"Substituting these values of $1+a_{x}$ and $\cdot 75+a_{x}$ in (1), we get

$$
\mathrm{H}_{x}=\frac{1-\frac{d}{\pi_{x}+d}}{2\left(\frac{1}{\pi_{x}+d}-25\right)}=\frac{1}{2} \frac{\pi_{x}}{1-\cdot 25\left(\pi_{x}+d\right)} .
$$

This latter equation may be again reduced to

$$
\frac{\pi_{x}}{2-\frac{1}{2} d-\frac{3}{2} \pi_{x}},
$$

which, when the rate of interest is 3 per cent., becomes

$$
\mathrm{H}_{x}=\frac{\pi_{x}}{1.9854-\frac{1}{2} \pi_{x}},
$$

which is extremely simple.
The example worked in my last letter will, by this formula, be as follows:-

$$
\begin{aligned}
& \pi_{x}=\cdot 0410 \therefore 1 \cdot 9854-0205=1 \cdot 9649, \\
& \text { and } \cdot 0410 \div 1 \cdot 9649=\cdot 02087, \text { as before. }
\end{aligned}
$$

The general formula will be found readily from the foregoing to be

$$
\frac{1}{m} \cdot \frac{\pi_{x}}{1-\frac{m-1}{2 m}\left(\pi_{x}+d\right)}
$$

Apologizing for the length of this commanication,
I am, Sir, Your obedient servant,

Eagle Insurance Company, 6 th September, 1864.

ON A PARIICULAR ARRANGEMENT OF ELEMENTARY VALUES.

To the Editor of the Assurance Magazine.
Sir,-1. The values of annuities and assurances of all kinds consist of certain elements variously combined. These elements are not usually exhibited in detail, their combinations being otherwise attainable.
2. But an intimate knowledge of details will enable its possessor to surmonnt such difficulties as occur in the treatment of complex questions involving many lives. Something may also be gained by particular arrangements of elementary values. For these reasons the following brief exposition is offered.
3. Our elementary table contains the logarithms, for the Carlisle life table, from age 90 upwards, of the following quantities:-
$l_{r}=$ namber that complete age x;
$d_{x}=$ number that die in the $(x+1)$ th year of age;
$v=a n$ unit of money, discounted for one year (3 per cent.); and combinations of these, as shown in the headings.
4. The present value of $\mathfrak{f 1}$, to be received in event of a life now aged x completing the $(x+1)$ th year of age, is $\frac{v l_{x+1}}{l_{x}}=v p_{x}$. This is an endowment.

The logarithms of a series of deferred endowments may be formed by contimuous addition of $\log v p_{x}$, from the youngest age upwards.
5. The present valne of $£ 1$ to be received at the end of the year, provided that a life aged x fail within the $(x+1)$ th year, is $\frac{v d_{x}}{l_{x}}=v r_{x}$. This is an assurance for one year. If $\frac{d_{x+1}}{d_{x}}=q_{x}$, then the logarithms of a series of deferred assurances for one year may be formed by continuous addition of $\log v q_{x}$ to the initial value of $\log v r_{x}$.
6. The present value of $£ 1$ to be received in event of two lives x and y jointly surviving one year, is $\frac{v l_{(x, y)}}{l_{(x, y)}}=v p_{x, y}$; and the present value of $£ 1$ to be received at the end of the year, provided that one or both lives fail within the next year, is $\frac{v d_{x, y}}{l_{x . y}}=v r_{x, y}$. These symbols are under the same laws as those for single lives.
7. The present value of $£ 1$ to be received at the end of the year, provided that a life x fails in the $(x+1)$ th year, and that a life y survives the instant at which x dies, is $\frac{v d_{x} l_{y+7}}{l_{x \cdot y}}=v r_{x} p_{y l_{2}}$. This is a survivorship assurance for one year. Taking this as an initial value, we may, by adding to its logarithm continuously $\log v q_{x}+\log p_{y+\frac{2}{2}}$, obtain those of a deferred series.
8. It thas appears that the construction of the logarithmic values of the foregoing elements is uniform. Bat not only this: there is a relation which connects them. When the logarithms of successive deferred endowments have been formed, then, by adding to these the corresponding logarithms of a series $\frac{d_{x}}{l_{x+1}}=S_{x}$, we may derive those of deferred yearly assurances; and if to these again we add corresponding terms of the series $\log \frac{l_{y+n+\frac{1}{2}}}{l_{y}}$, we obtain the logarithms of deferred yearly survivorship assurances on x against y. This will be clearly seen in the following arrangement. Carlisle 3 per cent. $y=90$.

x.	1. Endowmenta $\Sigma\left(\log v p_{x}\right)$	$\log \frac{d_{x}}{l_{x+1}}=\mathrm{S}_{x}$	3. Assurances. (1) + (2).	4. $\log \frac{l_{y+n+\frac{1}{3}}}{l_{y}}$	b. Survivorship Assurances. (3) + (4). z against y.
95	987177	9.48337	$9 \cdot 35514$	9-93938	9.29452
6	$\cdot 75248$	$\cdot 44370$	-19618	-80195	-99813
7	-63050	-45593	-08643	-65727	-74370
8	- 51292	$\cdot 43573$	-94865	*51981	$\cdot 46846$
9	-41294	-34679	$\cdot 75973$	-39178	-15151
100	-29095	-45593	74688	-27096	. 01784
1	9.13199	-60206	73405	-15947	-89352
2	8.89730	988391	-72121	-05183	$\cdot 77304$
3	-40734	$0 \cdot 30103$	70837	-94462	-65299
4			$\cdot 39451$	-84771	-24222

1. This is the sum of $\log v p_{x}$ from age x (inclusive) upwards.
2. This is $\log \mathrm{S}_{x}$, from the elementary table.
3. This is the sum of the two preceding columns. See para. 5.
4. In this the initial valne is $\log p_{y t}$, and the successive differences are $\log p_{y+1}$. These two symbols must be carefully distinguished. One is the probability of living half a year, the other that of living from the middle of one year to the middle of the next year.
5. This is the sum of the two preceding columns. See para. 7.
6. If the numbers corresponding to columns 1,3 , and 5 , be summed from the bottom upwards, they will possess all the properties of the symbols N, M, and M_{I} in commutation tables. The writer does not mean to propose x
this as a model arrangement, yet for ease of calculation it seems to be very convenient. What he does propose is to sam the numerical values from the youngest age downwards; and he conceives that by this arrangement some remarkable advantages would be gained. For illustration of this, the following specimen table may suffice. It exhibits assurances, ages 47 and 52 ; Carlisle 3 per cent.

Assurances. $\quad x=52 ; y=47$. Diff. 5 years.

Term of Assurance. Years. n.	(1) A_{x}.	(2) $\mathbf{A}_{\mathbf{y}}$.	(3) $\mathrm{A}_{\bar{x} \cdot \underline{y}} .$	$\begin{gathered} (4), \\ A_{\sqrt{x, y}} . \end{gathered}$
1	$\cdot 01476$	$\cdot 01418$. 01465	.01407
2	$\cdot 02975$	-02712	-02932	$\cdot 02671$
3	-04473	-03929	$\cdot 04378$	-03840
4	-05990	-05071	$\cdot 05822$	-04919
5	.07523	.06237	-07261	$\cdot 05999$
6	$\cdot 09129$.07424	-08746	$\cdot 07076$
7	-10897	-08629	-10356	-08146
8	-12854	. 09833	-12108	-09187
9	-15041	-11053	$\cdot 14032$	-10209
10	$\cdot 17234$	$\cdot 12285$	$\cdot 15925$	-11206
11	$\cdot 19379$	-13576	$\cdot 17741$	-12212
12	$\cdot 21429$	$\cdot 14908$	$\cdot 19437$	-13278
13	$\cdot 23420$	-16571	-21041	-14411
14	-25337	-18329	-22538	-15626
15	27184	-20092	23930	-16794
16	-28976	$\cdot 21817$	-25232	$\cdot 17887$
17	$\cdot 30716$	-23466	-26448	-18884
18	$\cdot 32420$	-25066	-27592	-19806
19	-34074	-26607	-28658	-20649
20	$\cdot 35809$	-28092	$\cdot 29729$	-21416
21	$\cdot 37644$	-25933	-30813	-22114
22	-39548	-30932	-31886	$\cdot 22742$
23	$\cdot 41515$	-32301	-32942	-23305
24	$\cdot 43356$	-33631	- 33880	${ }^{2} 23801$
25	- 45098	-35026	-34719	-24270
Life	-57599	-52544	$\cdot 38344$	26834

$$
\begin{gathered}
\mathrm{A}_{x y}=(3)+(4) . \quad \mathrm{A}_{\frac{2}{x y}}=(1)-(3) ; \mathrm{A}_{\frac{2}{x y}}=(2)-(4) . \\
\mathrm{A}_{\frac{2}{2} 2}=(1)+(2)-\{(3)+(4)\} .
\end{gathered}
$$

Deferred assurances are obtained by subtracting the temporary from the whole life values.
10. This table scarcely requires explanation. The value of an assurance on the joint lives 47 and 52 is $\cdot 38344+\cdot 26834=* 65178$. An assurance on this status for ten years is $\cdot 15925+\cdot 11206=27131$, and the difference of these, $=38047$, is an assurance on 47 and 52 deferred for 10 years. An assurance on the last sarvivor of lives now aged 47 and 52 would be $\cdot 57599+\cdot 52544-38344-26834=\cdot 44965$. In like manner, any other conditions within the limits tabulated may be determined by simple addition and subtraction.
11. A complete set of such tables would be exhaustive. But the ases of them lie within moderate limits. Up to $n=25$, and $x-y$ or $y-x=10$, they have already been computed, and the writer woald willingly complete them to such extent as may be thought needful.
12. It is possible, with small trouble and with sufficient exactness, to pass from the elementary numerical values at one rate of interest to those at another rate. The following is an example of this. The values are those of sarvivorship assurances, 30 against 35.

92	3 pex Centr.		Subtract.		4 fer Cent.	
	Single Years.	Temporary.	S	t	Single Years.	Temporary.
1	-00976	-00976	9	9	.00967	00967
2	-00938	-01914	18	27	-00920	. 01887
3	-00085	-02799	25	52	.00860	02747
4	-00834	-03633	32	84	. 00802	-03549
5	-00801	-04434	38	122	-00763	$\cdot 04312$
6	. 00768	-05202	43	165	-00725	$\cdot 05037$
7	$\cdot 00749$	-05951	49	214	-00700	. 05737
8	-00729	-06680	54	268	-00675	-06412
9	.00710	$\cdot 07390$	59	327	-0065	$\cdot 07063$
10	-00715	.08105	66	393	-00649	.07712

Here the column marked S is a quantity depending on the single year values, and t is the sum of that column. These being taken from the 3 per cent. colamns give the 4 per cent. colamns. S is taken from a small sabsidiary table. In like manner, we may proceed from 4 to 5 per cent., and so on. The work is very much less than if logarithms were used.

$$
\begin{aligned}
& \text { I am, Sir, } \\
& \text { Yours truly, } \\
& \text { W. H. OAKES, } \\
& \text { Lieut.-Col. }
\end{aligned}
$$

