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AN ASYMPTOTIC THEOREM FOR
ABSTRACT DIFFERENTIAL EQUATIONS

GASTON FIANDATA N'GUEREKATA

In this paper, we prove the existence of a continuous one-to-one

correspondence between bounded solutions of the equation

x1(t) = Ax(t) + b(t) which belong to a certain subclass L of

Ci(R;X) and bounded mild solutions of the equation

x ' ( t ) = A x { t ) + b ( t ) + f ( t , x ( t ) ) o f t h e f o r m u ( t ) = < ) > ( * ) + i j j ( i ) ,

wi th <$>{t) S L and l im i)j(t) = 9 .
+ t*°

1. Let X be a Banach space with norm II • II and C?(R;X) the Banach

space of continuous and bounded functions: R -*• X with norm 11*11 . Then

consider the following classes of functions:

L is a subclass of functions in Cfi{R;X) with the unique property:

<P1 + <P2 e L+ f o r e v e r y 4>1><\>2
 e L

+ •

C(R ;X) i s t h e c l a s s o f c o n t i n u o u s f u n c t i o n s <Ji:R •* X s u c h t h a t

l i m (f>(t) = 8 .

B(R -,X) i s t h e c l a s s o f f u n c t i o n s U:R •* X w i t h t h e p r o p e r t y t h a t

o +
t h e r e e x i s t <f> 6 L and i|< £ C(R ;X) s u c h t h a t u(t) = if(t) +

t G R+ .

Now consider the differential equations in X -.
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(1) x' (i) = Ax(t) + b(t) , t G R

(2) x'It) = Ax it) + b(t) + flt.xlt)) , t e R

and the following assumptions:

(i) the closed linear operator A with domain D{A) dense in X

is the infinitesimal generator of a strongly continuous one-

parameter group T(t) such that T(t)x G I for each x £ X .

(ii) b : R -»• X is continuous and b(t) & L

(iii) / : R x X •* X is continuous in t and x jointly and

II f(t,x) -f{t,y) II < L{t)Kx-yl , for every t e R and x,y G X ;

l\f(t,Q)l\dt < «> and W L(t)dt < 1 , where W = sup Hr(t)ll < » .
JO J0 tGR

Now a mild solution of equation (2) is (by definition) a continuous function

x : R ->• X with the integral representation

T(t-o)(bio) + fio,x(o)))do , t £ R .
o

(the integral i s considered in Bochner's sense). Our theorem below is

inspired by a resul t of Coppel (see [J] proposition 3, p. 35 or [2]

theorem 9.5) on almost periodic solutions of exponentially dichotomic

equations in Rn , but i t i s not a direct generalisation of Coppel's

r e su l t .

2. THEOREM. Suppose every bounded solution of (1) is in L ; then

there exists a continuous one-to-one correspondence between bounded

solutions of (1) and bounded mild solutions of (2). Moreover every bounded
+ . ° +

mild solution of (2) restricted to R is in SCR ;X).

Proof. Consider the map 5 : cf (R;X) •* (f(R;X) defined by

Sx(t) = T(t-o)f(o,x(o))do , t S R .

This is well-defined on CL(R;X) since
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ft
IISx(t) l l < M II f(a,x ( a ) ) II da

' o

(i:
< A ? ( | L ( a ) » x ( o ) U d a + II f (a, 8) II da \

\ •" o o

< M \ K [ L(a)da + j 0 f ( a f 8 ) H d )
\ JO Jo '

where K = IIxll = sup llx(£)U . Moreover S i s a s t r i c t contraction

because of the following inequality

llSx(t) -Sy[t)t = III 2"(t-a) (f(o,x(a)) - f (a ,j/ (a)) )da ||
o

r
< M • llx-j/ll • L{a)da .

0 Jo
r

and the assumption C = M \ L(a)da < 1 . Now let 3(t) be a bounded
J 0

solution of (1) and consider the map F : cfl(R;X) •* C?(R;X) defined by

Fx(t) = z(t) + Sx(t) .

Then F is also a strict contraction; therefore F possesses a unique

fixed point u(t) which satisfies

u(t) = z(t) + Suit) , t e R ,

that is

f*(3) M(t) = T(t)uiO) + Tit-a)(bia) + f(0,u(o)))do

because u(0) =3(0) .

We see w(t) is a mild solution of (2). It is bounded as the sum of

two bounded functions.

On another hand, if uit) is a bounded mild solution (2), it has the

ft
representatxon (3) and if we put z(t) = Tit)u{0) + T{t-a)b{o)do , which

In
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i m p l i e s 3(0) = u (0) , then z(t) = u(t) - Suit) , and z{t) i s a bounded

s o l u t i o n of ( 1 ) .

Now the map z ** u s a t i s f i e s the fo l lowing i n e q u a l i t i e s

(4) 'v^'/n'v^'o
and

(5) "Sl"22"o ^ a+O)\u1-U^o .

Therefore i t i s a continuous one-to-one correspondence. F ina l ly , l e t us

show tha t every bounded mild solution u(t) of (2) r e s t r i c t ed to R i s

in B(R+;X) .

We have

f*u{t) = z{t) + T(t-o)f(o,u(o))do , t > 0

' o

wi th s ( t ) G L .

Moreover, we can prove the existence in X of the improper integral

T(-o)f(o,u(a))da because it satisfies the inequality
0

i H r
T(a)f(a,u(a))daW < M\K\ L(a)da + H/(o,6) I

\ Jo JO10

Therefore the function R ->• X defined by

f°° f°°
T(t-a)f{a,u(a))da = T{t)\ T{-a)f{a,u{a))da

JO JO

belongs to L .

r
Also i t is easy to prove that T(t-a) f(o,u(o) )da exists in X for

>t
every t > 0 . And we have

r i r r \

II T(.t-o)f(a,iHa))do\\ < M[K\ L(a)da + II/(a ,0)11 da) ,

which shows lim T (t-o) f(o ,u(o) )do = 9 . We have proved

r r o +
= z{t) + r ( t - a ) / ( a , M ( 0 ) )do - T ( t - a ) f ( a , w ( a ) ) d a G B(R ;X) . a

Jo Jo
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Remark 1. L contains the class of almost automorphic functions:

o +
R ->• X and consequently B(R ;X) contains the class of asymptotically

automorphic functions: R •* X (see [4] and [5] for this concept). In

this case, our theorem gives conditions for bounded mild solutions of

equations of the form (2) to remain almost automorphic as t goes to

infinity, provided bounded solutions of equation (1) are also almost

automorphic.

Remark 2. The technique used here can be applied to many problems

of asymptotic stability. For example, if we consider equation (1) with

Wb(t)Wdt < ~ , then every solution of (1) restricted to R is in
JO

o +
B(R ;X) . T h i s g i v e s a s i m p l e g e n e r a l i s a t i o n o f Z a i d m a n ' s r e s u l t ( [ 6 ]

t h e o r e m 1) and i s a l s o c l o s e d t o Lemma 1 ( [ 3 ] ) .
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