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Abstract: Previous work on the concentration of magnetic field by cel­
lular convection in a Boussinesq fluid is extended to a perfect gas, so 
that the gas pressure is reduced in the presence of a strong magnetic 
field. Attention is focussed on 2-dimensional flows and on the case of 
small layer depths, so that the pressure is effectively uniform in field 
free regions. It is shown that if the field is sufficiently strong, flux 
sheets with significantly reduced pressures and densities may form. 
Criteria are established which measure the relative importance of this 
effect to the more familiar 'magnetic drag1 which acts to prevent the 
concentration of field by generating counter vorticity. 

In recent years, high resolution observations of the solar photo­
sphere have shown the existence of vertical magnetic fields confined to 
thin flux tubes, with peak fields of up to 2000G (see e.g. Beckers 1981). 
Near the surface, these fields approach the maximum permitted by the 
requirement that the gas pressure must be small inside the tubes. If the 
fluid is regarded as a perfect conductor, so that the field lines are 
'frozen in1, it is difficult to produce such high fields by dynamical 
means (see e.g. Parker 1979). A complete theory must involve the action 
of diffusion (either molecular or turbulent) which allows flow across 
field lines. In this view, the size of a flux tube is determined by a 
balance between advective effects (due to the convective motions) and 
diffusion (Galloway et al. 1977). Previous theories of the dynamical 
effects of flux concentration (Galloway et al. 1978) have ignored the 
compressibility of the fluid, supposing it to be Boussinesq. Thus the 
evacuation of the tube cannot be modelled. In this paper the latter 
effect is investigated in the simple case of 2-dimensional convection, 
making use of the fmagneto-Boussinesqf approximation (Spiegel & Weiss 
1982). It is shown that the effects of compressibility are less than 
might have been expected and that although the tubes can become evacuated, 
the amplification mechanism is essentially the same as for the Boussinesq 
case, at least in the parameter range considered. 
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ANALYSIS 

We consider steady 2-dimensional convection in a perfect gas in the 
presence of an imposed vertical magnetic field BQz; the convecting layer 
has depth d. The physics is simplified by supposing large thermal con­
ductivity, so that the temperature T can be taken as fixed, and the energy 
equation dispensed with. Motion is then caused by horizontal density and 
pressure gradients, and this confines the magnetic field to thin boundary 
layers (see e.g. Proctor & Weiss 1982). If we write the magnetic field 
BEVA(Ay), where y_ is at right angles to the convection rolls, the dimen-
sionless equations describing the system are, 

V.(pu) = 0 (1) R (u.VA) = V2A (2) 
— m — 

Re(u.Vu) + i^ VAV2A + [v2u+lv(V.u)1 - -V(pT) + pz = 0 (3) 
— — e^ i- — 3 —i g — 

where ii is velocity, p density, and the dimensionless parameters are 
^oRT

0Po £=gd/RT0, 3 , R =P0gd3/yn , Re=p0
2gd3/y2 (4) 

Bo 
if g is gravitational acceleration, R the gas constant, y0 permeability, 
y viscosity and p0,To typical values of p,T. Re is the Reynolds and Rm 
the magnetic Reynolds number,3 is the ratio of initial gas pressure to 
magnetic pressure and e the ratio between the layer depth and a pressure 
scale height. Previous work (Galloway et al. 1977, 1978) has concentrated 
on the case £-K) (Boussinesq fluid). In this case the pressure is effec­
tively uniform and the role of the Lorentz forces is to generate vorticity 
opposite in sense to that of the flow in the absence of field. If Rtn»l, 
the field is confined to a boundary layer of (scaled) width 0(Rm'*), and 
in this case the curl of (3) may be used to show that this 'magnetic drag' 
becomes significant (reduces the amplification) if 3£Rm £*'• If ^m *-s s o 

large that R ^ e » l , however, then 3 can be 0(Rm) or less before the former 
inequality can be satisfied, and in this case the gas pressure in the flux 
sheet will be reduced below its ambient value since the total pressure 
must be constant, and the peak field B* is 0(R^ )B0. If we suppose Re not 
too large, the effects of dynamic pressure may be ignored. Then because 
of continuity the velocity field will change to accommodate the horizontal 
density contrast, and this will change the shape of the flux sheet, which 
is Gaussian for very large 3. There is also a generation of vorticity due 
to horizontal density gradients, but this is always small compared with 
the original vorticity. We can therefore ignore the effect of magnetic 
drag (which requires curved field lines) and consider a simple model in 
which u=( Rm u(£),z), where % =R^ x is the boundary layer coordinate for 
a flux sheet near x=0 (Fig.l). This causes a vertical sheet in which A= 
A(£),| _B|=R2I $(0"R}(f dA/d£. The boundary layer equations are then (if 
T-1 near x=0 and n=l nitfsi.de the hniindarv 1 avp.r̂  1-1 near x=u ana p=i outside tne Dounaary layer; 

^ 00 

with 3p/a£ = 8B/85 = u = 0 at £=0, and p-KL, B-K), u-*-£ as 5-^with jBd£=|, 
o 
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Figure 1. 
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Geometry of the model problem: converging flow creates a thin 
flux sheet 

say, since the flux is fixed. This system can be reduced to a first 
order o.d.e. which has been solved numerically. Fig.2 shows B and p as 
a function of £ for 3 values of yEB/I^. The sheet becomes flattened as 
Y decreases, with much more flux in the wings; it seems that the central 
density Pcentre"*0 as Y tends to a finite value (Fig.3) (though of course 
the assumptions of the theory are no longer valid then.) 
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Figure 2. p and B as functions of £ for three different values of y, 
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Figure 3. Central density as a function of y 

DISCUSSION 

A start has been made in assessing the effect of compressibility on 
the concentration of magnetic fields by convection* The small e results 
here complement those for large £ obtained numerically by Cattaneo (1982), 
which show qualitatively similar effects. They show that provided dif­
fusion plays a role in fixing the size of the flux tubes (itself a con­
troversial matter, see e.g. Spruit 1981), evacuated tubes can be supported 
almost as easily as non-evacuated ones. Further work is in progress to 
include the effects of an energy equation, and to consider the inter­
action between evacuation and magnetic drag effects. 
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D I S C U S S I O N 

GIOVANELLI: (1) Can you give me any idea of the depth of a granule? One suggestion has 
been 1/4 granule diameter. Others have spoken of 1500 km to perhaps 10 000 km. If they 
are shallow, then of course the idea of a structure small compared with the scale height 
is OK, but otherwise this is not so. (2) The observations have shown increasing downflow 
velocities inside magnetic elements. Most of the down flow observations have; been made by 
my colleagues and myself. These observations were done before we realized that the fields 
splayed out so rapidly with height. I believe that the downilow observations should now 
be redone taking cogniscance of our present improved knowledge on tube structure. Jack 
Harvey and I are attempting this, but I hope that it will be possible to interest others in 
similar studies. It is obviously of great theoretical interest. 

PROCTOR: (1) A few hundred km is the most commonly accepted level for granules, 
and one imagines that the appropriate depth is one scale height (though if the granulation 
takes place in strongly stably stratified regions the vertical scale may be rather less). A full 
theory should certainly take account of larger layer depths. However, Cattanco's numerical 
work seems to show similar features, even though layer depths there are large. (2) 1 heartily 
concur with the need for new down flow observations. 

GRAM: Recent calculations of the electrical conductivity of the solar photosphere give a 
minimum value of about 1 Siemens m""1. This value is too large to lead to significant Joule 
dissipation. If "classical" difFusivity is not operative, what is the picture of "turbulent" 
diffusivity that we should think about in relation to magnetic structures that are only a 
few hundred km across? 

PROCTOR: "Turbulent diffusion" acts at both scalar and vector fields both to reduce 
scales below the resolution threshold and, more importantly, to such scales that molecular 
or radiative effects can operate on the time scale available. For scalars the effective 
diffusivity does not depend significantly on the molecular value, but there are certainly 
problems in understanding the diffusion processes when they are strongly affected by the 
anisotropy introduced by the Lorentz force. I would expect the existence of very small-scale 
fluctuating flows down to the scale of a few (perhaps a few tens) of km, as the end product 
of the cascade due to the turbulent convection. 

SPICER: I have a comment with respect to Cram's remark on the electrical conductivity 
of the plasma at the temperature minimum. As there are flow fields which appear to flow 
perpendiculaT to the ambient magnetic field, perpendicular currents will result. Hence the 
Pedersen conductivity can lead to significant dissipation via riPederJ2]-

PROCTOR: In highly conducting fluids the field lines move with the fluid, so there is no 
perpendicular flow! One does not want too much dissipation anyway, since otherwise the 
very intermittent magnetic field structure would not be seen. 

WEISS: In modelling fluxtubes, we poor theoreticians have to rely on what the observers 
tell us, and it is confusing when even Australian observers seem to disagree with each 
other. As I understand it, Dr. Giovanelli still maintains that there is a flow of gas across 
the field lines and downwards into the flux tube. Dr. Cram insists that ohmic diffusion will 
not permit this flow. So we have to postulate the existence of a different diffusion process. 

PROCTOR: It is certainly important not to be content with "kinematic" turbulent 
diffusivity theories but to include the effects of Lorentz forces. Perhaps we can then 
understand how we can obtain flows "down under" the tubes. 
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