to classical Hamiltonian problems, one may take ¢ in the
potential as an additional coordinate, x44; = ¢, introduce its canonical momentum,
pa+1 = —idy,,,, and deal with the system in the extended phase space, H =
(T + pa+1) + V(x, xq+1). Since the action of the operator p 4, just corresponds to a
shift in the variable x4, i.e. €%V (¢, x) = V(¢ + ah, x), and moreover

i _ s ahd, s
eahbt e ibhV (t,x) e ahoy —e ibhe?°tV (t,x) —e 1th(t+ah,x),

composition (6.24) applied to the corresponding non-autonomous problem now
simply reads (notice that T and p 4,1 commute)

ar, j€{1,...,s}, (6.29)

M-

s
Ups) = 1—[ ebjTV(tn+th) eajTT u,, with cj=
=1 =1

and analogously if the scheme includes modified potentials; see also e.g. Chin and
Chen (2002) and references therein.

For a generic time-dependent Hamiltonian H(¢), the Schrédinger equation id,y =
H(t)y can be recast as a non-autonomous evolution equation of the form

u'(t) = A(u(r), u(ty) =ug, 1€ [to,ts], (6.30)

defined by a family of time-dependent linear operators (A(f)); ez, 1 which, as-
suming a spatial discretization has been carried out, are generally complex matrices
of large dimension and large norm.

It turns out that standard rth-order splitting methods defined by coefficients
(aj,b f)j'=1 can be applied in this setting simply by adding the trivial relation
(d/dt)t = 1 to equation (6.30). This results in the scheme

ehbAtteih)y,

with ¢; = ar, je{l,...,s} (6.31)

]_] k=1

s
Upyl =

M-~

of the same formal order r as the method originally designed for autonomous
problems.

A different approach is based on the use of the Magnus expansion (Magnus
1954) to get a formal solution representation of (6.30) as the exponential of an
infinite series:

u(ty +h) = e* My, Qh) = Z Q.. (h), (6.32)
m=1

where each term €, involves multiple integrals of nested matrix-commutators
(Blanes, Casas, Oteo and Ros 2009). By appropriately truncating this series and
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approximating the integrals by quadratures, efficient integrator schemes can be
constructed (Iserles, Munthe-Kaas, Ngrsett and Zanna 2000). Thus, for instance,
taking the two-stage Gauss—Legendre quadrature rule with nodes

Cl2 = +

N —
%

results in the scheme

1 V3
Q*n) = AL+ Ad) + Ehz[Az,Al], 6.33)

Up+l = 69[4](h)un,

with A; = A(t, + c;h), j = 1,2. For the Schrodinger equation with A(¢) = —i(T +
V(t)) and a smooth time-dependent potential V(¢), Hochbruck and Lubich (2003)
showed that Magnus integrators retain their full order of convergence (without
bounds on 7 in the error bound) for sufficiently regular solutions, uniformly with
respect to the space discretization.

There are, however, several issues related to Magnus integrators due to the pres-
ence of iterated commutators. Thus, computing the action of iterated commutators
on vectors can be very costly due to the number of matrix—vector products required.
This is particularly relevant when considering problems in two and three space di-
mensions (Bader, Iserles, Kropielnicka and Singh 2016). In addition, the evolution
equations defining high-order Magnus integrators in general involve differential
operators of different nature from the original problem (Blanes, Casas, Gonzdlez
and Thalhammer 20215b).

A different class of exponential integrators that circumvent these difficulties
whilst still retaining the favourable properties of Magnus integrators is formed by
the so-called commutator-free quasi-Magnus (CFQM) methods: the basic idea is to
replace the single exponential in (6.32) with a composition of several exponentials
involving linear combinations of the values of the operator A at certain nodes, cy,
of a quadrature rule:

Un+l = et Bns ... gl Bm Up ~ u(tpsr) = e u(tp),
CkE[O,l], Ank = Aty + cih), kE{],...,K},
an=aj1An1+---+ajKAnK, jE{l,...,J}.

Particular examples of CFQM exponential integrators are the exponential midpoint
rule (order two)

J=K=1, c¢1=3% an=b=1,
(6.34)

1
Uy = eh A3
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and the fourth-order scheme
J=K=2, a/=\/?§ cl=%—a/, c=5+a,

ari =a22=%+6¥, ap =azg =%—C¥,
Bj(h)=aj1A(tn+clh)+aj2A(tn+c2h), jE{l,Z},
= gh B2 h Bih)

(6.35)

Un+1

A detailed treatment and specific schemes up to order six can be found in Blanes,
Casas and Thalhammer (2017b, 2018) and up to order eight in Alvermann and
Fehske (2011), whereas Blanes et al. (2021b) have proved that CFQM methods
applied to the Schrodinger equation with Hamiltonian H(¢) = —%A + V() are
unconditionally stable in the underlying Hilbert space and retain full order of
convergence under low regularity requirements on the initial state.

Semiclassical regime. The so-called semiclassical Schrodinger equation
2

80 (x, 1) = (—%A + V(x)) Wx, 1) (6.36)

(in atomic units), with a small parameter £ < 1, arises in particular when applying
the time-dependent Born—Oppenheimer approximation for the motion of nuclei
as driven by the potential energy surface of the electrons (Lubich 2008). In that
case &2 represents the mass ratio of nuclei and electrons. Recall that (6.36) has
highly oscillatory solutions with wavelength ~ &, so grid-based numerical schemes
require a resolution of this order in both space and time, which is computationally
very expensive. One of the challenges, therefore, is to construct numerical methods
that are robust in the limit € — 0.

Several options have been proposed and analysed in detail; see, for instance, the
recent review by Lasser and Lubich (2020). Among others, we can recount the
following.

e Split the equation into the usual kinetic and potential energy parts and ap-
ply the Strang splitting in time in combination with trigonometric spectral
methods (Bao, Jin and Markowich 2002). Although the resulting scheme
is unconditionally stable, time-reversible and preserves the position density,
it requires very fine resolution, in both space and time, for small & (Jin,
Markowich and Sparber 2011).

e Use a Gaussian wave packet as an approximation for the wave function ¥ (x, )
depending on certain parameters and apply a variational splitting to get ap-
proximate solutions for the differential equations they satisfy (Faou and Lubich
2006). The resulting algorithm is symplectic, time-reversible and preserves
the unit L?-norm of the wave packets.

e Another variant of this approach instead consists in taking Hagedorn wave
packets. They provide a spectral approximation in space with a time-
dependent set of basis functions giving the exact solution of the Schrodinger
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equation with the potential locally approximated by a quadratic function. The
potential V(x) is split into the quadratic term U(g(¢), x) in the Taylor expan-
sion of V, around the time-dependent classical position ¢(#) and the remainder
(Faou, Gradinaru and Lubich 2009). The overall algorithm has a number of
conservation and limit properties, as listed in Faou and Lubich (2006), for ex-
ample. In addition, highly efficient splitting methods for perturbed problems
can also be applied (Blanes and Gradinaru 2020).

o A different class of exponential splittings is proposed in Bader, Iserles,
Kropielnicka and Singh (2014) for the one-dimensional case. Essentially,
the formal solution of the space-discretized equation u’ = i(eT — &~ 'V)u is
approximated as

eih(sT—a’lV) ~ eRogRI Ry .T.

e s+leRs . eRleRO

coee
with error O(£25*%). Here Ry = O(g%), Ry = 0(*72), k > 1, and Tyy; =
O(£%). In this approach the number of exponentials grows linearly with s
and the exponentials can be computed efficiently, although the terms R; and
Ts.1 contain nested commutators.

Nonlinear Schrédinger equations. Introducing nonlinear effects in the Schrodinger
equation allows us to model some relevant physical phenomena taking place in
nonlinear optics, quantum superfluids, plasmas, water waves, etc.; see e.g. Sulem
and Sulem (1999) and references therein. Consider in particular a Bose—Einstein
condensate (BEC), the ground state of a system of interacting bosons very close
to zero temperature. It was first predicted by Einstein in 1925 and experimentally
realized by Anderson et al. (1995). Mathematically, a BEC of an atomic species
trapped in an external potential V(x) is modelled by the (normalized) Gross—
Pitaevskii equation (GPE)

0 (x,t) = <—%A + V() +oly(x, t)|2> W(x,t), (6.37)

with asymptotic boundary conditions ¢ (x, ) — 0 as |x| — co. Here the parameter
o originates from the mean-field interaction between the particles: repulsive forces
lead to o > 0, whereas o < 0 represents attractive forces. Equation (6.37) has
been the subject of many different studies, including the existence of solutions and
its numerical treatment. Concerning the first aspect, we refer to Cazenave (2003),
Carles (2008) and references therein.

With respect to the numerical integration of the GPE equation, a combination of
spectral discretization in space with splitting methods in time constitutes a natural
option, and in fact has been explored in detail in the literature; see e.g. Bao, Jin and
Markowich (2003b), Bao, Jaksch and Markowich (2003a, 2004) and Thalhammer,
Caliari and Neuhauser (2009). If (6.37) is expressed as

iatl//(xa t) = (A + B(x7 w))(//(xe t)a L/’(x’ 0) = WO(X)’ (638)
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with
1
A=—3A By =Vx)+ alyl?, (6.39)
it is clear that the solution of the initial value problem iy, = Ay, ¥ (x, 0) = Yo(x) is
Wix, 1) = e yo(x)

and (an approximation to) ¥ (x, t) is obtained by representing the initial value with
respect to the (truncated) Fourier basis functions.
On the other hand, given a real function G, the solution of

10,(x,1) = Gx, [y (x, D)) Y (x, 1) (6.40)
leaves the norm invariant, i.e. [/ (x, )| = [¥(x, 0)|, and therefore
Y(x, 1) = e HECIWEOD (), (6.41)

In consequence, the initial value problem id;yy = By, ¥(x,0) = Yp(x) is also
solvable. Splitting methods can also be applied in the more general situation when
the potential V is explicitly time-dependent, as explained earlier for the linear
Schrodinger equation.

6.4. Parabolic evolution equations
Let us now consider the evolution equation
u'(t) = Lu(t) = Au(t) + Bu(t), t>0, u(0)=uo, (6.42)

where the linear, possibly unbounded, operators A, B and L generate Cy semigroups
over an infinite-dimensional Banach space X. We recall that if L is the infinitesimal
generator of the C semigroup 7'(¢t) on X and ug € D(L), the domain of L (which is
dense in X), then u(t) = T(¢t)uy is a classical solution of (6.42) (Partington 2004).
Since in the special case of a bounded linear operator L the solution is given by
the familiar expression u(t) = e'“uy (Engel and Nagel 2006), the semigroup T'(¢)
is also denoted by the symbol e’Z; see Engel and Nagel (2006), Pazy (1983) and
Yosida (1971) for an introduction to the theory of Cy semigroups.
A prototypical example is the linear heat equation with potential

u(t,x) = %Au(t,x) - V(x)u(t, x). (6.43)

Here V(x) > 0, ¢ > 0 and x € R? (or x € T9). In that case (Au)(x) = 1Au(x),
(Bu)(x) = =V(x)u(x) and A generates only a Cy semigroup. This can be seen
by considering the equation u, = %Au on 0 < x < 1 with Dirichlet boundary

.. . . Lk
conditions: the kth Fourier mode of the solution is cze~2k™)

not well-defined for ¢ < 0.
Hansen and Ostermann (2009a) have established the following result. Assuming
that |le’4]] < e®?, |le’B|| < e®! for the same value of w > 0 and all r > 0, and

, which is generally
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that for any operator E, | obtained as the product of exactly r + 1 factors chosen
amongst A and B, there is a constant C > 0 such that

IE e Pug|| < C.

Then a splitting method W(h) = ]_[j.:1 elihB eaihA  with all aj >0andb; > 0and
of classical order r, retains its order when applied to (6.42):

|(P(h)" — e Dyug|| < Ch", fornh <ty, (6.44)

where the constant C is independent of n and / on the bounded time interval [0, 7 ].

In practice, however, the positivity requirement on the coeflicients restricts the
splitting method to be of at most order two. If, in addition, [ B, [A, B]] is a bounded
operator and ||e’[Z-[4-Bl]|| < e’ then the same result (6.44) also holds for splitting
methods involving double commutators,

Y(h) = eb