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LAPLACE-STIELTJES TRANSFORM 
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1. Introduction and main results. The Laplace-Stieltjes transform f(x) 
of the function <x(t) is denned by 

J»oo nR 

e~xl daQ) = Mm e~x'da(t), 
0 B Tœ «J 0 

where a(t) is a function of bounded variation in each closed interval [0, R] 
(R > 0) and the right-hand side of (1) is supposed to be convergent for some 
X == Xo. The Laplace transform f(x) of the function <j> it) is defined by 

(2) f(x) = P° e~xt<j>(t) dt = lim f é~xt<j>{t) dt, 

where <j>(t) G Li(0, i^) for each R > 0 and the right-hand side of (2) is supposed 
to be convergent for some x — x0. 

Improving a result due to Phragmen and Doetsch (3, pp. 286-288), D. 
Saltz (6) obtained the following inversion theorem for the Laplace-Stieltjes 
transform. 

THEOREM A. Iff(x) is the Laplace-Stieltjes transform of a(t), then 

(l-i)(a(0+)-a(0)) fort = 0, 

(l--Ja(t+)+-ea(t-)-a(0) for t > 0; 

oo JUS t 

HmZ (-irie-rf(ns) = 
loo « = 1 '*'• 

here a(t±) denotes, respectively, 
lim (t±h). 

In this paper we prove a general theorem for the Laplace-Stieltjes transform. 
Particular cases of this theorem generalize Theorem A and also an inversion 
theorem for the Laplace transform due to D. V. Widder (8). Also, our theorem 
gives formulas for a(r)(s) by means of the values oif(x) for real x. The formal 
idea leading to our main result is the following. Let 

oo 
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Then we have formally for the Laplace transform f(x) of 4>(t) 

£ an e
XnS7(Xre s)= F" K (s (x - t) ) 4, it) it. 

If, for some function h(s), the function $s(£, x) = h(s)K(s(x — t)) forms (as 
s Î «>) a kernel of a suitable singular integral (4, Chapter VII), then formally 

00 

lim h(s) X) <*n exp(\w s)/(Xn s) = <£(x), 
5 |00 W = l 

which is an inversion formula for the Laplace transform. The same idea is 
applicable to other integral transforms. 

Let K(s) denote a function such that K( — s) is the Laplace-Stieltjes trans­
form of a function ($(t) satisfying P(t) = 0 for 0 < t < c (for some c > 0). 
That is 

K(s) s J°Vd|8(0 ( 0 0). 

For two real numbers x, 3/ the Kronecker symbol bXtV is defined by bXiV = 0 for 
x ^ j and ôx,v = 1 for x = y. 

Our main result is given by the following theorem. 

THEOREM 1. Let f(x) be the Laplace-Stieltjes transform of a.(t). Suppose that 
for some z > 0 and a certain non-negative integer r there are 2r + 2 numbers 
such that 

i ^ h i t - z f + odt-zY) astiz, 

(3) ait) ' ^ 

T,hct(f - zf + o((z - t)r) astU 

(for 2 = 0, the second assumption of a(t) is not needed. In this case we define 
ck = 0 for 0 < k < r). If for a function K(s) and some non-negative integer a 

r-est\dp(t)\ < + » 
for all real s, 

lim K(s) = — a0 
S too 

exists, and 

£ \ueKil+1) (M)| du < + » , 
00 

then for 0 < p < min (r, g) 

(4) bm isp P «" V/(s«) <Z/3(0 - Z (6, - c»)s'-"Kc~ )(0) 

+ SMspX (w(0), 

= —a0cP — (1 — 50,z)So,paoa(0). 

«(0)} 
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In particular if p = 0 or if p > 0 and bk = ck for 0 < k < p, then for z > 0 

(5) lim sv Ç0 e"'tpf(st) dp(t) = K(0)bP - (K(0) + a0)cP + 5„., a0 a(0). 
S Too *J c 

If the function a(t) satisfies (3) for some z > 0, then for z > 0 we have 
bo = a ( z+) and £0 = a(z—) and for z — 0 we have bo = a ( 0 + ) and e0 = 0. 
For p = 0, conclusion (4) of Theorem 1 takes the form 

lim Ç esztf(st) dp(t) = K(0)a(z+) - (K(0) + a0)a(z-) + a0a(0). 
S Too « J C 

If a0 = 0, then the right-hand side is K(0) (a(z+) - a(z-)) ; and if K(0) ^ 0 
we have a formula for the jump a(z+) — a(z—) of the function a(t) at the 
point t = z. If a(£) is continuous at the point t = z, then a (z+) = a(z —) and 
the right-hand side is equal to —a0(a(z) ; if a0 9^ 0, then we have an inversion 
formula for the Laplace-Stieltjes transform. 

With the function a(t) and a fixed point z > 0, associate the two functions 
a+(t) = a+(z;t) and «-(0 = a_(s;£) defined by a+(z; t) = a (2+) for / = 3, 
a+0&; /) = a(t) for £ > z, and a~(z\ t) = a(z—) for / = z, 

a-(z;t) = a(t) îorO < t < z. 

When z = 0, we define a+(z;t) only. It is known (2, p. 114 (36) that if 
a+(r)(z) and aJ-r)(z) exist, then assumption (3) on a{t) at the point / = z is 
satisfied by the constants b* = a+(*}(>), <* = a-<*>(2;)(0 < k < r). If ««(«) 
exists for some positive integer r and for some z > 0, then conclusion (4) of 
Theorem 1 takes the form 

lim 5* r eszYf(st) d(3(t) = -a0a
(p)(z) + o0tPa0a(0) 

S Too «/c 

for 0 < £ < min(r, q). If a0 9e 0, then we have an inversion formula for the 
pth derivative of a(t) at the point t = z. 

Suppose the function f$(t) defining K(s) is a step function with jumps ak at 
/ = k {k = 1, 2, . . .), that is 0(t) = 0 for 0 < / < 1 and £(/) = E*<««* for 
/ > 1. Then 

CO 

K(s) = £ a„ eMS. 

Associate with i£(s) the power series 

H{z)=T,anz
n 

if 
limi£(s) = — do 
S Too 

exists. In this case K(s) = H(es) — do. I t is easy to see that for such K(s) 
Theorem 1 can be stated in the following form. 
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THEOREM 2. Let f(x) be the Laplace-Stieltjes transform of a(t). Suppose that 
(3) is satisfied for some z > 0 and a certain non-negative integer r. If for an 
entire function 

n=0 

and some non-negative integer q we have 

WmH{x) = 0 
zîoo 

and 
/»co 1 $+1 

\x-\\og xY^A^x'H^ix) dx < + oo , 

where by definition 

xm = E Ak
im)x(x - 1) . . . (x - k + 1), 

* = 1 

then we have for 0 < p < min (r, g) 

lim { s ^ Ë n'a. en"f(ns) - £ (ft, - ^ H ^ U W ) l 

= — a0 bp + Vp 0o a(0). 

I t is easy to see (5, p. 205 (4)) that 

j ^ W ) = g ^mV*ff(*V) for m > o. 

Hence for m > 0 we have 

Ux" ] m 

x=0 k=l 

The numbers Ak^
m) are the Stirling numbers of the second kind (5, p. 168). 

We now give some methods for obtaining functions H(z) satisfying the 
assumptions of Theorem 2. By using particular functions H(z) suggested by 
these methods, we obtain from Theorem 2 inversion and jump formulas for 
the Laplace-Stieltjes transform and for the Laplace transform. These include 
Theorem A and another known result as special cases. 

First method. Let R(z) be an entire function of finite order p > 0. Then for 
each integer b > p and each positive number c the function H(z) = e~czbR{z) 
satisfies the assumptions of Theorem 2 on the function H(z) for all non-negative 
integers q. This follows from the fact that the derivative of an entire function 
of finite order is of the same order (1, p. 13, Theorem 2.4.1). By choosing 
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R(z) = (z — l)k, 6 = 1, and c = 1, we obtain the following result from 
Theorem 2. 

THEOREM 3. Let f(x) be the Laplace-Stieltjes transform of a(t). Suppose that 
(3) is satisfied for some z > 0 and a certain non-negative integer r. Then for 
k,r = 0,1,2, . . . , we have (if empty sums are defined as equal to zero) 

(6) lim is't, nrak,n enJ(ns) - £ (bn - cn)s
T-j ~-n (e' - l ) V ' l 

s Too \ w=i n=o Lai J*=o 

= ( - l ) s + 1 [& r -5 0 > r a (0 ) ] , 

min(fc,w) / z A / 

Theorem 3 reduces to Theorem A when & = r = 0. 

If we add the two consequences (6) of Theorem 3 for r = 0 and & = 0, 1 
we obtain the following result: 

l i p ë (-U^TzÇriïfM = \ (bo - Co) + 8oAa(0). 
s Too n = l \ n *•)• & e 

For z > 0, we have 6o — Co = «(2+) — a(z — ) ; that is, we have here a formula 
for the jump of the function a(t) at the point t = z > 0. For 2 = 0, we have 

i (bo - Co) + ± «0.. «(0) = I (a(0+) + a(0)). 
e e e 

Consequence (6) of Theorem 3 with k = r + 1 has the following form : 

00 

I i m / X ) nrar+1,ne
nzsf(ns) = (-l)\br - «0.,«(0)). 

S Too W = l 

This is a formula for bT. In particular if a(r) (z) exists for some z > 0, then 
#r = a(r)(js) and we have an inversion formula for the rth derivative of a(t). 
For r = 0, we have bo = a ( s + ) . In this case, we have an inversion formula 
for a(z+). 

By Theorem 3 for r = 1 and k = 0 and the fact that 

re-
xt<l>(t)dt = r e~xtda(t) 

Jo Jo 

for 

a(t) = I <t>(u)du (t > 0) 
Jo 
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if the left-hand side exists, we obtain the following result. 

THEOREM 4. Let f(x) be the Laplace transform of <j>(t). Suppose that for some 
t = z > 0 the function <j>(t) is the derivative of its indefinite integral; then 

enzs 
limsE (-1)»-1 g /(ns) = 4>{z). 
s\œ n=l \n 1)' 

Theorem 4, with the additional restriction that $(/) is continuous, was given 
by D. V. Widder (8). 

Second method. If R(z) is an entire function of finite integral order p > 0 
and of finite type r, then, for each b > r, the function H(z) = e~bzPR(z) 
satisfies the assumptions of Theorem 2 on H(z) for all non-negative integral 
values of q. This follows from the fact that the derivative of an entire function 
of finite order and type is of the same order and type (1, p. 13, Theorem 2.4.1). 

Third method. Let R(z) be an entire function satisfying R(x) = 0(xa) 
( x | oo) for some a > — 1. Suppose R(z) has zeros Zi, . . . , zm of orders 
«i, . . . , am, respectively. If for some non-negative integer q there are integers 
<Zi> • • • > Qm satisfying 0 < q^ < ctj (0 < j < m) and 

q\ + . . . + qm > q + OL + 1, 
then the function 

H{z) = { J]" + £f(t ~ *)'(' ~ *i)"sl • • • ( ' - zmTamR{t)dt 

satisfies the assumptions of Theorem 2 on H(z) for this g. For two integers 
w, ?z satisfying 2 < w < m, the function 

ff(2) = J (f - z)Qrnsmmt dt 

satisfies the assumptions of Theorem 2 on H(z) for each q with 0 < q < n — 2. 
By means of the identity 

H(x) = É (- ̂ U / ^ H J" ̂ ~W sinm/ dt ~ j '*"* sirA A 
and the theorem of residues, it is possible to obtain the coefficients of the 
power-series expansion of H(x) explicitly. 

Fourth method. I t is known that for v > 0 the function 

HM = r(, + D2T7.W = Ê ( - i r ^ - ^ V ï y (̂ /2)2m 

is an entire function, that Jv(z) = 0(z~*) as z Î oo, and that 
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(9, p. 368, §17.5 and p. 360, §17.211). By these properties of Jv (z) it follows that 
for two non-negative integers q, n and any real number v with v > q + n + f, 
the function Hv(z) satisfies the assumptions of Theorem 2 on H(z) for this q. 
By substituting the function znHv(z) for the pairs p = 0, n = 0 and p = 0, 
n = 1 in Theorem 2, we get the following result. 

THEOREM 5. Let f(x) be the Laplace-Stieltjes transform of a(t). Then for 
v > \we have 

l i m Ë (-1)™"1 , w ( " f ^ n 2 - 2 V m 7(2»«) 

= | ( 1 - ff,(l))(«(0+) - a(0)) /or 2 = 0, 
1(1 - # r ( l ) ) « C M - ) +H,(l)a(z-) - o(0) /orz > 0; 

and /or eac& y > f and z > 0 we have 

1 OD -I 

H m - T T n Z ( - l ) m - . w i _r-TT2- ( 2"+V2 w + 1 )7((2m + 1)5) 
,îœ / , ( l ) ^ o w ! r ( w + i / + l ) ^ 

= a ( s + ) — a(z— ). 

2. Proof of Theorem 1. In the proof of Theorem 1 we use the following 
six lemmas. 

LEMMA 1. If 

K(s) = fe^dptf) (c> 0) 

exists for all real s, then 

ïime~csK(r\s) = c7[p(c+) - 0(c)] 
s i -00 

/or f = 0, 1, 2, . . . ; in particular 

\\m sqK{r\-s) = 0 

for q, r = 0, 1,2, . . . . 

Proof. We have (7, p. 57, Theorem 5a and p. 12, Theorem 6b) 

esvd{j uTdp(u)j. 

Applying (7, p. 181, Theorem 1), with y = 0 and A = cT[0(c+) - /3(c)], we 
have , 

lim sup \e-"Kir)(s) - cr[p(c+) - 0(c)]| 
sl—cc { "• 

< lim sup ud$(u) - cr[@(c+) - 0(c)] 
ulo I J c 

= 0. 
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LEMMA 2. If for x > 0, g(x) is the (r + l)th indefinite integral of a function 

g<r+1>(*) ( r > l ) , 

lira g(x) = a 

xToo 

/*oo 

M
r|g(r+1)(M)|dM < +co , 

then 
(7) lim xV*} (*) = 0 forO <k< r, 

a: too 

and 

(8) f" «*|g(*+1) (u) j dtt < + « for 0 < £ < r. 

Proof. For 0 < x < 3>, the inequality 

PV+ 1 )(01 <*;<*-' fV|g ( r + 1 )wi* 
implies by Cauchy's theorem that 

J00 

exists. This and the relation 

gM(y)-gw(.x) = Cg^\t)dt-^ rg
(r+1\t)dt ( y î« ) 

*J x *J x 

implies that 

l imgw(y) = a, 
y Too 

exists. If ar ^ 0, then for y > x > 0 we have 

g<r_1) (y) - « ^ (*) = J J g(0 (*) * - (sgn at) (+ » ) (y Î » ). 

Hence 

l i m g ( r - % 0 = (sgn of) • ( + • ) • 
1/Too 

Repeating this argument r times, we get 

limg(;y) = (sgn a r) •(+«>). 
I/Too 

But this contradicts the assumption 

lim g (y) = a. 
y Too 

https://doi.org/10.4153/CJM-1966-050-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-050-x


THE LAPLACE-STIELTJES TRANSFORM 5 1 1 

Thus we have 

limg(r)()0 = O. 
V Too 

Hence 

I /»oo /»oo 

xr g(r+1)(t)dt\< tT\gu+1\t)\dt-*0 ( « Î » ) . 
This proves (7) for k = r. 

If r > 1, then by the last limit relation we have 

f\giT\t)\dt< f\tTgir\t)\rTdt^o 
*J x *J x 

f*CQ 

J t^(f), 

as x, y —> oo. 
•^x «'a; 

Hence 

exists. Now ^ ( M ) W I = |*r_1 (" (tTgir\t))rT dt 

< (r - I P - s u p | /V r )( / ) | ->0 (* Î oo). 
t>z 

This proves (7) for k = r — 1. By repeating this argument, we prove (7) 
for 0 < k < r. In order to prove (8) for k = r — 1 (r > 0), observe that for 
0 < x < y both sets 

A = {t\gW(t) > 0, x < t < y) and B = {/|g(r) (J) < 0, x < t < y] 

are open. Hence A and B are the unions of a finite or denumerable number of 
pairwise disjoint open intervals A = \Jn (an, ft,), B = \Jn (yn,8n); and for 
a»» £»> Yrc> 5n different from x and ;y, we have 

gVfa) = . . . = *<'>&) =0. 

Now, since g{T)(u) = 0 for u G (#, 3>) — -4 — 5 , 

f «^ V r ) («) I ^ = E f ur~Yr) (M) du-Y, (n ur~YT) M du. 
*'x n *Jan n *Jyn 

Integrating by parts, we have 

Jur~YT)(u) du = -ru
rg{T\u) - -r JurgiT+1)(u) du. 

Therefore 

r v y r ) ( « ) i du < \ i*vr)(*)i+\ bvr)cy)i+\ r «rig(rfi)(«)i d«. 
By (7) this implies, letting x, y —» 00 , that (8) is true for & = r — 1. Repeating 
this argument, we prove (8) for 0 < k < n. 
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An immediate consequence of Lemma 2 is the following result. 

LEMMA 3. If, for real x, g(x) is the (r + l) th indefinite integral of a function 
£<'+»(*) ( r > l ) , 

exist, and 

then 

lim g(x) and lim g(x) 
X Too X* - c o 

/ " \urgir+1) (tl)\ du < + o o , 

lim xkgih) (x) = lim xkgm (x) = 0 /or 0 < k < r 
a; Too x* —oo 

awd 

f °° \ukg(k+1)(u)\ du < +™ for 0 < k < r. 

LEMMA 4. Let fix) be the Laplace-Stieltjes transform of ait). If for a function 

J»00 

e"dp(t) (P(f) = 0/or 0 < * < c > 0) 
o 

we have 

J»co 

e s ' |dj3(01 < + oo /or all real s, 

o 
then for r = 0, 1, . . . , all real z, and all sufficiently large s, we have 

J»oo /*oo 

e"'tTf(st) dp(t) = s K(r+1\sz - st)a(t) dt - a(0)K(T) (sz). 
0 «^ 0 

Proof. The function f(x) exists for some Xo > 0. Hence by (7, p. 181, 
Theorem 1), 

lim/(x) = a ( 0 + ) . 
X Too 

By (7, p. 57, Theorem 5a), we have 

J " es Y \d(3 (*) | < + œ for all real 5. 

Hence 
/•oo 

J estY\f(st)| \dp(t) | < + oo for s > x0/c and all real z. 

Thus by (7, p. 41, Theorem 2.3a), for 5 > x0/c and real z, 

1= s f° es"tT+1i j " e-stua(u) du\ d(3(t) - K(r) (sz)a(O) 

= 5 ^°Kir^\sz - su)a(u) du - KM(sz)a(0). 
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The change of the order of integration is justified for 5 > x0/c by Fubini's 
theorem (7, p. 26, Theorem 15d) since by (7, p. 39, Theorem 2.2a), 

\a(t)\ < Mex°< (t > 0) 
and 

pen'H,+1i J V 5 > M I du\ \d0(t)\ 

< M j ~ es!ttT+1\ J™ e
(x°-st) duf \dp(f)\ 

< M J"**" '**1! f° eix"-cs)a du\ \dp(f)\ 

= M(cs - xo)-1 J*"es"tr+1 \dfi(t)\ < + » . 

LEMMA 5. Letf(x) be the Laplace-Stieltjes transform of a{t). If a function 

K(s) = ff° estd${t) (0(0 = OforO < t < c> 0) 

exists for all real s, then for r = 0,1,2, ... , each real z and each S > 0, we have 

lim sT+1 r K(r+1\sz - st)a(f) dt = 0. 
s Too Jz+8 

Proof. The function f(x) exists for some x0 > 0. Therefore by (7, p. 39, 
Theorem 2.2a), \a(t)\ < Mex°l (t > 0). Hence for 5 > x0/c we have 

sr+1 P X ( , + 1 ) (52- '50a(0* < W + 1 r \Kir+1\sz-st)\xotdl 

= Me*°y J S |K ( r + 1 ) (M ) |e- r a o / s^ 

(and by Lemma 1) 

<Mie
x°Y f * elcs-x°)u,s du 

J-a> 

= Mi /+i(c5 - x 0 rv° u + v c 8 s 

^ o (.too). 

LEMMA 6. Suppose that for some z > 0 the function a(t) is a bounded Im­
measurable function in [0, z\. If the function 

K(s) = J e"dfi(t) ( 0 0) 

exists for all real s and if for a certain non-negative integer r we have 

Ç0 \urK(r+1)(u)\ du < + œ , 
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then 

-8 

lim / + 1 f Kir+1)(sz - st)a(t) dt = 0. 
5 Too «Jo 

for each ô (0 < ô < z). 

Proof. We have |a( / ) | < Mi if 0 < t < z. By subst i tu t ion we obtain 

U r + i CZ
 Ke+V(sz _ ^ ) a ( ^ ) dt\ < MlS

T+1 f \Kir+1)(sz - st)\ dt 
«/o I «Jo 

= MlS
r r \Kir+1\u)\du 

Jôs 

J»cx> 

\uTK(r+v>(u)\ du 
is 

^ o (5 t o o ) . 

Proof of Theorem 1. We have 0 < p < min(r , g). I t is obvious t h a t (3) 
continues to be t rue if we write p in place of r. W e have 

limK(-s) = 0 
S îœ 

by Lemma 1. Hence for g(x) = K(x), all the assumptions of Lemma 3 are 
satisfied and this lemma yields 

\upKip\u)\du < + o o . 
•J-oo 

Now in the conclusion (4) of our theorem, r and g do not appear explicitly 
(only through the restrictions on p). Hence it is enough to prove our theorem 
for the special case p — q = r. 

Suppose z > 0 and 0 < < 5 < 3 o r s = 0 and ô > 0. T h e function f(x) exists 
for some x0 > 0. Therefore, by Lemma 4, we have for 5 > x0/c 

J»oo 

eszttrf{st)d$(t) 
o 

( nz—8 nz fz+8 /»oo "i 

= 1 + + + hr+1KU+1\sz-st)a(t)dt 
\ «/O *sz-8 *)z J z+8 J 

- srK(r)(sz)a(0) 

ss h+ h+ h+ h - sTK{r)(sz)a(0) 

(for z = 0, we define I\ = I2 = 0). By Lemma 2, 

(11) a(0)srKV(sz) = do,zK^(0)a(0)sr - [1 - 50,2]50,r a0 a(0) + ©(1) ( s f c o ) . 

By Lemmas 5 and 6, we have for each fixed ô 

/ 1 0v lim / i = lim I4 = 0. 
( 1 2 ) 5 î c o sîoo 
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Given e > 0, choose 5, 0 < 8 < z, so small that we have both 

«(0 - E h(f - z)k/k\ 

and 

We now have 

< €(* - z)r iorz <t <z + 8 

< e(z - t)T iorz - 8 < t < z. 

r (*z+6 

k=0 J z 

= 5 P + Kir+1)(sz - st)\a(t) - £ h(t - z)*/k\\dt 
\ Jz \ Jc=0 

< « r + 1 J Z + (* - zY\Kir+1\sz - st)\dt 

< A \urKu+1)(u)\du. 

Hence 

h-i(-l)%s'-k f K^Wifity-Uul < e (+C° \u'Kir+1) (u)\ 
&=0 J-ÔS I J—co 

du. 

Integrating the integral appearing in the &th term of the sum on the left-hand 
side of the last inequality by parts k times and applying Lemma 1 to each of 
the terms obtained, we obtain 

(13) h-ZhK(r-k)(0)sr'k + o(l) 
/»+oo 

< e | \urKir+1) (u)\ du (5 t o o ) . 

In a similar way, but using Lemma 3 instead of Lemma 1, we have 

(14) \h + Z ckK
(T-k)(0)sr-k + a0cr + o(l) 

f*+co 

< e \urK(r+1) (u)\ du ( 5 Î « ) . 

A combination of (10) to (14) completes the proof of the theorem. 
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