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Abstract

Extremal problems for quadrangles circuminscribed in a circular annulus with the Poncelet porism
property are considered. Quadrangles with the maximal and the minimal perimeters are determined.
Two conjectures end the paper.
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1. Introduction

In this paper we will consider circular annuli, that is, annuli bounded by two circles. A
polygon is said to be described in an annulus if it is circumscribed on the inner circle
and inscribed in the outer circle. We recall the Poncelet closure theorem in a version
used in this paper. Let us consider two circles C1 and C2 and let the circle C2 lie inside
the circle C1. From any point M1 on C1, draw a tangent to C2 and extend it to C1 in
the opposite direction. From this point we draw another tangent, and so on. Thus,
we construct a Poncelet transverse (M1, t1, M2, t2, M2, t3, . . .) such that Mi ∈ C1 and ti
is tangent to the circle C2 with Mi+1 = ti ∩ ti+1. We say that the Poncelet transverse
closes after n steps if Mn+1 = M1. With this notation, we have the theorem as follows.

Poncelet closure theorem (See, for example, [2, 6]). If a transverse starting at a
point M1 of the circle C1 closes after n steps, then any Poncelet transverse starting
at any point of the circle C1 closes after n steps.

Sometimes this theorem is called Poncelet’s porism. According to WolframMath
World [1], the word porism is an archaic term with two meanings: ‘a corollary and
“a proposition” affirming the possibility of finding such conditions as will render a
certain problem indeterminate, or capable of innumerable solutions’ (Playfair, 1792).
Unfortunately, this definition is slightly inaccurate, because the proposition actually
states the conditions, rather than affirming the possibility of finding them’. In our
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Figure 1. Definition of λ(t), h(t), w(t), ϕ(t).

investigations we will say that porism means that if a certain assertion holds for one
point then it holds for any point of a considered set.

Radić [7] solved the extremal problem connected with areas of triangles determined
by Poncelet’s closure theorem in a circular annulus. He expressed the area of the
triangle in terms of the lengths of parts of Poncelet transversals and then he determined
the extremal triangle. In this paper we solve the extremal problem connected with
perimeters of quadrangles determined by the Poncelet closure theorem, using the
differential equation given in [3]. The essential difficulty in the approach used by
Radić and our approach in this paper is the necessity to use n-porism formulas in
explicit form (see [2, 8]). Two conjectures based on Radić’s and our results are given
at the end of this paper.

2. Geometric interpretation of the function b

We consider a circular annulus bounded by two circles, namely Cr : x2 + y2 = r2

and Ca,R : (x − a)2 + y2 = R2. We parametrise Cr and Ca,R by means of z(t) = reit and
w(t) = z(t) + λ(t)ieit, respectively, where

λ(t) =
√

R2 − (r − a cos t)2 − a sin t; (2.1)

λ(t) is indicated in Figure 1.
Through a point z(t) ∈ Cr we draw the tangent line. This line intersects the circle

Ca,R at two points; one of them is w(t), the second point will be denoted by h(t). Next,
from w(t) we draw the tangent line to Cr and it is tangent to Cr at a point denoted
by z(ϕ(t)). It was shown in [3] that the function ϕ satisfies the following differential
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Figure 2. Definition of the mapping f .

equation

ϕ′ =
b

b ◦ ϕ
, (2.2)

where

b(t) =

(
1 −

(r − a cos t
R

)2)−1/2
. (2.3)

It is easy to see that the length of a segment joining the points w(t) and h(t) is given by
the formula

|w(t)h(t)| = 2R
√

1 − σ2(t),

where

σ(t) =
1
R

(r − a cos t). (2.4)

Hence,

b(t) =
2R

|w(t)h(t)|
. (2.5)

Note that, from (2.3) and (2.4),

b′ =
a
R

b3σ sin t. (2.6)

Moreover, it follows from the formula (2.2) that the function b determines an invariant
measure on the circle Cr with respect to a mapping f : Cr → Cr defined by the formula
f (P) = P′, given in Figure 2.

An invariant measure connected with the Poncelet porism was considered by
Kołodziej [5] and King [4].
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Figure 3. Illustration of tmax and λmax.

3. Properties of the function λ

We find the extrema of the function λ given by (2.1). The equation λ′(t) = 0 can be
written in the form (r − a cos t

R
− cos t

)(r − a cos t
R

+ cos t
)

= 0.

Hence, the two extreme points are given by

cos t1 =
r

R + a
(3.1)

and

cos t2 =
−r

R − a
.

Let

tmax = 2π − t1.

These relations will turn out to be very important in the further parts of the paper.
Radić [7] claimed that the longest segment λmax joining z(t) and w(t) is given by the

formula

λmax =
√

(R + a)2 − r2.

Indeed, we have λmax = λ(tmax) = λ(2π − t1) =
√

(R + a)2 − r2 (see Figure 3).

Lemma 3.1. With the above notation,

ϕ′(tmax) = 1. (3.2)
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Proof. It is easy to see that

σ(tmax) =
1
R

(r − a cos tmax) =
1
R

(r − a cos t1) =
r

R + a
= cos t1 = cos tmax,

that is,
σ(tmax) = cos tmax (3.3)

and
σ(t1) = cos t1. (3.4)

The formulas (2.3), (2.4) and (3.4) imply that

b(tmax) = (1 − σ2(tmax))−1/2 =
1

sin t1
. (3.5)

Since we have ϕ(tmax) = 2π + t1, (3.5) implies that

b(ϕ(tmax)) = (1 − σ2(ϕ(tmax)))−1/2 = (1 − σ2(t1))1/2 =
1

sin t1
,

that is,

b(ϕ(tmax)) = b(tmax).

Now, from the differential equation (2.2) we get (3.2). �

Note also that

w ◦ ϕ = w + (λ + λ ◦ ϕ)ieiϕ,

illustrated in Figure 4.
We have

0 = |w ◦ ϕ − a|2 − R2 = 〈w − a + (λ + λ ◦ ϕ)ieiϕ,w − a + (λ + λ ◦ ϕ)ieiϕ〉 − R2

= 2(λ + λ ◦ ϕ)〈w − a, ieiϕ〉 + (λ + λ ◦ ϕ)2,

that is,
λ + λ ◦ ϕ + 2〈w − a, ieiϕ〉 = 0, (3.6)

where 〈 , 〉 denotes the Euclidean scalar product. Since w = reit + λieit, we have
immediately 〈w − a, ieiϕ〉 = a sinϕ + λ cos(ϕ − t) − r sin(ϕ − t). Now, from (3.6),

λ ◦ ϕ − λ + 2[(1 + cos(ϕ − t))λ − r sin(ϕ − t)] + 2a sinϕ = 0.

It is easy to verify from Figure 4 that the term in the square brackets is equal to zero,
whence

λ ◦ ϕ = λ − 2a sinϕ. (3.7)
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Figure 4. Geometric meaning of w ◦ ϕ.

4. Critical points of the perimeter L

In this section we consider a circular annulus CrCa,R having the Poncelet porism for
quadrangles. We take a quadrangle ABCD with an edge containing the segment λmax

and let 
ϕ[0](t) = t,
ϕ[1] = ϕ,

ϕ[n+1] = ϕ[n] ◦ ϕ

for n = 1, 2, 3, . . . and λk = λ(ϕ[k](t1)) for k = 1, 2, 3, as in Figure 5. With the above
notation, note that 

ϕ(t1) = t1 +
π

2
,

ϕ(tmax) = 2π + t1,

ϕ[2](tmax) = 2π +
π

2
+ t1,

ϕ[3](tmax) = 2π +
3π
2
− t1.

(4.1)

We denote by L(t) the perimeter of a circuminscribed quadrangle in CrCa,R passing
through a point z(t). The perimeter L is given by the formula

1
2 L = λ + λ ◦ ϕ + λ ◦ ϕ[2] + λ ◦ ϕ[3].

Applying (3.7),
L = 8λ − 4a(3 sinϕ + 2 sinϕ[2] + sinϕ[3]). (4.2)
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Figure 5. Illustration of the segments λ1, λ2, λ3.

Differentiating (4.2),

L′ = 8λ′ − 4aKϕ′,

where

K = 3 cosϕ + 2ϕ′ ◦ ϕ · cosϕ[2] + ϕ′ ◦ ϕ[2] · ϕ′ ◦ ϕ cosϕ[3].

The aim of this section is to prove that tmax and 0 are the critical points of L′.

Case 1. tmax is a critical point of L′.
It is sufficient to prove that K(tmax) = 0. From (4.1), (2.2) and (2.5),

K(tmax) = 3 cos t1 + 2
b(t1)

b((π/2) + t1)
cos

(
π

2
+ t1

)
+

b(t1)
b((3π/2) − t1)

cos
(3π

2
− t1

)
= 3 cos t1 − 2

2R
|AB|
|BC|
2R

sin t1 −
2R
|AB|
|CD|
2R

sin t1

= 3 cos t1 − 3
|BC|
|AB|

sin t1 = 3 cos t1 − 3 cot t1 sin t1 = 0.

Case 2. 0 is a critical point of L′.
We consider a quadrangle determined by t = 0; see Figure 6.
We have λ0 = λ3 and λ1 = λ2, where λm = λ(ϕ[m](0)) for m = 0, 1, 2, 3. Consider the

trapezium ABCD shown in Figure 7.
With the above notation,

λ0 =
√

R2 − (r − a)2, λ1 =
√

R2 − (r + a)2 (4.3)
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Figure 6. Illustration of the angle τ.

Figure 7. Notation used in the proof of Case 2.

and (λ0 + λ1)2 = (λ0 − λ1)2 + 4r2. Hence,

λ0λ1 = r2. (4.4)

Using (4.4),

λ2
1|BC|2 − (r2 + λ2

1)2 = λ2
1(λ0 + λ1)2 − (r2 + λ2

1)2

= (λ0λ1)2 + 2λ0λ
3
1 + λ4

1 − r4 − 2r2λ2
1 − λ

4
1 = 2λ2

1(λ0λ1 − r2) = 0,

that is,
λ1|BC| = r2 + λ2

1. (4.5)

Now, we prove that

K(0)ϕ′(0) = −2.

Since ϕ(0) = π − 2ω, ϕ[2](0) = π, ϕ[3](0) = π + 2ω and tanω = λ1/r, using (2.5), (4.4)
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and (4.5),

K(0)ϕ′(0) =

(
−3 cos 2ω − 2

b(π − 2ω)
b(π)

− cos 2ω
) b(0)
b(ϕ(0))

= −4
(r2 − λ2

1

r2 + λ2
1

+
λ1

|BC|

)
|BC|
2λ0

= −2
r2

λ0λ1
= −2.

Finally,

L′(0) = 8λ′(0) − 4aK(0)ϕ′(0) = 0.

5. Extrema of the perimeter L

In this section we prove that the perimeter L reaches its local maximum at tmax and
its local minimum at 0. We recall that for quadrangles the 4-porism formula has the
following form:

(R2 − a2)2 = 2r2(R2 + a2) (5.1)

(see [2, 8]). This formula can be rewritten in the equivalent form

R2 = a2 + r2 + r
√

r2 + 4a2. (5.2)

We find the sign of L′′. From (2.5),

L =
2R
b

+
2R

b ◦ ϕ
+

2R
b ◦ ϕ[2] +

2R
b ◦ ϕ[3] .

Differentiating the function L and using (2.6) and (2.2),

L′ = 2R
(
−a
R

bσ sin t −
a
R

b ◦ ϕ · σ ◦ ϕ ·
b

b ◦ ϕ
sinϕ

−
a
R

b ◦ ϕ[2] · σ ◦ ϕ[2] ·
b ◦ ϕ

b ◦ ϕ[2] ·
b

b ◦ ϕ
sinϕ[2]

−
a
R

b ◦ ϕ[3] · σ ◦ ϕ[3] ·
b ◦ ϕ[2]

b ◦ ϕ[3] ·
b ◦ ϕ

b ◦ ϕ[2] ·
b

b ◦ ϕ
sinϕ[3]

)
= −2ab(σ sin t + σ ◦ ϕ · sinϕ + σ ◦ ϕ[2] · sinϕ[2] + σ ◦ ϕ[3] · sinϕ[3]),

that is,

L′ = −2abM,

where

M = σ sin t + σ ◦ ϕ · sinϕ + σ ◦ ϕ[2] · sin ◦ϕ[2] + σ ◦ ϕ[3] · sin ◦ϕ[3]. (5.3)

The derivative M′ of M is a sum M1 + M2, where

M1 =
a
R

(
sin2 t +

b
b ◦ ϕ

sin2 ϕ +
b

b ◦ ϕ[2] sin2 ϕ[2] +
b

b ◦ ϕ[3] sin2 ϕ[3]
)

(5.4)
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and

M2 = σ cos t + σ ◦ ϕ
b

b ◦ ϕ
cosϕ + σ ◦ ϕ[2] b

b ◦ ϕ[2] cosϕ[2] + σ ◦ ϕ[3] b
b ◦ ϕ[3] cosϕ[3].

(5.5)
Thus, L′′ has the following form:

L′′ = −2a(b′M + (M1 + M2)b).

Now, we divide our considerations into two steps.

Step 1. The perimeter L reaches its local minimum at 0.
First, we prove that

|BC|2 = 2(R2 − a2) (5.6)

(see Figure 6). From (4.3) and (4.4),

|BC|2 = (λ0 + λ1)2 = (λ0 − λ1)2 + 4r2 = λ2
0 − 2r2 + λ2

1 + 4r2 = 2R2 − 2a2.

Let τ = ϕ(0), as in Figure 6. We prove that

cos τ =
2r2 + a2 − R2

2ar
. (5.7)

It follows immediately from (5.1) that the numerator in (5.7) is negative. From (2.5)
and (5.6),

b(τ) =
2R
|BC|

=
2R

√
2R2 − 2a2

. (5.8)

On the other hand, by (2.3),

1
b(τ)

=

√
1 −

(r − a cos τ
R

)2
.

Comparing these two formulas and using the formula (5.1) for a 4-porism gives (5.7).
Now, we prove that

M′(0) = M1(0) + M2(0) < 0.

Since ϕ(0) = τ, ϕ[2](0) = π and ϕ[3](0) = 2π − τ, it follows from (5.4) that

M1(0) =
2a
R

b(0)
b(τ)

sin2 τ. (5.9)

Next, from (5.5),

M2(0) = σ(0) + 2σ(τ)
b(0)
b(τ)

cos τ − σ(π)
b(0)
b(π)

. (5.10)

From (5.9) and (5.10),

M′(0) =
b(0)
b(τ)

(2a
R

(1 − cos2 τ) +
b(τ)
b(0)

σ(0) + 2
r − a cos τ

R
cos τ − σ(π)

b(τ)
b(π)

)
=

2
R
ϕ′(0)

(
−2a cos2 τ + r cos τ + a +

1
2

Rb(τ)
(
σ(0)
b(0)

−
σ(π)
b(π)

))
.
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Next, using (5.7) and (5.1),

−2a cos2 τ + r cos τ + a =
−(2r2 + a2 − R2)2

2ar2 +
2r2 + a2 − R2

2a
+ a

=
1

2ar2 (−2r4 − 3r2(a2 − R2) − 2r2(R2 + a2)) + a

=
R2 − 2r2 − 3a2

2a
.

Now, using (5.8) and (5.2),

M′(0) =
2
R
ϕ′(0)

(R2 − 2r2 − 3a2

2a

+
1
2

R
2R

√
2R2 − 2a2

(r − a
R

√
1 −

(r − a
R

)2
−

r + a
R

√
1 −

(r + a
R

)2) )
=

2
R
ϕ′(0)

(R2 − 2r2 − 3a2

2a
+

(r − a)
√

R2 − (r − a)2 − (r + a)
√

R2 − (r + a)2
√

2R2 − 2a2

)
=

2
R

aϕ′(0)
(1
2
· f

( r
a

))
,

where

f (x) = x
√

4 + x2 − x2 − 2 +
(x − 1)

√
2 +
√

4 + x2 − (x + 1)
√
√

4 + x2 − 2
√

2
√

x +
√

4 + x2

.

It is easy to see that x
√

4 + x2 − x2 − 2 < 0 for x > 0. Moreover, we can simply prove
in two steps (for x ∈ (0,1] and x ∈ (1,+∞)) that the last term of f is negative. It follows
from (2.6) that b′(0) = 0. Hence,

L′′(0) = −2a(b′(0)M(0) + b(0)M′(0)) = −2ab(0)M′(0) > 0,

so the perimeter L reaches its local minimum at t = 0.

Step 2. The perimeter L reaches its local maximum at tmax.

First, we prove that

M1(tmax) = 4ar2 R2 + 3a2

(R − a)2(R + a)3 . (5.11)

For this purpose, note that sin t1 = r/(R − a) (see Figure 5). From (3.3), (4.1), (2.3)

https://doi.org/10.1017/S0004972714001142 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714001142
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and (2.5),

M1(tmax) =
a
R

(
sin2 tmax + sin2 ϕ(tmax) +

b(tmax)
b(ϕ[2](tmax))

sin2 ϕ[2](tmax)

+
b(tmax)

b(ϕ[3](tmax))
sin2 ϕ[3](tmax)

)
=

a
R

b(2π − t1)
( sin2 t1
b(2π − t1)

+
sin2 t1
b(t1)

+
cos2 t1

b((π/2) + t1)
+

cos2 t1
b((3π/2) − t1)

)
=

a
R

2R
|AD|

(
|AD|
2R

sin2 t1 +
|AB|
2R

sin2 t1 +
|BC|
2R

cos2 t1 +
|CD|
2R

cos2 t1
)

=
2a
R

(sin2 t1 + cot t1 cos2 t1) = 4ar2 R2 + 3a2

(R − a)2(R + a)3 .

Now, we prove that

M2(tmax) =
−4ar2

(R − a)(R + a)2 . (5.12)

Similarly to Step 1,

M2(tmax) = σ(tmax) cos tmax + σ(ϕ(tmax)) cosϕ(tmax)

+σ(ϕ[2](tmax))
b(tmax)

b(ϕ[2](tmax))
cosϕ[2](tmax)

+σ(ϕ[3](tmax))
b(tmax)

b(ϕ[3](tmax))
cosϕ[3](tmax)

= b(2π − t1)
(
σ(t1)

cos t1
b(2π − t1)

+ σ(t1)
cos t1
b(t1)

− σ
(
π

2
+ t1

) sin t1
b( π2 + t1)

−σ
(3π

2
+ t1

) sin t1
b( 3π

2 − t1)

)
.

Now, using (2.5) and (3.1),

M2(tmax) = 2b(t1)
(
σ(t1)

cos t1
b(t1)

− σ
(
π

2
+ t1

) sin t1
b( π2 + t1)

)
= 2

2R
|AB|

(r − a
R
|AB|
2R

cos t1 −
r + a sin t1

R
|BC|
2R

sin t1
)

=
−2a

R
r

R + a

( r
R + a

+
r

R − a

)
=

−4ar2

(R − a)(R + a)2 .

Next, we prove that

b′(tmax) =
−ar5

R(R − a)4(R + a)
.
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Using (2.6) and (3.5),

b′(tmax) =
a
R
(√

1 − σ2(tmax)
)3
σ(tmax) sin tmax

=
a
R

(sin tmax)3 cos tmax sin tmax =
−ar5

r(R − a)4(R + a)
.

In this substep, we prove that

M(tmax) =
−2r2

(R − a)(R + a)
.

Indeed,

M(tmax) = σ(tmax) sin tmax + σ(ϕ(tmax)) sinϕ(tmax)
+σ(ϕ[2](tmax)) sinϕ[2](tmax) + σ(ϕ[3](tmax)) sinϕ[3](tmax)

= −σ(t1) sin t1 + σ(t1) sin t1 + σ
(
π

2
+ t1

)
sin

(
π

2
+ t1

)
+σ

(3π
2
− t1

)
sin

(3π
2
− t1

)
= −2σ

(
π

2
+ t1

)
cos t1 = −2

r + a sin t1
R

cos t1 =
−2r2

(R − a)(R + a)
.

Finally, we prove that L′′(tmax) < 0. To see this, note that

M′(tmax) = 4ar2 R2 + 3a2

(R − a)2(R + a)3 −
4ar2

(R − a)(R + a)2 =
16a3r2

(R − a)2(R + a)3 > 0

and b′(tmax)M(tmax) > 0, so L′′(tmax) < 0.

6. The number of extrema of L

In the previous section we proved that L′ = −2abM, where M is given by the
formula (5.3). Substituting (2.4) into (5.3),

M = σ(t) sin t + σ ◦ ϕ(t) sinϕ(t) + σ ◦ ϕ[2](t) sinϕ[2](t) + σ ◦ ϕ[3](t) sinϕ[3](t)

=
r
R

(sin t + sinϕ(t) + sinϕ[2](t) + sinϕ[3](t))

−
a

2R
(sin 2t + sin 2ϕ(t) + sin 2ϕ[2](t) + sin 2ϕ[3](t)).

In order to simplify this formula, we prove the identity

sin t + sinϕ(t) + sinϕ[2](t) + sinϕ[3](t) ≡ 0. (6.1)

The formula (3.7) implies that

λ ◦ ϕ[4](t) = λ(t) − 2a sinϕ(t) − 2a sinϕ[2](t) − 2a sinϕ[3](t) − 2a sinϕ[4](t)

and (6.1) follows because ϕ[4](t) ≡ t + 2π.
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Figure 8. Outer angles of the described quadrangle.

Next, we prove that

sin 2t + sin 2ϕ(t) + sin 2ϕ[2](t) + sin 2ϕ[3](t)
= 4 cos(ϕ(t) − t) cos(ϕ[2](t) − ϕ(t)) sin(ϕ[2](t) + t). (6.2)

We make use of the well-known trigonometric formula

sinα + sin β + sin(α + β) = 4 cos
α

2
cos

β

2
sin

α + β

2
. (6.3)

The condition for a quadrangle to be inscribed in a circle (see Figure 8) implies that

ϕ[3](t) − ϕ[2](t) + ϕ(t) − t ≡ π. (6.4)

From (6.3) and (6.4), we deduce (6.2):

sin 2t + sin 2ϕ + sin 2ϕ[2] + sin 2ϕ[3]

= 2 sin(t + ϕ) cos(t − ϕ) + 2 sin(ϕ[2] + ϕ[3]) cos(ϕ[3] − ϕ[2])
= 2 sin(ϕ + t) cos(ϕ − t) + 2 sin(ϕ[2] + ϕ[3]) cos(π − ϕ + t)
= 4 cos(ϕ − t) sin 1

2 (ϕ + t − ϕ[2] − ϕ[3]) cos 1
2 (ϕ + t + ϕ[2] + ϕ[3])

= 4 cos(ϕ − t) sin 1
2 (ϕ − ϕ[2] − ϕ[2] + ϕ − π) cos 1

2 (t + ϕ[2] + π + ϕ[2] + t)

= 4 cos(ϕ − t) cos(ϕ[2] − ϕ) sin(ϕ[2] + t).

Summarising,

L′ = 8
a2

R
b cos(ϕ − t) cos(ϕ[2] − ϕ) sin(ϕ[2] + t). (6.5)

Moreover, L ◦ ϕ = L, so

ϕ′L′ ◦ ϕ = L′.
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Now, it is easy to see that if L′ = 0, then the first and the second trigonometric factors
of (6.5) determine the same quadrangle (with the maximal perimeter) and the third
factor determines a quadrangle with the minimal perimeter.

Now, we are in position to formulate the main theorem of this paper.

Theorem 6.1. Suppose that the annulus CrCa,R has the Poncelet porism property. A
quadrangle circuminscribed in CrCa,R has the maximal perimeter if it passes through
the point (R + a, 0) and it has the minimal perimeter if passes through the point (r, 0).

7. Conjectures

Results of Radić and our considerations allow us to formulate the following
conjectures.

(I) An n-gon circuminscribed in CrCa,R has the maximal perimeter (area) if it passes
through a point (R + a, 0). One of its edges contains the maximal segment λmax.

(II) An n-gon circuminscribed in CrCa,R has the minimal perimeter (area) if it passes
through a point (r, 0).
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