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Abstract. The time delays between the multiple images of a strong gravitational-lens system,
together with a model of the lens-mass distribution, provide a one-step determination of the
time-delay distance, and thus a measure of cosmological parameters, particularly the Hubble
constant, H0 . I review the recent advances in measuring time-delay distances, and present the
current status of cosmological constraints based on gravitational-lens time delays. In particular,
I report the time-delay distance measurements of two gravitational lenses and their implication
for cosmology from a recent study by Suyu et al.
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1. Introduction
Many profound questions about the Universe remain unanswered, even in the present

era of so-called precision cosmography. What is the nature of dark energy and dark
matter? How many families of relativistic particles are there? What are the masses of the
neutrinos? Is general relativity the correct theory of gravity? Did the Universe undergo
an inflationary phase in its early stages?

From an empirical point of view, the way to address these questions is by increasing the
accuracy and precision of cosmographic experiments. In particular, a measurement of the
local value of the Hubble constant, H0, to 1% precision (i.e. random errors) and accuracy
(i.e. systematic errors) would provide key new insights into the nature of dark energy
and its evolution, the mass of neutrinos and the total number of families of relativistic
particles, the validity of general relativity, and the curvature of the Universe as a test of
inflationary models (e.g., Freedman & Madore 2010; Riess et al. 2011; Weinberg et al.
2012; Reid et al. 2010; Sekiguchi et al. 2010; Suyu et al. 2012a). It is essential to develop
multiple independent methods as a way to control for known systematic uncertainties,
uncover new ones, and ultimately discover discrepancies that may reveal new fundamental
physics. For example, a proven inconsistency between inferences at high redshift from
the analysis of the cosmic microwave background (CMB), with results at lower redshift
from supernova surveys would challenge the standard description of the evolution of the
Universe over this redshift interval, and possibly lead to revisions of either our theory of
gravity or of our assumptions about the nature of dark energy and dark matter.

One attractive probe of cosmology is represented by gravitational-lens time delays,
which provide a one-step distance measurement. The idea of doing cosmography with
time-delay lenses has been known for decades (Refsdal 1964) and is simple. When a source
is observed through a strong gravitational lens, multiple images form (e.g.,
Schneider et al. 2006). If the source is variable in time, these multiple images show the
pattern of variability delayed relative to each other owing to the path difference between
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the light rays and also the gravitational delay from the lens. By careful monitoring of
the image light curves, the time delays between the images can be measured (see, e.g.,
Courbin 2003). The absolute time delays can be converted into an absolute distance, the
so-called ‘time-delay distance,’ using an accurate mass model of the gravitational lens
(e.g., Blandford & Narayan 1992; Jackson 2007; Treu 2010; and references therein). This
distance is a combination of three angular-diameter distances, and so is primarily sensi-
tive to the Hubble constant and depends weakly on the other cosmological parameters
(Coe & Moustakas 2009; Linder 2011). Gravitational time delays are a one-step cosmo-
logical method to determine the Hubble constant that is completely independent of the
local cosmic distance ladder (Freedman et al. 2001, 2012; Riess et al. 2011; Reid et al.
2012).

To control the systematic errors, a substantial amount of effort and resources needs to
be invested in these cosmological probes. For gravitational time delays, this has required
several observational and modeling breakthroughs. Long-duration and well-sampled light
curves are essential for obtaining accurate time delays in the presence of microlensing.
Modern light curves have much higher photometric precision, sampling, and duration
(Fassnacht et al. 2002; Courbin et al. 2011) compared to the early pioneering light curves
(e.g., Lehar et al. 1992). Deep and high-resolution images of extended features in the
source, and stellar kinematics of the main deflector, provide thousands of data points
to constrain the lens-mass model, thus breaking the degeneracy between the distance
and the gravitational potential of the lens that affected previous models constrained only
by the positions of the lensed quasars (e.g., Schechter et al. 1997). Finally, cosmological
numerical simulations can now be used to characterize the distribution of mass along
the line of sight (LOS; Hilbert et al. 2009), which was usually neglected in early studies.
These advances make gravitational lens time delays a precise cosmological probe. Suyu
et al. (2010) demonstrated that, with sufficient ancillary data, a single gravitational lens
(B1608+656) can yield a time-delay distance measured to 5% precision. In combination
with the Wilkinson Microwave Anisotropy Probe five-year results (WMAP5; Komatsu
et al. 2009), the B1608+656 time-delay distance constrained H0 to 7% and w to 18%
precision, comparable to contemporary baryon acoustic oscillation experiments (Percival
et al. 2007).

In this contribution, I summarize the results of a blind analysis of RXJ1131−1231 based
on new and existing ancillary data on the lens system (Suyu et al. 2012b). The purpose
of the blind analysis is to uncover unknown systematic errors and avoid unconscious
experimenter bias for testing the accuracy of the method.

2. Gravitational-Lens Time Delays as a Cosmological Probe
This section briefly reviews the use of gravitational-lens time delays to study cosmology.

More details on the subject can be found in, e.g., Schneider et al. (2006), Jackson (2007),
Treu (2010), and Suyu et al. (2010).

In a gravitational-lens system, the excess time delay of an image at angular position
θ = (θ1 , θ2) with corresponding source position β = (β1 , β2), relative to the case of no
lensing, is

t(θ,β) =
DΔt

c

[
(θ − β)2

2
− ψ(θ)

]
, (2.1)

where DΔt is the so-called time-delay distance, c the speed of light, and ψ(θ) the lens
potential. The first term in the square brackets corresponds to the geometric time delay
due to the path difference, and the second term is the gravitational time delay owing
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to the lens-mass distribution. The time-delay distance is a combination of the angular-
diameter distance to the lens (or deflector; Dd) at redshift zd , to the source (Ds), and
between the lens and the source (Dds):

DΔt ≡ (1 + zd)
DdDs

Dds
. (2.2)

For lens systems whose sources vary with time (such as active galactic nuclei; AGN),
one can monitor the brightnesses of the lensed images as a function of time, and hence
measure the time delay, Δtij , between the images at positions θi and θj :

Δtij ≡ t(θi ,β) − t(θj ,β)

=
DΔt

c

[
(θi − β)2

2
− ψ(θi) −

(θj − β)2

2
+ ψ(θj )

]
. (2.3)

One can model the mass distribution of the lens to determine the lens potential, ψ(θ), and
the unlensed source position, β, by considering the image configuration and morphology.
Lens systems with time delays can thus be used to measure DΔt based on Eq. (2.3),
and constrain cosmological models through the distance–redshift test (e.g., Refsdal 1964,
1966; Fadely et al. 2010; Suyu et al. 2010). With dimensions of distance, DΔt is inversely
proportional to H0, and as a combination of three angular-diameter distances, it depends
weakly on the other cosmological parameters as well.

The radial slope of the lens-mass distribution has a direct influence on DΔt : for a
given time delay, a galaxy with a steep radial profile leads to a lower DΔt than a galaxy
with a shallow profile (e.g., Witt et al. 2000; Wucknitz 2002; Kochanek 2002). Thus, it
is necessary to determine the radial slope of the lens galaxy to measure DΔt accurately.
Several authors have shown that spatially extended sources (such as the AGN host galaxy
in time-delay lenses) can be used to measure the radial slope at the image positions, where
it matters (e.g., Dye & Warren 2005; Dye et al. 2008; Suyu et al. 2010; Vegetti et al.
2010; Suyu 2012).

In addition to the mass distribution associated with the lens galaxy, LOS mass struc-
tures also affect the observed time delays. The external masses and voids cause additional
focusing and defocusing of the light rays, respectively, and thus impact the time delays
and DΔt inferences. The effect of the LOS structures is characterized by a single param-
eter, the external convergence κext , with positive values associated with overdense LOSs
and negative values with underdense LOSs (e.g., Keeton 2003; Suyu et al. 2010).

Given the measured time delays between the multiple images of a lens system, a mass
model that does not account for κext leads to an under/overprediction of DΔt for an
over/underdense LOS. In particular, the true DΔt is related to the modeled parameter
by

DΔt =
Dmodel

Δt

1 − κext
. (2.4)

There are two practical approaches to overcoming this degeneracy: (i) using the stellar
kinematics of the lens galaxy (e.g., Treu & Koopmans 2002, 2004; Koopmans & Treu
2003; Barnabè et al. 2009, 2011; Auger et al. 2010; Suyu et al. 2010; Sonnenfeld et al.
2012) to determine an independent estimate of the lens mass, and (ii) studying the
environment of the lens system (e.g., Keeton & Zabludoff 2004; Fassnacht et al. 2006,
2011; Momcheva et al. 2006; Suyu et al. 2010; Wong et al. 2011) to estimate κext directly.
In the analysis of RXJ1131−1231 (Suyu et al. 2012b), we combined both approaches to
infer κext .
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3. Cosmological Constraints from Time-Delay Distances

To measure the time-delay distance to RXJ1131−1231 with all known sources of sys-
tematic uncertainty taken into account, the following ancillary data have been assembled
(Suyu et al. 2012b):
• Observed time delays with < 2% uncertainty based on dedicated and long-duration

monitoring by cosmograil (COSmological MOnitoring of GRAvItational Lenses; e.g.,
Vuissoz et al. 2008; Courbin et al. 2011) and Kochanek et al. collaborations (e.g., Kochanek
et al. 2006), and newly developed curve-shifting techniques (Tewes et al. 2012a,b).

• Deep and high-resolution imaging of the lensed arcs based on Hubble Space Tele-
scope (HST) observations. Combined with our flexible modeling techniques that use the
thousands of surface brightness pixels of the lensed source as data, the archival HST
images allow constraints on the potential difference between the lensed images—in Eq.
(2.3)—at the few-percent level.
• Stellar velocity dispersion of the lens galaxy from spectra taken at the Keck Ob-

servatory and information about the lens environment. The stellar velocity dispersion of
the lens galaxy provides constraints on both the lens-mass distribution and the external
convergence. Furthermore, observations of galaxy counts in the fields of lenses (Fass-
nacht et al. 2011), together with ray tracing through numerical simulations of large-scale
structure (e.g., Hilbert et al. 2007), constrain directly and statistically κext at the ∼5%
level.

With these data sets, we measured DΔt to RXJ1131−1231 with 6% precision, including
all sources of known uncertainty (Suyu et al. 2012b). The analysis was blinded to avoid
experimenter bias, allowing tests for the presence of residual systematics in the analysis
technique. As described by Conley et al. (2006), the blinding was not meant to hide
all information from the experimenter; rather, only the parameters that concerned the
cosmological inference were blinded.

There were two analysis phases, as detailed in Suyu et al. (2012b). During the initial
‘blind’ phase, we sampled the posterior probability distribution function (PDF) of the
model parameters, taking care to only make parameter-space plots using one plotting
code. This piece of software added offsets to the cosmological parameters before displaying
the PDFs, such that we always viewed the marginalized distributions with centroids at
exactly zero. We could therefore still see, and measure, the precision of the blinded
parameters, and visualize the correlations between these parameters, but without being
able to see if we had obtained ‘the right answer.’ Both the parameter uncertainties and
degeneracies served as useful checks during this blind phase: the plotting routine could
overlay the constraints from different models to investigate sources of statistical and
systematic uncertainties. During the blind phase we performed a number of tests on the
modeling to quantify the sources of uncertainties and check the robustness of the results.
After all coauthors agreed that the blind analysis was complete, and that results would be
published without modification once unblinded, a script was run to update automatically
the plots and tables containing cosmological constraints no longer offset to zero.

Fig. 1 shows the blinded cosmological constraints from RXJ1131−1231 in the left-
hand panel and the unblinded results in the right-hand panel. The shaded contours are
the results based on the time-delay distance measurement to RXJ1131−1231 and the
WMAP seven-year results (Komatsu et al. 2011) in a flat wCDM cosmology. The time-
delay distance is mostly sensitive to H0, and the constraint on H0 breaks the parameter
degeneracies in the WMAP7 data set. We obtain the following joint parameter constraints
for RXJ1131−1231 in combination with WMAP7: H0 = 80.0+5.8

−5.7 km s−1 Mpc−1 , Ωde =
0.79 ± 0.03, and w = −1.25+0.17

−0.21 .
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Figure 1. Blinded (left) and unblinded (right) posterior PDFs for H0 , Ωde , and w in flat wCDM
cosmological models in combination with WMAP seven-year results (Komatsu et al. 2011). The
shaded, dashed, and solid contours correspond to constraints from RXJ1131−1231, B1608+656,
and both lenses, respectively. Contours/shades mark the 68.3%, 95.4%, and 99.7% credible
regions. (This figure has been adapted from Suyu et al. 2012b.)

How do the results based on RXJ1131−1231 compare with those from B1608+656?
In Fig. 1, the cosmological constraints from B1608+656 are shown as dashed contours,
which partly overlap with those from RXJ1131−1231. To investigate the consistency be-
tween both lenses, we need to consider their likelihood functions in the multi-dimensional
cosmological parameter space: inconsistency is defined by insufficient overlap between the
two likelihoods. We follow Marshall et al. (2006), and compute the Bayes factor, F , in
favor of a single set of cosmological parameters and a simultaneous fit:

F =
〈LRLB〉
〈LR〉〈LB〉 , (3.1)

where LR and LB are the likelihoods of the RXJ1131−1231 and B1608+656 data re-
spectively, computed at each prior sample point. As detailed in Suyu et al. (2012b), the
Bayes factor takes the value 3.8, indicating that the two lenses favor a single set of cos-
mological parameters. In other words, the results from RXJ1131−1231 and B1608+656
are consistent with each other.

Since RXJ1131−1231 and B1608+656 are consistent with each other, they can be
combined for cosmological inferences. Fig. 1 shows the cosmological constraints from
the two lenses in combination with WMAP7 as solid contours. By combining the two
lenses, we tighten the constraints on H0 and Ωde, whereas the precision of w does not
improve appreciably. With its low lens redshift of 0.295, RXJ1131−1231 provides very
little information about w in addition to that obtained from B1608+656. The marginal-
ized constraints from the two lenses are H0 = 75.2+4.4

−4.2 km s−1 Mpc−1 , Ωde = 0.76+0.02
−0.03 ,

and w = −1.14+0.17
−0.20 in a flat wCDM Universe.

How do the time-delay distances from the two lenses compare to the distance measures
based on other probes? In Fig. 2 we show a comparison of the cosmological constraints
from the two lenses, baryon acoustic oscillations (BAO; e.g., Percival et al. 2010; Blake
et al. 2011; Mehta et al. 2012), and supernovae (SNe; e.g., Hicken et al. 2009; Suzuki et al.
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Figure 2. Comparison of cosmological probes. Posterior PDF of H0 , Ωde , w, and Ωk for BAO
(red dashed; Percival et al. 2010), SNe (blue dot-dashed; Hicken et al. 2009), time-delay lenses
(black solid; Suyu et al. 2012b) when each is combined with WMAP7 (Komatsu et al. 2011)
in an open wCDM cosmology. Contours mark the 68% and 95% credible regions. Time-delay
lenses are highly complementary to other probes, particularly CMB and SNe. (This figure has
been adapted from Suyu et al. 2012b.)

2012), when each is combined with WMAP7 in the open (non-flat) wCDM cosmology.
The figure is only qualitative since the samples for the WMAP7 chain in the open wCDM
cosmology are sparse and the contours have been smoothed. Nonetheless, the sizes of the
contours are comparable, suggesting that even a small sample of time-delay lenses is a
powerful probe of cosmology. Both the lenses and BAO are strong in constraining the
curvature of the Universe, while SNe provide more information on the dark energy’s
equation of state. Lenses are thus highly complementary to other cosmographic probes,
particularly the CMB and SNe (see also, e.g., Linder 2011; Das & Linder 2012). Each
probe is consistent with a flat ΛCDM cosmology: Ωk = 0 and w = −1 are within the
95% credible regions.

4. Summary
Gravitational-lens time delays provide a one-step measurement of a cosmological dis-

tance, the time-delay distance to the lens, which is completely independent of the local
distance ladder. I have described recent advances in measuring time-delay distances and
summarized the cosmological constraints from two time-delay lenses, RXJ1131−1231 and
B1608+656, in Suyu et al. (2012b). In particular,

(a) The blind analysis of the time-delay lens RXJ1131−1231 yielded a robust time-
delay distance measurement of 6% precision that took into account all sources of known
statistical and systematic uncertainty. A fitting formula to describe the PDF of the time-
delay distance is provided in Suyu et al. (2012b). It can be used to combine with any
other independent cosmological probe.

(b) The time-delay distance of RXJ1131−1231 is mostly sensitive to H0. The con-
straint on H0 helps break parameter degeneracies in the CMB data. In combination with
WMAP7, Suyu et al. (2012b) measured H0 = 80.0+5.8

−5.7 km s−1 Mpc−1 , Ωde = 0.79±0.03,
and w = −1.25+0.17

−0.21 in a flat wCDM cosmology. These are statistically consistent with
the results from the gravitational lens B1608+656.

(c) By combining RXJ1131−1231, B1608+656, and WMAP7, Suyu et al. (2012b)
derived the following constraints in a flat wCDM Universe: H0 = 75.2+4.4

−4.2 km s−1 Mpc−1 ,
Ωde = 0.76+0.02

−0.03 , and w = −1.14+0.17
−0.20 .
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(d) A comparison of the lenses and other cosmological probes, when each is combined
with WMAP7, shows that the constraints from the lenses are comparable in precision to
various state-of-the-art probes. Lenses are particularly powerful in measuring the spatial
curvature of the Universe, and are complementary to other cosmological probes.

Dedicated monitoring of lens systems (particularly by the cosmograil and Kochanek
et al. [2006] collaborations) has led to a significant increase in the number of lenses
with accurate and precise time delays. Deep HST imaging for three of these lenses will
be obtained in Cycle 20, to allow accurate lens-mass modeling that turns the delays
into distances. Current and upcoming telescopes and surveys including the Panoramic
Survey Telescope & Rapid Response System, the Hyper-Suprime Camera on the Subaru
Telescope, and the Dark Energy Survey expect to detect hundreds of AGN lenses with
dozens of delays measured (Oguri & Marshall 2010). Furthermore, the Large Synoptic
Survey Telescope will discover thousands of time-delay lenses, painting a bright future
for cosmography with gravitational-lens time delays.
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