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Heegner Points on Cartan Non-split Curves

Daniel Kohen and Ariel Pacetti

Abstract. Let E/Q be an elliptic curve of conductor N, and let K be an imaginary quadratic field
such that the root number of E/K is —1. Let & be an order in K and assume that there exists an odd
prime p such that p? || N, and p is inert in &. Although there are no Heegner points on Xo(N)
attached to 0, in this article we construct such points on Cartan non-split curves. In order to do
that, we give a method to compute Fourier expansions for forms on Cartan non-split curves, and
prove that the constructed points form a Heegner system as in the classical case.

Introduction

Let E be an elliptic curve over Q of conductor N. A difficult unsolved problem is to
construct a set of generators for the rational points on E. To date, “Heegner points”
construction is the only general method known. Let K be an imaginary quadratic field
such that E/K has root number —1. Let & be an order in K of discriminant prime to
N satisfying the Heegner hypothesis for Xo(N); that is, all primes dividing N are split
in O (see [Dar04, Hypothesis 3.9]). Then one can construct points on the modular
curve Xo(N) and map them through the modular parametrization to get points on
E. The Gross-Zagier Theorem says that the constructed points are non-torsion if and
onlyif L'(E/K,1) # 0.

Heegner’s construction can be generalized to any square-free N using Shimura
curves provided the Heegner hypothesis for Shimura curves is satisfied: the number of
prime numbers dividing N that are inert in & is even. Although the hypothesis might
look awkward, when N is square-free it is the right one for the root number of E/K to
be —1. When N is not square-free, this is not true anymore. For example, suppose E is
an elliptic curve over Q of conductor p? (p an odd prime) and K is an imaginary qua-
dratic field with discriminant D such that D and p are relatively prime and p is inert in
K. In this case, the root number is still -1 (see, for example, [Zha01, Definition 1.1.3]),
but the Heegner hypothesis is not satisfied. Nevertheless, there should exist some
Heegner point construction (and Heegner systems) and a Gross-Zagier-Zhang for-
mula should hold. Since there are no Heegner points on the classical modular curve
Xo(p?) associated with &, we need to consider other modular curves. A canonical
choice in this case is to consider the so-called Cartan non-split curve, which is a quo-
tient of the Poincaré upper half-plane by a Cartan non-split group. Since such group
is a subgroup of a matrix algebra, once we proved that our curve E is a quotient of the
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Jacobian of the Cartan non-split curve, the modular parametrization can be explicitly
computed using the Fourier expansion of modular forms for it.

Some new problems appear while working with such groups; for example, what is
the right normalization of a modular form? (There is not an easy formula to relate all
Hecke operators eigenvalues with Fourier coefficients of eigenforms for such groups.)
Some interesting problems that will not be addressed in this article (and are unknown
in general) are determining the strong Weil curve for the Cartan non-split curve (even
deciding when it coincides with the strong Weil curve for I (N)) and determining the
Manin constant for it.

In this article we show how to compute Hecke operators for Cartan non-split curves
(and curves that are mixed situations of classical curves for some primes and Cartan
non-split for the other ones) and how to compute the Fourier expansion of Cartan
modular forms. We propose a natural normalization (well defined up to +1) and
show how to construct Heegner points (and Heegner systems) on modular curves
over imaginary quadratic fields satisfying the Cartan-Heegner hypothesis using the
presented theory.

This article is organized as follows: we start with the case N = p? where all new
ideas appear while avoiding dealing with subindices in a first reading. In the first
section we recall the basic definitions of Cartan non-split curves, and give a moduli
space interpretation for them. Our moduli problem is different from the classical one
and also from the one presented in [RW14], but it makes the geometric and analytic
properties of Hecke operators and Heegner systems more clear. For example, with
this moduli interpretation it is easy to define Hecke operators (outside p), and show
that this definition agrees with the double coset definition (as in [Che98]). It is also
easily generalizable to the mixed situations.

Next we focus on the problem of computing Fourier expansions of Cartan modular
forms. We propose a suitable normalization and prove that with this normalization,
the Fourier expansion of a Cartan modular form has coefficients in Q(£,) (the p-th
cyclotomic field). The way to compute the Fourier expansion is to write the form as
a linear combination of other modular forms (twists of the weight 2 modular form
attached to E) and then solve a linear system to compute the combination explic-
itly. A theorem of Chen and Edixhoven ([Che98, Edi96]) proves that our curve is
isogenous to a quotient of the Jacobian of the Cartan non-split curve, so the Eichler-
Shimura construction and the Abel-Jacobi map give the modular parametrization.
A difference with the To(N) case is that the cusps for the Cartan non-split curve are
not defined over Q (implying the natural modular parametrization is not rational), so
we average over all conjugate cusps to get a rational map (which we also call modular
parametrization). Galois conjugation sends a Cartan modular form to another Cartan
modular form but for another Cartan subgroup, i.e., it corresponds to another choice
of a non-square modulo p, so in the modular parametrization, all Cartan non-split
groups are involved.

After the theory for level p* is done, we move to the general case of mixed types;
i.e., elliptic curves whose conductor are not square-free, and some primes dividing the
conductor are split in &' while others are inert. Although no extra difficulties appear,
we believe that considering the conductor p? case first gives a better understanding
of the new ideas involved.
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The third and fourth sections are about constructing Heegner points and Heegner
systems satisfying the usual compatibility relations. Using this, we can prove a big part
of the Birch and Swinnerton-Dyer conjecture for E/K by applying the usual Darmon-
Kolyvagin and Gross-Zagier-Zhang formula machinery (Theorems 3.6 and 3.7). We
also include some computational details on how our construction can be carried out
for any particular curve E and any order & satisfying the Cartan—-Heegner hypothesis.

The last section of this article contains many examples where we show how the
method works for different elliptic curves, including the Manin constants and Heeg-
ner points obtained by our method for each of them.

1 Cartan Non-split Curves of Prime Level

Notation and conventions Throughout this article, p will denote an odd prime and
¢ will be a non-square modulo p. Given a matrix A € Mx2(Z), A will denote its
reduction modulo p.

1.1 Definition

The Cartan non-split ring modulo p is the ring

CZS(P):{(?Z) Eszz(IE‘p):azd,czbsmodp}.

X

The group of invertible elements (Cj(p))* is isomorphic to the cyclic group F, =

F,(/€)". We also define the ring

M, (p) = {AeMya(Z) : Ac Cl(p) }-

The Cartan non-split group I (p) is the group of determinant 1 matrices in M, (p).
We can also consider

C;Jsr(p):{(‘jf;) eMzXz(IF‘p):azd,czbsoraz—d,cz—bs},

and define M:! (p) and T5F (p) as before. The group I':f (p) is called the normalizer
of the Cartan non-split group.

Let X be the Poincaré upper half-plane, and consider the complex curve Y (p) =
I:.(p)\H whose compactification obtained by adding the cusps is the Cartan non-
split modular curve of level p, X:.(p) = T:(p)\F*. Analogously, we can de-
fine X;7(p) = I;{ (p)\H". Since det: (Cy,(p))* — F}, is surjective, the modular
curves X5 (p) and X5!(p) are both defined over Q (see [Shi94, Section 6.4, Propo-
sition 6.27]).

1.2 Moduli Interpretation

We will give a new moduli interpretation for the complex points of the Cartan non-
split curve. For other moduli interpretations, see [Ser97, Appendix 5] and [RW14].
Consider pairs (E, ¢), where E/C is an elliptic curve and ¢ € Endg, (E[p]) satisfies
that ¢? is multiplication by e. We identify two such pairs (E, ¢), (E’, ¢") if there
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exists an isomorphism of elliptic curves ¥: E — E’ such that the following diagram is
commutative:

For any number field K, we say that the point (E, ¢) is a K-rational point of the
Cartan non-split curve if E is an elliptic curve defined over K and ¢ is defined over
K. Recall that by definition ¢ is defined over K if ¢° = ¢ for every o € Gal(K/K), i.e.,
¢(P%) = ¢(P)? for every P € E[p] and every o € Gal(K/K).

Proposition 1.1 The moduli problem of pairs (E, ¢) is represented by the Cartan non-
split curve Y (p). The point T (p)T corresponds to the pair (E, ), where E; =
C/(r,1) and ¢ is the endomorphism of E.[ p] whose matrix in the basis By = %, %}
equals (27).

Before writing the proof, we need an auxiliary lemma.

Lemma 12 Let M € GLy(F,) satisfying M* = ( § 0 ). Then there exists A € SL,(Z)
such that AMA ' = (29).

Proof Clearly there exists B € GL,(F,) such that B'MB = ( ¢} ). Consider the
centralizer of (2 } ), which is given by (C%,(p))* and take any matrix C of determi-
nant det(B) ! there. Then BC € SL,(FF,) and (BC)'M(BC) = (2} ). The result
follows from the fact that the reduction map SL,(Z) ~ SL, () is surjective. [ |

Proof of Proposition 1.1 'We need to check that the previous correspondence be-
tween points on Y (p) and pairs (E, ¢) is well defined and bijective.

Let 7 and 7’ be points on H corresponding to pairs (E., ¢), (Ey, ¢ ), respec-
tively. To prove that the map is well defined and injective is enough to prove that such
pairs are isomorphic if and only if 7 and 7’ are equivalent under T (p). It is well
known that any morphism ¥ between two elliptic curves is given by multiplication
by a complex number «. In particular, if ¥ is an isomorphism, a(7,1) = (7’,1), so
that there exists ( 9 %) € SL,(Z) such that ar = a7’ + b and & = c7’ + d. Moreover,
¥ must satisfy ¢V = ¥¢. In the chosen basis, this is equivalent to

- W($e(1)) = ¢ (¥(L)),
C W(e(D) = o (¥(D)).

It is easy to see that the following hold

. 1V _ T\ _ ate _ aer’ +be

V(g () = W() - e - mere,
FW(L) = = e o g (W(L)) = e

Since equality holds modulo (1, 7'), we get that a = d mod p and ¢ = ¢b mod p.
This proves that the pairs (E;, ¢) and (E., ¢+) are isomorphic by a map satisfying
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the first condition if and only if 7 and 7’ are equivalent under I': (p). The commuta-
tive condition for the second basis elements is similar and gives the same constraint.

To prove surjectivity, let (E, ¢) be any pair as before. Up to isomorphism we can
assume that E = C/(7,1), where 7 € H. Let B = %, %} be a basis of E[p]. By

Lemma 12, there exists a matrix A € SL,(Z) such that A[¢]A = (93). Hence,
[E.¢] = [C/(A-7.1),¢'], where [¢']qp.canyp = (20)- n

Remark 1.3 'The moduli problem for T;¥ (p) consists of pairs (E, ¢) as before, where
two pairs (E, ¢), (E’, ¢") are isomorphic if ¥¢ = +¢"¥. There is an involution w’

P
acting on X3, (p) given by wj,(E, ¢) = (E, =¢) and X0 (p) = X,s(p)/ @}

1.3 Modular Forms and Hecke Operators

LetT c SL,(Z) bea congruence subgroup. Let f: H — Cbe an holomorphic function.
If( at ) eI, and k € Z, we define the slash operator

L)1) = (e )y (220,

cz+d

Let My (T) be the space of holomorphic functions that are invariant under the previ-
ous action for all elements in I and that are holomorphic at all the cusps, and let S (T')
be the subspace of cusp forms, i.e., those forms in My (I') whose g-expansions at all
the cusps have zero constant coefficient. Let I'(p) be the principal congruence sub-
group of level p. The inclusion I'(p) c T (p) gives a reverse inclusion at the level of
modular forms S (I (p)) € S2(T(p)). Ifa, = ( po ) and f € S,(T(p)) f = fl2[ap]
is a modular form with respect to (&,)'T'(p)a, = [o(p?) N Ti(p). Define T(p) :=
To(p?) NTi(p). Thus, slashing by a, gives the isomorphism S,(I'(p)) = S, (T(p)).

There are two ways to define Hecke operators for classical subgroups. The geo-
metric way is to define them as correspondences on the modular curve and, via the
moduli interpretation, translate this action to an action on modular forms. The alge-
braic way is to define them in terms of double coset operators. We will describe both
definitions and prove that they agree.

1.3.1 Geometric Definition

Let n be a positive integer prime to p and let (E, ¢) be a pair corresponding to a point
on the moduli interpretation of the curve Y, (p). Define the Hecke operator

TiUE = T (Fyesoq),

y:E—E’

where the sum is over degree n isogenies y: E — E’ of cyclic kernel, and ¥ denotes
the dual isogeny. Note that since ged(n, p) = 1, + € Endg, (E'[p]). Also, since y o §/
and ¥ o y are multiplication by n, (+y o ¢ o ) o (£y 0 ¢ o ) is multiplication by ¢,
so the points in the formula belong to Y (p).
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1.3.2 Algebraic Definition

We provide a little survey of Hecke operators for the Cartan non-split curve, following
Shimura’s book [Shi94]. Define

Ap:={ A€My (Z) : det(A) > 0 and ged(p, det(A)) =1}
and Aj (p) := A, n M, (p). Moreover, consider

A(p) == {AEA‘0 A= (39) modp}.
Let R(T:,(p), A% (p)) and R(T(p), A(p)) be the Hecke rings as defined in [Shi94,
p. 54].

We need to introduce a new operator. Let n € Z satisfy p + n and let B € A% (p)
be any matrix with determinant congruent to n modulo p. Let A%, € SL,(Z) be such
that A% = B( 5 17,1 ) mod p. The action of A% on S,(T%,(p)) defines an operator that
we will denote v5,.

Lemma 1.4 The operator v%, defines an isomorphism from S, (T5,(p)) to 52(1‘22‘2 (p))
which depends only on the class of n modulo p. It is equal to the double coset operator

T2 (P)ASTEY (p).

Proof SinceBe C (p)and (4 17,1 ) _ICZS(p)( 0 17,, ) = Cfl’s‘z (p), the first assertion
follows. Let B and B’ be matrices in A% (p) of determinant n and n’ respectively
with n = n’ mod p. Choose any two matrices A%, and A%, corresponding to B and B’
respectively. Clearly, A% A

Let h: R(T(p), A(p)) = R(T;;(p), A%s(p)) be the map given by I'(p)BI'(p) -
r;s(p)Ailet(ﬁ)ﬁris(p)‘

e -1
n'

€ I, (p), therefore, this matrix acts trivially. [

Proposition 1.5 The map h is an isomorphism of Hecke rings.

Proof We have a map hy: R(Ty (p), AL (p)) = R(SL2(Z), A,) given by
r;s (p)“r;s (p) — SLZ(Z)“ SLZ(Z)7
and a map hy: R(T(p), A(p)) = R(SLy(Z), A, ) given by
T(p)BT(p) = SLa(Z)BSLy(Z).
Both maps are easily seen to be isomorphisms of Hecke rings by the same proof used

in [Shi94, Proposition 3.31]. Moreover, the map h = hj'h; is given by T'(p)ST(p) ~
Ie( p)Afiet( ) BLas (p) and gives the desired isomorphism. [ |

We can consider the classical Hecke operators T, acting on S,(T(p)) for n rel-
atively prime to p. Slashing by a, we obtain the corresponding Hecke operator T,
acting on S(T(p)). In view of the above proposition we define the Hecke operator
T¢ e R(TE(p), A5, (p)) as the operator h(T,).

Lemma 1.6  If B € A(p), the operator T(p)BT(p) acting on SZ(FZZ’Z(p)) is equal to
the operator Fj;‘z ()BT, (p).
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Proof This mimics the proof of Lemma 1.4. ]
Proposition 1.7  As operators on Sp(Ti,(p)), 75, = Ty o V5.

Proof Proposition 3.7 of [Shi94] says that
£ £ &€ & & 8"2 Sf’lz &€
rns(P)Adet(ﬁ)ﬁrns(p) = I‘ns(p)AnFns (p)rns (P)/jrns(p)

Therefore, the result follows from Lemmas 1.4 and 1.6. |
Corollary 1.8 Ifn=1mod p, then T, = T,.

Proof Since the matrix A% can be taken to be the identity, v}, is the identity map. W

We can prove the following proposition in the same way as Proposition 1.7.

Proposition 1.9 For any n prime to p, the operators T,: S2(T:,(p)) — SZ(F,%"z(p))
and v5: S (Ti(p)) — Sz(l"f,?2 (p)) are morphisms of Hecke modules.

Theorem 1.10  The geometric and algebraic definitions of Hecke operators coincide.

Proof We can restrict to n prime and n # p. It is enough to see that the set of
representatives used in one definition can be taken as representatives for the other
one. Take representatives for I': (p)A% (3 %) IE (p) modulo TE(p). By [Shi94,
Lemma 3.29(5)], these are also representatives for

SLy(Z) A (1§ 9) SLa(Z) = SLo(Z)( 4 ) SL2(Z)

modulo SL,(Z). This set of representatives coincides with a set of representatives of
cyclic isogenies of degree n. Each representative is a matrix A of determinant ». The
dual isogeny is given by the matrix Adj(A). Both matrices belong to A% (p); thus,
they commute with the matrix ( 03 ) modulo p and A Adj(A) = n1d. Therefore, re-
calling the geometric definition, we have that 7, ([C/(7,1), ¢;]) = > 4[C/(ar.1), d4],
where [gbA]{ L) = (93) as desired. [

p’p

1.4 Chen-Edixhoven Isogeny Theorem

If € is a curve, we denote its Jacobian by Jac(%').

Theorem 1.11 (Chen-Edixhoven) The new part of Jac(X (p*)) is isogenous to
Jac(XEt(p)). Furthermore, the new part of Jac(Xo(p?)) and Jac(X,(p)) are isoge-
nous. In addition, the isogenies are Hecke equivariant.

Proof See [Che98, Theorem 1], [Edi96, Theorem 1.1], and [dSE00, Theorem 2]. Al-
though the Hecke equivariant condition is not explicitly stated, by [dSE00, Theorem 2]
the decompositions are functorial in (M, a), hence they are preserved by all endo-
morphisms of M that commute with the G-action. In the case of Jacobians of mod-
ular curves, this means that the isogenies commute with all Hecke operators of level
relatively prime to p. u
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In particular, if we start with a normalized newform g € S,(To(p?)) such that
Tng = Ang for all n relatively prime to p, Theorem 1.11 implies the existence of a form
ge € S2(T%,(p)) such that T% g, = A,,g. for all n relatively prime to p.

Chen-Edixhoven’s Theorem plus multiplicity one for classical newforms ([DS05,
Theorem 5.8.2]) for S,(Ty(p?*)) give multiplicity one for a system of eigenvalues for
the Hecke algebra R(T;,(p), AL (P))-

Our primary goal is to compute the Fourier expansion of g,. Since g, is an eigen-
function for the Hecke operators .7}, and since such operators coincide with T;, if
n =1 (mod p), our form lies in the space of eigenfunctions for T, with eigenvalues
An for n =1 (mod p). Then we can write g. = ge|>[e,] as a linear combination of
eigenforms on S,(I'(p)) that have the same eigenvalues as g for n =1 (mod p).

Let &, = {f € S;(T(p)) eigenform : 1,(g) = 1,(f) foralln =1 (mod p)}. Can
we characterize & ,?

In general, if y is a character modulo N and & € S, (T(N)) is a newform, we denote
by h ® y the twist of h by x. If T,h = A,(h)h, then T,(h® x) = A, (h) x(n)(h ® ¥).
This implies that if y is a character modulo p, g® y € &,.

Theorem 112 Let f € S,(To(p?), ) be an eigenform for the classical Hecke alge-
bra, where vy is a character modulo p. Let g € S5V (To(p?)) be an eigenform without
complex multiplication, and suppose that f and g have the same eigenvalues on a set of
primes of positive upper density. Then there exists a Dirichlet character y modulo p such
that the eigenforms g ® x and f have the same eigenvalues at all but a finite number of
primes.

Proof See [Raj98, Corollary 1]. ]

Therefore, all elements of &, are the form g® y (where y varies over the characters
of conductor p) or are newforms attached to them, since it may happen that g® y €
S2(To(p?), x*) is not a newform (it may fail to be new at p). In that case there is an
associated newform living on S, (To(p), x*) that appears in the linear combination as
well. Being new at p can be read from the type of the local automorphic representation
of g at the prime p, as explained in [AL78]. We have proved the following theorem.

Theorem 113 Let g € S5 (To(p?)) be a normalized eigenform with eigenvalues
An (n relatively prime to p), and suppose that g does not have complex multiplication.
Let g. € S2(T5,(p)) be the unique normalized eigenform such that 75, g. = Auge (n
relatively prime to p). Let it, be the local automorphic representation of g at p.

o If m, is supercuspidal, then g ® x is a newform in Sy(To(p*), x*) for all characters x
modulo p and

=Y ay(g®)),
X

for some a y€C where the sum is over all characters modulo p.
s If m, is Steinberg, there exists a newform h € S;(To(p)) such that h ® x, = g, where
p is the quadratic character modulo p and

&= a,(g®y) +ah
X
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for some ay, a € C, where the first sum is over all characters modulo p.
* Ifm, is a ramified Principal Series, there exists a non-quadratic character 6, modulo
p and newforms

2 —
heSz(Fo(p),Op ), heSz(Fo(p),Gf,)
suchthath® 60, =g=h®0,. Then

&= a,(g®)) +aih+ash,
X
for some ay, a, a; € C, where the first sum is over all characters modulo p.

Remark 1.14 1f g, € S,(T:f(p)) is an eigenform, then T, f = A, f for n = -1 mod p
as well. Therefore, all the non-zero coefficients in the linear combination of Theo-
rem 1.13 are those corresponding to even characters.

Similarly, if g, € S»(Ts; (p)) (i.e, any matrix in the normalizer but not in the
Cartan itself acts as —1), then the non-zero coefficients in the linear combination of
Theorem 1.13 are those corresponding to odd characters.

1.5 Fourier Expansions

In order to compute the Fourier expansion of the normalized newform g., we first
need to understand the action of the Galois group Gal(C/Q) on modular forms. For
a € Q% and z € H define

z,1 z,1
ful) = SEDEED o (a( )20,
where p(—; w;, ;) is the classical Weierstrass function associated with the lattice
L = {wy, w32); g2(L) = 60G4(L), and g3(L) = 140G4(L) correspond to the lattice
functions Gy, (L) = 3 ,cr W% (see [Shi94, Section 6.1] for example). These functions
satisfy fa(y(2)) = fay(2z) for every y € SL,(Z). Let R, be the field of modular func-
tions of level p, which by [Shi94, Proposition 6.1] is

Ry =C(j.falae(p'2?)2 at¢Z?).
Let &, be a fixed p-th root of unity and let o € Gal(C/Q(&,)). Since the functions
J» fa have Fourier expansions belonging to Q(&,),if f = cj + X, ¢a fa, then o(f) =

0(c)j+ Y, 0(cqa)fa. If we choose representatives {8y } for £I'(p)\I's,(p), the field of
modular functions for the non-split Cartan is the subfield of R, given by

Reo(p) =C(is Y fap.) -

Clearly it does not depend on the representatives chosen. In order to understand the
action of Gal(C/Q) on modular forms for the Cartan non-split group, it is enough
to understand the effect of Gal(Q(&,)/Q) on them. For every # relatively prime to p
consider the automorphism o, given by g,(£,) = £,” . This Galois automorphism
depends only on the class of n modulo p. By [Shi94, Theorem 6.6] and [Lan87, Theo-
rem 3, Chapter 6, section 3] this automorphism acting on the meromorphic modular
functions f, is given by faa _,, where ax := (§ 9).
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Proposition 115 Let f be a meromorphic form of weight 0 for T; (p). Let ¢ «
Gal((C/Q) satisfying o |o(g,)= 0. Then o(f)isa meromorphchorm of weight 0 for

I (p).

Proof Choose representatives { Sy} for +T'(p)\I';,(p) such that the (1, 2) entries of
the matrices are divisible by n. Since f is a meromorphic form of weight 0, we have

F=Mj+ Y ha Y fapi

Then

0(f) = 0(V)j+ ¥ 000) S s, o
The action on each f, can be written as fapia,+ = faa, 1 (anpia, 1) SinCe {anProty-1 bk
are representatives for +I'(p)\I':? ( p), we see that 0( f) is an automorphic form for
the required group. ]

Remark 1.16  Although the last result is only stated for weight 0 forms, it also applies
to modular forms of other weights by dividing the form by an appropriate Eisenstein
series with rational Fourier coefficients.

Proposition 117 Let f be a meromorphic modular function for T c(p) andlet o €
Gal(C/Q) satisfying o [oe,)= on- Then o (v5, (£)) = v (o(f)):

Proof Choose A%, in such a way that its (1,2) entry is divisible by n. It is easy to
see that ({9 ) A%, ( 01 /n ), Wthh belongs to SLy(Z) by our choice of A%,, gives the
same action on the f, as A”‘ (since both matrices are easily seen to be equivalent
modulo p). This proves the result on weight zero forms. For general weights, the
same argument as in Remark 1.16 applies. |

Corollary 1.18  With the previous notation, ﬁ;"z(a(f)) =a(75(f)).

Proof This follows from the previous proposition and the fact that 0 commutes with
T}, (this is easily obtained by looking at the action on g-expansions). ]

Corollary 1.19  Suppose that g € S,(To(p*)) is a newform with rational eigenvalues.
Then o(ge) € So(T5F (p)) is a normalized newform with the same eigenvalues as g,

ie, if 75,(ge) = Amge with Ay € Q, then T (0(ge)) = Amo(ge)-

Corollary 1.20  With the previous notations, if m is relatively prime to p and satisfies
mn =1 mod p, then there exists c,, € C such that Ty, ge = cn0o(ge)-

Proof By Proposition 1.9, T,,(g.) is an eigenform in sz(r;gz( p)) with the same
eigenvalues as g.. By Corollary 1.18, 0 (g, ) is an eigenform whose eigenvalues are the
same as those from g,. The result now follows from multiplicity one. ]

Theorem 1.21 Let g. € S,(T:.(p)) be a normalized eigenform that has the same
eigenvalues as a rational newform g € S;(To(p?)). Then g, has a g-expansion belonging

to Q(fp)
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Proof Let¢=1mod p be such that A, # 0, and let 0 € Gal(C/Q(£,)) be arbitrary.
By Corollary 1.20 , there is a ¢, such that Tpg, = c,0(g:). We know that Tpg, = Apg:
(by Corollary 1.8). Looking at the first Fourier coefficient, we get that ¢, = A, and
hence g, = 0(g:). Since o € Gal(C/Q(¢,)) is arbitrary it follows that the g-expansion
of g lies in the desired extension. [ |

1.6 Rational Modular Forms

The curve X (p) is defined over Q and has (p — 1) cusps, all of which are de-
fined over Q(£,) and conjugate by Gal(Q(&,)/Q) (see [Ser97, Appendix 5]). If
o, € Gal(Q(&,)/Q), then there exists A € SL,(Z) such that 0, (c0) = Aco. The
matrix A can be taken to be equal to A% as defined before Lemma 1.4. Recall that if
f is a weight k modular form, its Fourier expansion at the cusp A% oo is given by the
Fourier expansion of the form f|;[(A%)™"] at the infinity cusp.

Let F%,(p) be the field of rational meromorphic functions for the Cartan non-
split group I (p), i.e, Iy (p) = Q(j, X; fap,). Combining Proposition 1.15 with
Lemma 1.4, it is easy to see that F%_(p) consists of all meromorphic functions in-
variant for I'; (p), whose g-expansions at infinity belong to Q(¢,,) and such that the
Fourier expansion at 0, (o0) equals 0,-1(f). As in Remark 1.16, the same argument
applies to other weights.

Definition 1.22 (Rational Modular Forms) A form f € S,(T5(p)) is called rational
ifits g-expansion at every cusp belongs to Q( £, ) and the expansion at the cusp g, (o)
equals that of 0,,-1(f) at the infinity cusp for all n relatively prime to p.

Recall that if X is a curve defined over a field K, a differential form defined over K
is a differential form that is locally of the form fdg, where f and g are meromorphic
forms defined over K.

Proposition 1.23  If f € S,(T:,(p)) is rational, it defines a rational meromorphic
differential form f(q)% on Xt (p), where g = e(¥mi2)/p,

Proof Note that

f(q)‘iqq - %f(Z)dﬁ ff()) aj.

Since j belongs to F%(p) and f—ii is a rational meromorphic function with respect to

SL,(Z) (of weight two) , their quotient lies in F%,(p) as claimed. [ |

Theorem 1.21 says that g, has g-expansion with coefficients in Q(¢,). If we mul-
tiply the form by any constant in such field, the same holds. What is the right way to
normalize g,?

Theorem 1.24  Let g. € Sy(T;;,(p)) be an eigenform with rational eigenvalues. Then

there exists a constant c € Q(&,) such that cg. is rational. Such a constant is unique up
to multiplication by a non-zero rational number.
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Proof Itis clear that ¢, if exists, is unique up to multiplication by a non-zero rational
number. By Proposition 1.7, it is enough to find ¢ € Q(¢, ) such that that for all prime
numbers &, Tp(cge) = Ae0p-1(cge)-

We have that for each ¢, there exists ¢, € Q(&,), which only depends on the class
of £ modulo p such that Teg, = A¢ce0p-1(g:) . We need to find a non-zero c € Q(&,)
such that Tp(cge) = Aege-1(cge), ice., ce = gp1(c)/c.

Let € be such that its class modulo p is a generator of I} and let {£; }1<icp-1 be
distinct primes in the same class of £ modulo p such that A¢, # 0 (since g does not have
complex multiplication, such primes exist by Serre’s open image theorem or Sato-Tate
theorem). In that case, Hfz_ll ¢; =1 mod p and

(TTA¢,)ge = Tme,(ge) = Te,(ge) = Tey o+ 0 Te, ,(ge)
= (HAei)ng(E")(Cg)gg.

Since ng(s”

)(Cg) = 1, by Hilbert’s Theorem 90 there exists ¢ € Q(&,) that satisfies
ce = 0p-1(c)/c. Since £is a generator of 7, it is easy to see that ¢ satisfies ¢, = 04-1(c)/c
|

for every q relatively prime to p.

Remark 125 Let g, € S,(T2 (p)). If £ = ~1 mod p, o corresponds to complex
conjugation in Q(&,). Since the characters involved in the sum are even characters,
x(€) =1, and by the last proposition g, acts trivially. This implies that the coefficients
of the modular forms in factliein Q(EP+£p_1) = Q(§,). Similarly, if g. € S2(T;i5 (p)),
the coefficients will be purely imaginary.

Note that even for a rational modular form, it is not clear how to choose the rational
multiple that should correspond to “a; =17 in the classical case. The best one can do
is to choose the coefficients to be algebraic integers and have no common rational
integer factor.

Definition 1.26  'The proper normalization of g, is the unique (up to sign) renormal-
ization G, of g, that satisfies the following.

¢ G, is a rational newform.
* The Fourier expansion of G, has algebraic integer coeflicients.
e If n e Zand n > 2, then % does not have integral coefficients.

Remark 1.27 1f G, € S,(T:,(p)) is a properly-normalized eigenform with rational

eigenvalues, then 0, (G;) € S, (Fj;‘z (p)) is a properly-normalized eigenform with ra-
tional eigenvalues. Moreover since G, is rational, we must have 0,,(G;) = G¢|¢[(A%)]
(see Definition 1.22).

1.7 Eichler-Shimura

The Eichler-Shimura construction ([Shi94, Theorem 7.9]) associates with G, the
abelian variety @7, = Jac(X5,(p))/(Ig, Jac(X:,(p))), where Ig, is the kernel of
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the morphism from R(I%,(p), A% (p)) — Z which is given by sending .7}, to the
eigenvalue A,,. We have the diagram

X5 (p) = Jac(X;. (p))

G,

where i is the map sending P to (P) — (o0) and the vertical map (which is clearly
rational) is given by the classical Abel-Jacobi map given by integrating the differential
form G.(q) d—qq and its Galois conjugates over cycles. By Proposition 1.23 this differ-
ential is rational, thus the abelian variety <7, is of dimension 1, and by Theorem 1.11
isogenous to the strong Weil curve E, attached to g. The elliptic curve 2/, will be
called the optimal quotient of Jac(X},(p)) (note that it might not be isomorphic to
E,).

) Since the cusps of the Cartan curve are defined over Q(¢,) (and are Galois conju-
gates over that field) the map i will not be defined over Q. Nevertheless, we can solve
this problem by averaging over all the conjugates of this map; that is, we consider the
following diagram

N )..C_’> Jac(X;5(p))
G,

where | is the map sending P to ¥ sccai(q(é,)/q) (P) = (0(00)). This is the right and
natural definition to make a map defined over Q out of i. Therefore, the dot map (that
we still call modular parametrization) is defined over Q.

Remark 1.28 1f G, € S,(T:H(p)), since the normalizer has (p —1)/2 cusps, all de-
fined and conjugate over the maximal real subfield of Q(¢, ), we will take the average
in the definition of 1 over all such cusps.

Lemma 1.29  Let n be relatively prime to p. Then o, = /G_,.
Proof It is enough to see that the lattice of periods of G. is the same as the lattice

of periods of 0,,(G,) = G,z which is a rational eigenform for Sz(lf;‘z (p)) (Remark
1.27). Let D be the closed cycle {7, M7} with M® € T; (p). Integrating G, over that

cycle, we get
Mt dq
Ge(q)—-
J ey

By changing variables z — [A¢,]™'z we obtain

(4] M d B I d
I G401 = (G0

L [4s]™'r
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This expression is the integral of 0,, (G ) over the cycle {7/, [A% ] "' M*[ A% ]7’}, where
7 = [A5] 7. Since [AS ] T ME[AS] € FZ:‘Z (p), it gives a closed cycle on ]ac(Xf,Q’2 (p))-
|

Let E denote the elliptic curve 27;, (which does not depend on ¢). If wg is a
holomorphic differential on C/Ag, its pullback under @3, is a constant multiple of

Ge(q) %q (by multiplicity one), where q = e(279)/?, Such constant will be called the

Manin constant c,. Since E, @}, and Gs(q)% are rational, the Manin constant must

be a rational number. It is not difficult to see that the Manin constant does not depend
on ¢, so we can speak of the Manin constant c.

Proposition 1.30  Let Ag, be the lattice attached to G, and ¢ the Manin constant. Let
®,:C/Ag, — E be the Weierstrass uniformization. Then @5 (1) = @, (z;), where

27 A
. C( ZOy [ aGoe) )
p ﬂnEGal(Q(Ep)/Q) *

Proof This follows from [Dar04, Proposition 2.11] and the identity

e-1 &

T d AT . d Al
[ @2 [ G- [
0y (00) q oo q oo

2 General Levels

TG ™. m
q

In this section we generalize the previous results to more general conductors. Thanks
to the Chinese Remainder Theorem, the theory works in exactly the same way as
in the p* case. Let E/Q be an elliptic curve of conductor N*m with gcd(N,m) =
L,and N = p;...p, (p; distinct odd primes). By Shimura-Taniyama-Wiles, there
exists an eigenform g € S2°"(Ty(N*m)) with rational eigenvalues whose attached
elliptic curve is isogenous to E. Let ¢; be a non-square modulo p;, fori = 1,...,r
andlet &= (e, ...,¢). Let TS (N, m) = ni_T&(p;) nTo(m) and consider the curve
X5s (N, m) = Ty (N, m)\JC".

The moduli interpretation is a mix of the classical one and the one from the pre-
vious section. We consider tuples (E, v, ¢, ..., ¢,), where E/C is an elliptic curve,
v:E — E' is a cyclic degree m isogeny (or equivalently a cyclic subgroup of order
m), and ¢; € Endg, (E[p;]) is such that ¢? corresponds to multiplication by ¢; for
i =1,...,r. A computation similar to that of Proposition 1.1 shows that X¢_(N, m)
represents the moduli problem stated.

We have the following generalization of Theorem 1.11.

Theorem 2.1 Jac(X: (N, m)) is isogenous over Q to ]ac(Xo(sz))Nz‘“eW by a
Hecke equivariant map.

Proof Let X(Nm) be the modular curve that is the compactified moduli space of

triples (E/S/Q, ¢), where S isa Q scheme, E/S isan elliptic curve, and ¢: (Z/Nm)3}
E[Nm] is an isomorphism of group schemes over S. The group GL,(Z/Nm) acts on
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the right on X(Nm). If T is any subgroup of GL,(Z/Nm), one can consider the
quotient X(Nm)/T via an appropriate moduli interpretation. We are interested in
the following two subgroups (as subgroups of GL,(Z/Nm)): IZ(N,m) and T :=
ni_T(pi) nTo(m), where T(p) is the standard maximal torus modulo p (consist-
ing of diagonal matrices). The quotients correspond respectively to X2 (N, m) and
Xo(N?m) (as in [Edi96, 1.0.4]).

Using an inductive argument, it is enough to prove that the Jacobian of the quotient
by Iy = n!_; T(p;) n To(m) is isomorphic to the p;-new part of the quotient by I, =
n_,T(pi) N To(pim). But in this case, one can prove [Edi96, Proposition 1.2] in
exactly the same way, where now the subgroups of that paper correspond to the local
components at p; of our subgroups (since both groups are the same at all the other
primes). Then, the same formalism as [Edi96, Theorem 1.3] proves our claim. [ |

The previous theorem, together with the comments in the proof of Theorem 111,
imply that there exists gz € S,(T:, (N, m)) with the same eigenvalues for the Hecke
operators .7 as g outside the primes p;. The theory works in the same way as the
level p? case, with some minor changes.

The geometric definition of Hecke operators is the same as before. We consider all
degree n cyclic isogenies (for n prime to Nm) and consider the same action on each
¢; and, as in the classical case, the image of the cyclic subgroup by our isogeny.

The algebraic definition is also the same, and the operator v¢, as well as coset rep-
resentatives, are defined via a matrix A% € T,(m) that satisfies the corresponding
congruence modulo all the prime numbers p;.

Note that 0, and T;, will send modular forms for I:.(N,m) to modular forms
for T, Zﬁ" (N, m), and all the results from the previous section generalize trivially. In
particular, we have the analogue of Theorem 1.13.

Theorem 2.2 Let gz € S,(TE. (N, m)) be an eigenform with the same eigenvalues as
g away from N. Then there exist eigenforms h; € S(To(N;m), x;), with N; | N?, and
Xi a character modulo N?2/N; such that

e =2 ay(g® ) + Y bihi,
X i

where the first sum is over all characters modulo N.

Remark 2.3 As in Theorem 1.13, the forms h; are exactly those forms such that
when twisted by the appropriate character modulo N, we obtain the newform g. Fur-
thermore, the existence (or non-existence) of such forms is given by the type of the
local automorphic representation of g at the primes dividing N.

Using this theorem we can also compute the Fourier expansion and define G; as a
proper-normalization of gg. Now the coefficient field will be Q(¢,,, ..., &, ), whose
Galois group is isomorphic to []; F , and the modular parametrization ®%; map can
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be written in the form @, (z,) where

; Ai711
Z; = 2 > f 0(Gz)(2)dz.

N seca@(en) /)

Using the Fourier expansion of Gz, we can calculate the integral numerically to arbi-
trary precision. Recall that the convergence of such integral is exponential depending
on the imaginary part of the point on the upper half plane.

Summing up, we have obtained a modular parametrization

2.1) ®5: X5 (N, m) — E(C)

defined over Q. We make the following observation about the Manin constant, which
is supported by the evidence shown in the examples.

Conjecture 2.4 The Manin constant belongs to Z[1/N].

This conjecture should follow from similar arguments as in [Maz78].

3 Heegner Points on General Cartan Non-split Curves

Let E/Q be an elliptic curve and let & = (1, w) be an order in an imaginary quadratic
field K. We say that the pair (E, ©) satisfies the Cartan-Heegner hypothesis if the
following hold.

e The conductor of E is N?m, where gcd(N, m) = 1and N is an odd square-free num-
ber.

* The discriminant d of & is prime to Nm.

* Every prime dividing m is split in 0.

* Every prime dividing N is inert in &.

Note that & satisfies the classical Heegner hypothesis at the primes dividing m
but not at the primes dividing N; therefore, we will not be able to construct Heegner
points on Xo(N?m). Given a pair (E, 0) satisfying the Cartan-Heegner hypothesis,
we will use the letters N and m to denote the factorization of the conductor of E as in
the definition.

Recall that a matrix M € M,y (Z) with Tr(M) = Tr(w) and det(M) = Nm(w)
gives an embedding & < M,y (Z) given by sending w to M. A Heegner point on
X¢ (N, m) with endomorphism ring ¢ is a point 7 on the upper half plane that is
fixed by a matrix M € M’ (N) n Mo (m) satisfying the above conditions.

Let H be the Hilbert class field of &. One associates the elliptic curve E, = C/(1, 7)
with a Heegner point 7. The fact that 7 is fixed by M allows to associate with 7 a pair of
points in Xt (N, m)(H) conjugate under Gal(H/Q(j(E-))) (see [Ser97] Appendix
5 for more details). A Heegner point on E with endomorphism ring & is the image of
a Heegner point with endomorphism ring & in X (N, m)(H) under the modular
parametrization (2.1).
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3.1  Moduli Interpretation

In order to construct systems of Heegner points, it is also useful to have a definition
of Heegner points in terms of the moduli interpretation.

Definition 3.1 A Heegner point on Xt (N, m) is a tuple [, [a], m, ¢, ] where &
is as before, [a] is an element in Pic(&') that determines an elliptic curve E, = C/a
with complex multiplication by &, m is a cyclic ideal in & of norm m, and ¢, €
[1,n Endr, (Eq[p]) is such that

e ¢2 is given by multiplication by &;
o there exists & € & such that ¢, is given by multiplication by « on each coordinate.

Remark 3.2  The element « is well defined modulo N, which is a product of inert
primes of &, so we can just take e € &/N.

Proposition 3.3 Let[O,[a], m, 4] be a Heegner point.

(i)  If 7 denotes complex conjugation, then (O, [a],m, ¢o)" = (O, [a'],m, ¢_4)

(ii) Let[b] be afractional ideal, and let oy, € Gal(H/K) be the Artin symbol associated
with [b]. Then

(0, [a], m, ¢a) ™ = (O, [ab™"],m, o)

(iii) Ifp | N, then w,(0,[a],m,¢a) = (O,[a],m, ¢_4), where w,, is defined as in
Remark 1.3.

Proof Items (i) and (ii) follow from [Ser67] (since m and « are defined over K),
while (iii) follows from Remark 1.3. [ |

Using the geometric interpretation of Hecke operators as described in Section 1.3.1,
itis clear that we have the following formula for Hecke operators (for £ relatively prime
to Nm) acting on Heegner points, analogous to the one given in [Gro84, Section 6]:

3.) T5([0,a,m,¢4]) = > (End(b),b,m-End(b) nEnd(b), ¢s).
a/bzZ/e

3.2 Heegner Systems

Fix an elliptic curve E as before, and let K be an imaginary quadratic field whose
maximal order satisfies the Cartan-Heegner hypothesis. Let # be a positive integer
prime to Cond(E) - Disc(K). Let &), be the unique order in K of conductor n and
let K,, be the corresponding Hilbert class field. The order &), satisfies the Cartan-
Heegner hypothesis, so, it gives rise to a set of Heegner points HP(n) c E(K,,).

Proposition 3.4

(i) Let n be an integer and let € be a prime number, both relatively prime to Cond(E)-
Disc(K). Consider any P, € HP(n¢t). Then there exist points P, € E(H, ) and (when
€| n) Py, € HP(n/e) such that

e if+ nisinertin K, Trg,,/x, Pne = aePu;
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o ift= AN Fnis split in K, Trg,,/k, Pne = (ae — 03 — a/{l)Pn;
e if €| n, Trg,,/k, Pne = Py = Pyye.
where ap = 1+ € — card(E(F,));

(ii) There exists 0 € Gal(K,/K) such that

P," = —sign(E,Q)P,° mod E(K,)1ors»
where T is complex conjugation and sign(E, Q) is the root number of E/Q.

Proof From Proposition 3.3, equation (3.1), and the discussion in between, the result
follows quite formally. See, for example, [Gro9l, Propositions 3.7 and 5.3] or [Dar04,
Section 3.4] and [GZ86, section I1.1]. [ |

Definition 3.5 A Heegner system attached to (E, K) is a collection of points P, €
E(K,) (one for each positive integer n relatively prime to Cond(E) - Disc(K)) that
satisfies the conditions of the previous Proposition.

If E is a rational elliptic curve and K satisfies the Cartan-Heegner hypothesis, we
can obtain a Heegner system from the Heegner points on the elliptic curve E. Given
a Heegner system, Kolyvagin’s machinery works, and we get the following result.

Theorem 3.6 Let {P,} be the Heegner system attached to (E,K) as constructed
above, where the elliptic curve does not have complex multiplication. Define Px =
Trk,/xP1 € E(K). If Pk is non-torsion, then the following are true.

o The Mordell-Weil group E(K) is of rank one.

o 'The Shafarevich-Tate group of E/K is finite.

Proof See [Dar04, Theorem 10.1]. [ |

Furthermore, we have the following crucial relation with L-series derivatives.
Theorem 3.7 (Gross-Zagier-Zhang) The point Py is non-torsion if and only if
L'(E/K,1) 0.

Proof This is part of Zhang’s result in [Zha04]. Note that his choice of order of
level N in (6.3) (page 15) coincides with the Cartan non-split one. Then Theorem 6.1
applies, giving a relation between the L-series derivative and the Neron-Tate height
pairing (inside the Jacobian) of the projection of the Heegner point to the f-isotypical
component. |

Remark 3.8 Zhang’s formula is proved for points on the Jacobian of the Cartan
non-split curve. To get some version of the Birch and Swinnerton-Dyer conjecture in
this context, the Manin constant and the degree of the modular parametrization need
to be computed for such curve. Unfortunately, no such formulas are known.
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4 Computational Digression
4.1 Computing Eigenforms

Let g € S,(To(N?m) be an eigenform with rational eigenvalues. We need to compute
the Fourier expansion of g;.

Lemma 4.1 We have T5 (N, m)/(T(N) nTo(m)) = [T,n Z/(p +1).

Proof The morphism It (p)/T(p) — Fp[\/e] given by ( 4 ©) — a + b\/e sends
Is(p)/T(p) to {a € F}, : Nm(a) =1}, which is isomorphic to Z/(p +1). The result
follows from the Chinese Remainder Theorem. ]

To compute the Fourier expansion of gz we proceed as follows.

(a) We compute the local type at each prime dividing N. This can be done either
by looking at the reduced curve and the field where it gets semi-stable reduction or
by considering twists, as in [Pac13]. Using the local type information, we compute the
newforms h; of smaller level that appear in Theorem 2.2. If there are some ramified
principal series primes, one can compute the form from the elliptic curve as explained
in Appendix A.

(b) Once we have all the forms appearing in Theorem 2.2, we are led to compute
the linear combination. We take a formal linear combination with variables x;. The
forms appearing are invariant under I'(N) n To(m), so we have to impose invariance
under T (N, m)/(T(N)nTy(m)). Using Lemma 4.1 we get a set {«; }; of generators
for the quotient. Imposing invariance under «; (via evaluating the linear combina-
tion at some point in ) gives a linear equation on the x;’s (with complex coeflicients).
Asking invariance for the whole set of generators, we get a linear system, whose solu-
tion set &, are the forms in S, (s (N, m)) with the same eigenvalues as g for n = 1
(mod N).

By Theorem 1.12, &, is the set of twists of the newform g by quadratic characters y
modulo N that are newforms of level N?m. This implies that the space &, has dimen-
sion 29, where d is the number of primes dividing N, where the local representation
is supercuspidal or a principal series (minimal by quadratic twist). We need to pin
down gz. Let p | N be a prime number and let x, be the quadratic character modulo

p-
Fact I: If 7, is supercuspidal, let €, denote the local sign at p. If €, = 1, then g can
be written as a linear combination such as in Theorem 2.2 where only twists of g by

characters with even p-part are involved, while for g®s, only twists of g by characters
with odd p-part are involved. If €, = -1, the situation is the opposite one.

Fact 2: If m, is Principal Series, let q be a non-square modulo p. The operator .7 =
T,vg acts as A4 on the subspace spanned by gz and as -1, on the subspace spanned

by (g® ).

Proof of Fact I: Recall from Remark 1.14 that if €, = 1 (resp. €, = ~1) then only twists
of g with even p-part (resp. odd p-part) are in the sum. By Corollary 3.3 of [Pacl3],
the local sign at p changes while twisting g by x,, like —( _?l) = —u,(-1). Therefore,
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the variation of the sign at p of the characters involved in the combination for g and
g ® x, are different.

Each condition halves the dimension and altogether determine gz up to a constant.
Note that the solution is computed using real arithmetic, so from an approximate so-
lution, we first normalize it such that the first Fourier coeflicient is 1 (so all coefficients
lie in Q(&x)) and then we proper-normalize it using an explicit version of Hilbert’s
90 Theorem. Finally, recall that if gcd(n, N) = 1, the n-th coefficient b,, of G satisfies

by = Aot (by).

Thus, we can obtain the exact Fourier expansion once we have found b; € Q(&y) and
the coefficients at the various p¢.

4.2 Computing Heegner Points

Let {a;} be a set of representatives of the Class group of & and let w; € H be such
that a; = (1, w;). Let M, be the set of matrices in M,(Z) that fixes w;, which is an
order isomorphic to €. Then M, contains a matrix N; satisfying Tr(N;) = Tr(w)
and det(N;) = Nm(w).
Claim: there exists A; € SL,(Z) such that A;N;A; ™" € M{ (N) n My(m).

Then the point 7; = A;w; is a Heegner point on X¢_(N, m) with endomorphism

ring 0, as wanted.
The matrices A; are computed in the following way:

o Ataprime p dividing m, we chose ASP ) modulo p'*(™ of determinant one, taking
N to an upper triangular matrix. This can be done, since the roots of the charac-
teristic polynomial of N; are in IF,, (since every prime that divides m splits in &),
so we just take a basis for the Jordan form.

* Ata prime p dividing N, since p is inert in K, the characteristic polynomial of N;
is irreducible in F,[x]. If N; = ( ;’f g ) , then we want the matrix A; to satisfy

a+d d
aBY _( = \/;
Ai( ) 8) = ( s\/E i~ )A,- (modulo p).
We just chose A; as a matrix in 4 indeterminates and search for a non-zero solu-
tion of the system (the determinant of this system is zero, so there is always such a
solution). If the determinant is not 1, we just multiply the matrix via an appropriate
matrix, as in the proof of Lemma 1.2.

Lastly, the Chinese Remainder Theorem gives a matrix in SL,(Z/N?mZ) satisfy-
ing our hypotheses, and we lift it to a matrix in SL,(Z).

5 Examples

In Table 1 we show some examples of our method. All of the examples were calculated
using Pari/GP [PARI14]. The table notation is as follows: the first column is the ellip-
tic curve label (in Cremona’s notation); the next three columns show which primes
(dividing N) of the curve are supercuspidal, Steinberg and ramified principal series,
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respectively. The next column gives the chosen w (that determines the order in the
imaginary quadratic field), and which primes give rise to Cartan non-split groups
(the remaining are classical ones). It is easy to see that in each example the Cartan—
Heegner condition is satisfied. Then we list the matrices M; := A;N;A;7! for some
€. The next column contains the first Fourier coefficient (where we use the notation
(i := & + &y ,and avector [ay, . .., ay] means a;(;+- - +ay(y), and the last column
gives the Manin constant ¢ for the optimal quotient.

EC|| Sc | St | Ps w Chs M; b c
Rb|| | o | o| =2 w($3) [=3,1,5,4,2] L
25| {35} @ | @ || =2 33 (172) 1 1
3+\1{)T91 (3} (g ?) 1
225a|[{3,5}| @ | @ || LT | sy (8%F) /3 1
2% @ || @ || =2 (973) || 1-6,-7,~4,-1,-5,-2,-4,5] %
1617a|| @ | @ ||| v=2 | 3] (%5) [-2,-1,-4] :
Wa|| (73 | @ | o || =L 73] (15) V=7 !

Table 1: Examples of the g-expansion and related computational data

Remark 5.1 In all examples of Table 1 except the last one, the optimal quotient
coincides with the strong Weil curve. In the last example, the optimal quotient corre-
sponds to the curve 49a2 in Cremona’s notation.

In Table 2 we show the points constructed on the curves of Table 1 and the multiple
of the generator obtained (up to torsion). Note that in the last case, the curve has rank
0 over QQ, and this is why the point is not rational.

EC K P mp
Vs 2411156245 _ 52866724475375
121b || Q(v-3) (37062)2 >~ (37602)3 15
225a || Q(+/-91) (1,1) 1
225a || Q(v/-7) (-1,0) 2
VY 15858973521095 _ 22895413346586388187
28% || Q(v-3) | (- 10833832 > 10833833
1617a | Q(v/-2) 3702, 184078 3
/17 1261982 _ 680991 _ 327847275 /17
49a || Q(v-11) (11(127)2’_11(127)2 T 112(127)3 -11) 3

Table 2: Heegner points constructed
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Appendix A The Principal Series Case Computation

The purpose of this short appendix is to show how the work [DD11] (in particular
example 5) allows us to, given an elliptic curve E with a ramified principal series at p,
compute the character to twist by, and the local p-th Fourier coefficient of the forms
h; in Theorem 2.2. We thank Tim Dokchitser for explaining to us some details of the
algorithm.

(a) Compute v, = the valuation at p of the discriminant of E. The order of the char-
acter is e = 12/(gcd(12,vp)).

(b) Let L = Q(x)/(x® — p). Then E attains good reduction at the prime ideal (x).
Compute the characteristic polynomial y; (t) = t* — a,t + p of Frobenius at such
prime ideal by counting the number of points over the finite field (this is im-
plemented in SAGE or Magma). The two roots are the p-th coeflicients we are
looking for (since there are two forms, conjugate to each other), but we need to
match each root with its corresponding character.

(c) Let g bea generator of 5, and let L' = Q(x)/(x° - g- p). As before, compute the
characteristic polynomial y;(t) for the prime ideal (x) (the curve is again un-
ramified). Then the product of a root of y; (¢) multiplied by the correct character
(evaluated at g) must be a root of - (t).
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