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A concentrated, vertical monolayer of identical spherical squirmers, which may be bottom
heavy, and which are subjected to a linear shear flow, is modelled computationally
by two different methods: Stokesian dynamics, and a lubrication-theory-based method.
Inertia is negligible. The aim is to compute the effective shear viscosity and, where
possible, the normal stress differences as functions of the areal fraction of spheres φ,
the squirming parameter β (proportional to the ratio of a squirmer’s active stresslet to its
swimming speed), the ratio Sq of swimming speed to a typical speed of the shear flow, the
bottom-heaviness parameter Gbh, the angle α that the shear flow makes with the horizontal
and two parameters that define the repulsive force that is required computationally to
prevent the squirmers from overlapping when their distance apart is less than a critical
value. The Stokesian dynamics method allows the rheological quantities to be computed
for values of φ up to 0.75; the lubrication-theory method can be used for φ > 0.5. For
non-bottom-heavy squirmers, which are unaffected by gravity, the effective shear viscosity
is found to increase more rapidly with φ than for inert spheres, whether the squirmers are
pullers (β > 0) or pushers (β < 0); it also varies with β, although not by very much.
However, for bottom-heavy squirmers the behaviour for pullers and pushers as Gbh and α

are varied is very different, since the viscosity can fall even below that of the suspending
fluid for pushers at high Gbh. The normal stress differences, which are small for inert
spheres, can become very large for bottom-heavy squirmers, increasing with β, and
varying dramatically as the orientation α of the flow is varied from 0 to π/2. A major
finding is that, despite very different assumptions, the two methods of computation give
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overlapping results for viscosity as a function of φ in the range 0.5 < φ < 0.75. This
suggests that lubrication theory, based on near-field interactions alone, contains most of
the relevant physics, and that taking account of interactions with more distant particles
than the nearest is not essential to describe the dominant physics.

Key words: rheology, micro-organism dynamics, suspensions

1. Introduction

Active matter has become a popular area of research in recent years, among both fluid
dynamicists and soft matter physicists. The canonical examples of fluid active matter are
suspensions of swimming micro-organisms, which may exhibit fascinating phenomena,
ranging from steady, regular patterns, as in bioconvection (Wager 1911; Platt 1961;
Childress, Levandowsky & Spiegel 1975; Kessler 1986; Pedley & Kessler 1992) among
others, to random coherent structures, sometimes referred to as bacterial turbulence
(Dombrowski et al. 2004), with many variants in between.

There have been few experimental studies on the effective viscosity of suspensions of
microscopic swimmers. Notable among those few are the measurements of Rafaï, Jibuti
& Peyla (2010) on suspensions of motile algae (Chlamydomonas reinhardtii), which are
close to spherical, are bottom heavy and pull themselves through the fluid (equivalent in
the squirmer model to the squirming parameter β being positive; see (1.3) below). The
effective viscosity in a horizontal shear flow was found to increase with volume fraction
much more dramatically than for a suspension of dead cells. On the other hand, Sokolov &
Aranson (2009) measured the effective viscosity of a suspension of bacteria (pushers: β <

0), and found a significant decrease in shear viscosity with swimming speed. The latter
finding was reinforced by López et al. (2015), using a Couette viscometer in which the flow
is essentially simple shear. They found that the presence of pusher cells (Escherichia coli
bacteria) caused the effective viscosity to fall below that of the ambient fluid at sufficiently
low values of the shear rate γ , and even to approach zero as the cell volume fraction was
increased. The mechanism for this phenomenon was first set out by Hatwalne et al. (2004)
and depends on the cells being elongated (prolate spheroids or rods): in the absence of
swimming, such rods describe Jeffery orbits and align preferentially with the directions
of extensional strain rate. The contractile nature of the flow generated by a puller opposes
this extension and therefore the effective viscosity is increased, but the extensile nature of
pusher-generated flow enhances it. The mechanism is operative for dilute suspensions; it
is very clearly explained in the review by Saintillan (2018). However, the same mechanism
does not apply to a spherical organism, which does not have a preferred orientation in
simple shear flow.

Observations of phenomena such as those described above have stimulated an equally
large range of theoretical models to see if the observations can be explained by physical
processes alone, without requiring an understanding of biological (or chemical) signalling
or intracellular processes. Continuum models have been very successful for dilute
suspensions, in which the cells interact with their environment but not with each other:
bioconvection results from either a gravitational instability when the upswimming of dense
cells leads to a gravitationally unstable density profile, or a gyrotactic instability in which
the cell’s non-uniform density or geometric asymmetry causes them to be reoriented in a
shear flow (Childress et al. 1975; Kessler 1986; Pedley & Kessler 1992; Roberts & Deacon
2002). Even when gravity is unimportant the stresses applied by the cell’s swimming
motions (a swimmer acts as a force dipole or stresslet) lead to instability and random
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Rheology of a monolayer of squirmers

bulk motions (Pedley & Kessler 1990; Simha & Ramaswamy 2002; Saintillan & Shelley
2008).

The rheology of a suspension in an incompressible fluid is represented by the bulk
stress tensor Σ , which needs to be calculated or measured in terms of the (changing)
configuration of the particles in the suspension and of the velocity field. Rational scientific
analysis of the rheology of non-dilute suspensions began with the work of Batchelor
(1970), who showed that Σ , for force-free particles in a (quasi-)steady linear flow with
strain-rate tensor E , could be expressed as

Σ = −PI + 2η0E + Σ ( p), (1.1)

where the first term is the isotropic part of the stress, P is the effective pressure and the
second term is the Newtonian viscous stress (η0 being the fluid viscosity). The third term
is the particle stress tensor, defined as the average over all spheres of the stresslet for a
single particle

S =
∫

Ap

[
1
2 {(σ · n)x + x(σ · n)} − 1

3 x · σ · nI − η(un + nu)
]

dA, (1.2)

where σ is the stress tensor and u is the velocity. Here, Ap is the surface of the particle
with outward normal n. An effective viscosity can then be defined for each off-diagonal
component of the (ensemble) average stress tensor by dividing it by the corresponding
component of the bulk rate of strain tensor, which shows that in general the effective
viscosity is itself non-isotropic. Moreover it will in general also depend on the mean
velocity field, which means the suspension is non-Newtonian. Further non-Newtonian
effects that are of practical importance and are often calculated are the differences between
the diagonal stress components (‘normal stress differences’).

There is a considerable literature on the computation of the effective viscosity and
normal stress differences in suspensions of passive particles, in particular identical rigid
non-colloidal spheres at low Reynolds number. The first contribution was from Einstein
(1906), who calculated the first correction, of O(φ) where φ is the particle volume fraction,
to the fluid shear viscosity; the suspension was dilute and there was no interaction between
particles. Semi-dilute suspensions, in which pairwise hydrodynamic interactions were
included, were considered by Batchelor & Green (1972), and they could compute the
O(φ2) term, at least in linear flows with no closed streamlines. Higher concentrations in
general require substantial computations; great progress has been made using the method
of Stokesian dynamics, introduced by Brady and his colleagues (Bossis & Brady 1984;
Brady & Bossis 1985, 1988; Brady et al. 1988); application to the rheology of concentrated
suspensions was made by Sierou & Brady (2002). Singh & Nott (2000) applied Stokesian
dynamics to a monolayer of rigid spherical particles. An excellent recent review of the
rheology of concentrated suspensions is given by Guazzelli & Pouliquen (2018).

In this paper we wish to consider concentrated suspensions of active particles, in which
the flow is dominated by cell–cell interactions. Continuum models fail because there
is no agreed way of incorporating cell–cell interactions into the model equations – in
particular the particle stress tensor Σ ( p) – even when the interactions are restricted to
near-field hydrodynamics together with a repulsive force to prevent overlap of model cells.
We seek to understand the rheological properties of an idealised suspension from direct
numerical simulations. The cells are modelled as identical steady spherical squirmers
(Lighthill 1952; Blake 1971; Ishikawa, Simmonds & Pedley 2006; Pedley 2016): spheres
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of radius a which swim by means of a prescribed tangential velocity on the surface,

uθ = 3
2 Vs sin θ(1 + β cos θ), (1.3)

where θ is the polar angle from the cell’s swimming direction, Vs is the cell swimming
speed and β represents the stresslet strength; inertia is negligible. The suspension is taken
to be a monolayer, in which the sphere centres and their trajectories are confined to a
single plane, which is vertical in cases for which gravity, g, is important. The monolayer is
here taken to be confined to the narrow gap between stress-free planes, spaced a distance
2.1a apart. In previous work on semi-dilute suspensions, the monolayer was taken to be
embedded in an effectively infinite fluid (Ishikawa & Pedley 2008); we show that the
results of the two models do not differ greatly. The spheres may be bottom heavy, so
that when the swimming direction of a sphere, p, is not vertical the sphere experiences a
gravitational torque T , where

T = −ρυhp × g (1.4)

and υ, h are the cell volume and the displacement of the centre of mass from the geometric
centre; ρ is the average cell density, assumed in this case to be the same as that of the
fluid. The monolayer is taken to be driven by a simple shear flow in the same, x–y, plane:
U = (γ y, 0, 0), with shear rate γ ; we will also take

g = −g(sin α, cos α, 0), (1.5)

so the flow is horizontal if α = 0.
We have previously studied the rheology of semi-dilute, three-dimensional, suspensions

of squirmers – volume fraction φ � 0.1 – in which pairwise interactions between the cells
were summed simply, neglecting interactions involving more than two cells at a time
(Ishikawa & Pedley 2007b). General pairwise interactions were computed exactly using
the boundary element method, supplemented by lubrication theory when cells were very
close together. Cells were computationally prevented from overlapping by the inclusion of
a repulsive interparticle force

F = η0a2γ F0τ e−τε/(1 − e−τε)r̂, (1.6)

where r̂ is the unit vector along the line of centres and ε is the minimum dimensionless
spacing between two cells (Brady & Bossis 1985). That is, εa = |xi − xj| − 2a, where xi
and xj are the Cartesian coordinates of the squirmers’ centres. Ishikawa & Pedley (2007b)
took τ equal to 1000 and F0 was varied. It was found that the swimming activity made very
little difference to the effective shear viscosity when the spheres were non-bottom heavy,
but the suspension showed significant non-Newtonian behaviour, such as anisotropic
effective shear viscosity and normal stress differences, when the cells were bottom
heavy. Moreover, horizontal and vertical shear flows (α = 0 or π/2) gave very different
results.

Here we use two different methods of simulation for very concentrated monolayer
suspensions, with areal fraction φ up to 0.8. One is a full numerical simulation using
Stokesian dynamics (Brady & Bossis 1988; Brady et al. 1988; Ishikawa, Locsei & Pedley
2008; Ishikawa & Pedley 2008), while in the other we assume that every cell interacts
only with its immediate neighbours; in that case the interactions are described using
lubrication theory alone. This model was recently used to investigate the stability of
a regular array of bottom-heavy squirmers, swimming upwards in the absence of an
imposed shear flow (Brumley & Pedley 2019). The point of this is to see if lubrication
theory alone is good enough to account for all the interesting rheological behaviour of a
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Rheology of a monolayer of squirmers

concentrated suspension, or if some effect of more distant particles is necessary, in the case
of squirmers. As well as illuminating the physics, this might make related computations
significantly cheaper than the full Stokesian dynamics. For inert and force-free spheres,
Leshansky & Brady (2005) reported in a footnote that suppressing all far-field interactions
made less than 5 % difference to the quantities they were computing. Other authors, such
as Mari et al. (2015), have also used lubrication theory alone for the hydrodynamics of
concentrated suspensions, but they do not normally compare the results with those that do
not neglect the far-field interactions.

These methods are explained in more detail in the first parts of the next two sections,
and their respective results are presented and discussed in the second parts. The findings
are compared in the final section, with further discussion and an outline of intended future
work.

2. Rheological properties calculated by Stokesian dynamics

2.1. Problem settings and numerical method
In this study, we consider a monolayer suspension of squirmers in a thin fluid film. The
film is assumed as infinitely periodic, and the two surfaces are assumed to be flat and stress
free. The film thickness Lz is set as Lz = 2.1a throughout the study. The reason why we
consider a monolayer suspension, instead of a three-dimensional suspension, is because it
allows us to handle a larger system size with a limited number of particles. Moreover, a film
suspension can be generated experimentally by using a soap film (Wu & Libchaber 2000;
Guasto, Johnson & Gollub 2010). As shown in figure 1, in-plane shear flow is induced in
the monolayer suspension of squirmers; the x-axis is taken in the flow direction, the y-axis
is taken in the velocity gradient direction and the z-axis in taken perpendicular to the film
plane. The background shear flow can be expressed as (ux, uy, uz) = (γ y, 0, 0). Gravity
also acts in the x–y plane, and α is the angle the gravitational acceleration g makes with
the −y axis, as given by (1.5) and shown in the figure. We assume that body centres and
orientation vectors of squirmers are placed in the centre plane of the fluid film. Thus, due
to the symmetry of the problem, the squirmers remain in the same centre plane all the
time.

The hydrodynamic interactions among squirmers in an infinite periodic monolayer
suspension are calculated in the same manner as in our former studies (Ishikawa &
Pedley 2008; Ishikawa et al. 2008), so we explain the methodology only briefly here.
The Stokesian dynamics method (Brady & Bossis 1988; Brady et al. 1988) is employed.
The hydrodynamic interactions among an infinite suspension of particles are computed
by the Ewald summation technique. By exploiting the Stokesian dynamics method, the
force F , torque T and stresslet S of squirmers are given by⎛

⎝F
T
S

⎞
⎠ =

[
Rfar − R far

2B + Rnear
2B

]⎛⎝U − 〈u〉
Ω − 〈ω〉

−〈E〉

⎞
⎠

+
[
Rfar − R far

2B

]⎛⎜⎝
−2

3 B1p + Qsq

0

−1
5 B2 (3pp − I)

⎞
⎟⎠+

⎛
⎜⎝

F near
sq

T near
sq

Snear
sq

⎞
⎟⎠ , (2.1)

where R is the resistance matrix, U and Ω are the translational and rotational velocities of
a squirmer, 〈u〉 and 〈ω〉 are the translational and rotational velocities of the bulk suspension
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α

γ

x

y

L

L

g
Unit domain

Figure 1. Problem setting of the simulation. An infinitely periodic monolayer suspension of squirmers in a
thin fluid film is sheared in the x–y plane. The unit domain is a square with side length L, and contains 128
squirmers. The film is assumed to be flat with thickness Lz = 2.1a, and has two stress free surfaces. Here, α is
the angle of gravitational acceleration g taken from the −y axis.

and 〈E〉 is the rate of strain tensor of the bulk suspension. Also, Qsq is the irreducible
quadrupole providing additional accuracy, which is approximated by its mean-field value
(cf. Brady et al. 1988). The brackets ( ) and [ ] indicate a vector and a matrix, respectively.
Index far or near indicates far- or near-field interaction, and 2B or Sq indicates interaction
between two inert spheres or two squirmers, respectively.

The computational region is a square of side L, and a suspension of infinite extent
is modelled with periodic boundary conditions in the x and y directions. In order to
express the stress free surfaces of the fluid film, the monolayer is periodically replicated
also in the z-direction with 2.1a intervals. For the simple shear flow in the x, y-plane,
the periodic conditions in the x and z-directions are straightforward. In the y-direction,
the periodicity requires a translation in the x-direction of the spheres at y = L, relative
to those at y = 0, by an amount Lγ t in order to preserve the bulk linear shear flow,
where t is time. The number of squirmers N in a unit domain is set as N = 128. The
areal fraction of squirmers is φ (not the volume fraction c), and it is varied in the
range 0.1 � φ � 0.75. Parameters in (1.6) for the repulsive force are set as F0 = 10 and
τ = 100. These values are determined so as to minimise the effect of repulsive force while
allowing stable computation without overlapping of particles. The initial configuration of
the suspended squirmers is generated by first arranging them in a regular array and then
applying small random displacements and random orientations. The dynamic motions are
calculated afterwards by the fourth-order Adams–Bashforth time marching scheme. The
computational time step is set as �t = 5 × 10−4/γ .

When external torques and inter-particle repulsive forces are introduced, the particle
stress tensor Σ ( p) can be expressed as

Σ ( p) = 〈S〉 + Σ t + Σ f , (2.2)

where 〈S〉 is the suspension-averaged stresslet, Σ t and Σ f represent contributions from
the external torques and the repulsive forces, respectively. The apparent shear viscosity
η of the film suspension can be calculated from Σ ( p). The excess apparent viscosity is
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given by
ηxy − η0

η0
= c

3
4πa3η0γ

〈Σ( p)
xy 〉 = φ

1
πa2Lzη0γ

〈Σ( p)
xy 〉, (2.3)

where c is the volume fraction. The areal fraction φ and c satisfy the relation c =
4aφ/(3Lz), where Lz (=2.1a) is the film thickness. When squirmers are torque free, the
stresslet is symmetric and ηxy = ηyx = η. When squirmers are bottom heavy, on the other
hand, the stresslet becomes asymmetric and ηxy /= ηyx. The dimensionless first and second
normal stress differences are defined as

N1 = φ
1

πa2Lzη0γ
(〈Σ( p)

xx 〉 − 〈Σ( p)
yy 〉), N2 = φ

1
πa2Lzη0γ

(〈Σ( p)
yy 〉 − 〈Σ( p)

zz 〉). (2.4a,b)

In order to obtain suspension-averaged properties, stresslet values are averaged over all
particles during the time interval 15 � tγ � 30, given that the ensemble values reach the
steady state.

We introduce a dimensionless number Sq, which is the swimming speed, scaled with a
typical velocity in the shear flow, i.e.

Sq = Vs/aγ . (2.5)

In simulation cases with Sq > 1, parameters are modified as F0 = 10Sq, �tγ = 5 ×
10−4/Sq, to prevent overlapping of particles. Stresslet values are averaged during the
longer time interval 75/Sq � tγ � 150/Sq, to obtain the steady state values.

2.2. Results for non-bottom-heavy squirmers
We first calculated the apparent viscosity η of the suspension, for both inert and squirming
spheres. The results are plotted as a function of areal fraction φ in figure 2(a). We see that
η of a suspension of squirmers with Sq = 1 and β = +1 (i.e. pullers) increases rapidly
with φ. By comparing with the results for inert spheres in the present study, it is found
that the motility of a squirmer considerably increases the viscosity. In the case of inert
spheres, layers of particles are formed along the flow direction, and near-field interactions
between particles are reduced. In the case of squirmers, on the other hand, such layers
are destroyed by the motility of the squirmers, which move around irregularly, as shown
in supplementary movie 3 available at https://doi.org/10.1017/jfm.2020.885, leading to
frequent near-field interactions. Near-field interactions generate large lubrication forces,
which result in large particle stresslets as well as the large apparent viscosity.

In figure 2, Einstein’s equation in the dilute limit as well as the former numerical results
of Singh & Nott (2000), for inert spheres, are also plotted for comparison. We see that
all results agree well with Einstein’s equation in the dilute regime. The main differences
between the present study and Singh & Nott (2000) are the boundary condition and the
repulsive interparticle force. In Singh & Nott (2000) a monolayer suspension is sheared
between two walls, while in the present simulation the shear is generated without a wall
boundary. The coefficients of repulsive force given by (1.6) are η0a2γ F0 = 10−4[N], τ =
100[−] in Singh & Nott (2000), while F0 = 10[−], τ = 100[−] in the present simulation.
We see that the apparent viscosity of a suspension of inert particles reported by Singh &
Nott (2000) is larger than that in the present study. The discrepancy may come from the
differences in the boundary condition and the repulsive interparticle force. By introducing
the wall boundary, motions of spheres in the y-direction are restricted. The restricted
motions may enhance the near-field interactions between particles, which results in the
larger apparent viscosity. Moreover, the repulsive force may be larger in the present study
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0

w/ wall
Singh & Nott
(F0 = 10–4/η0γa2, τ = 100)

w/o wall
Einstein
Inert spheres
Squimer
(F0 = 10, τ = 100)

Squimer (Sq = 1, β = 1)
Total
Hydrodynamic
Repulsive

(η
 –

 η
0)

/η
0

φ φ

(b)(a)

Figure 2. Excess apparent viscosity as a function of areal fraction φ. (a) Present results of inert spheres and
squirmers with Sq = 1 and β = 1. The results of Singh & Nott (2000) and Einstein’s equation of (η − η0)/η0 =
2.5c = (10/6.2)φ are also plotted for comparison. (b) Present results of squirmers with Sq = 1 and β = 1
decomposed into the hydrodynamic contribution and the repulsive contribution.

than in Singh & Nott (2000) (it is hard to find the value of the dimensionless coefficient
analogous to F0 in that paper). This is because squirmers easily overlap if the repulsive
forces are not strong enough, given that lubrication flow between two squirming surfaces
cannot mathematically prevent the overlapping. The strong repulsive force may reduce the
apparent viscosity, which may be another reason for the discrepancy.

The stresslet can be decomposed into the hydrodynamic contribution and the repulsive
contribution, as shown in figure 2(b). The repulsive contribution to the particle bulk stress
can be calculated as (Batchelor 1977)

Σ f = − 1
V

N∑
i=2

∑
j<i

rijF ij, (2.6)

where V is a unit volume, rij is the centre–centre separation of squirmers i and j, and
F ij is their pairwise interparticle force given by (1.6). We see that the hydrodynamic
contribution is dominant in the low φ regime. When φ � 0.6, on the other hand, the
repulsive contribution becomes larger than the hydrodynamic contribution, which is the
reason why the apparent viscosity rapidly increases in the high φ regime.

First and second normal stresses also appear in the suspension of inert spheres and
squirmers, as shown in figure 3. Parameter N1 is negative in sign, so particles are basically
compressed in the flow direction; |N1| increases as φ is increased, similar to the apparent
viscosity. The value of |N1| in a suspension of inert particles, as reported by Singh &
Nott (2000), is larger than in the present study. The discrepancy may again come from the
differences in the boundary condition and the repulsive interparticle force.

The quantity N2 in the suspension of inert spheres is also negative in sign, so the particle
stresses satisfy Σ

( p)
xx < Σ

( p)
yy < Σ

( p)
zz . In the case of squirmers, the sign of N2 changes at

approximately φ = 0.55. The hydrodynamic contribution to N2 is positive and steadily
increases with φ, while the repulsive contribution to N2 is negative and rapidly increases
with φ. Since the repulsive contribution overwhelms the hydrodynamic contribution when
φ � 0.6, N2 becomes negative in the large φ regime.
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N1 N2

φ φ
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Squimer (Sq = 1, β = 1)

Singh & Nott (N1)

Inert spheres

Squimer (Sq = 1, β = 1)
Total
Hydrodynamic
Repulsive

Figure 3. Normal stress differences as a function of areal fraction φ. (a) Value of N1 in suspensions of
inert spheres and squirmers with Sq = 1 and β = 1. The results of Singh & Nott (2000) are also plotted for
comparison. (b) Value of N2 in suspensions of inert spheres and squirmers with Sq = 1 and β = 1. The results
of squirmers are decomposed into the hydrodynamic contribution and the repulsive contribution.

The difference between pushers and pullers can be investigated by changing the
swimming mode parameter β, which is positive for pullers and negative for pushers.
Figure 4(a) shows the effective viscosity η for Sq = 1 and various values of β. We see
that η increases as the absolute value of β is increased. This is probably because strong
squirming velocity with large |β| enhances near-field interactions between squirmers,
which induces a strong stresslet. The effect of ±β is not symmetric, but pullers generate
larger viscosity than pushers. In order to confirm these tendencies, we calculated the
normalised probability density function of squirmers, defined as

I(r) =
∫

r=const P(r0|r0 + r) dr
2πrφ

, (2.7)

where P(r0|r0 + r) dr is the conditional probability that, given that there is a squirmer
centred at r0, there is an additional squirmer centred between r0 + r and r0 + r + dr. The
results are plotted in figure 4(b). We see that I(r) with β = 3 has a considerably larger
value than that with β = 0 in the small r regime, while I(r) with β = −3 does not. On
the other hand, I(r) with β = −3 has a larger peak than that with β = 0. Thus, near-field
interactions between squirmers are increased as |β| is increased. The difference between
pushers and pullers is obvious in figure 4(b): pullers tend to come closer to each other than
pushers. A former study reported that the face-to-face configuration is stable for puller
squirmers while unstable for pusher squirmers, although the face-to-face configuration
was expressed as a stress-free surface in the paper (Ishikawa 2019). Thus, puller squirmers
facing each other can come closer more easily than pushers.

We also investigated the effect of Sq, i.e. the ratio of swimming velocity to the shear
velocity. The results are shown in figure 5. We see that the apparent viscosity η increases
as Sq is increased. This is because large swimming velocity, relative to the shear velocity,
destroys the formation of layers by the particles, and enhances their near-field interactions.
This tendency can be confirmed by figure 5(b), in which I(r) with Sq = 10 has larger
values than with Sq = 0.1 and 0.5. Thus, increase in the apparent viscosity can be
understood as coming from the increase of near-field interactions.
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Figure 4. Effect of the swimming mode β on the viscosity (Sq = 1). (a) Excess apparent viscosity with
φ = 0.6 and 0.7. (b) Normalised probability density function distribution of squirmers with β = 3, 0 and
−3 (φ = 0.7).
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Figure 5. Effect of Sq on the viscosity (φ = 0.7 and β = 1). (a) Excess apparent viscosity. (b) Normalised

probability density function distribution with Sq = 0.1, 0.5 and 5.

2.3. Results for bottom-heavy squirmers
When squirmers are bottom heavy, cells tend to align in the direction opposite to gravity.
To discuss the effect of bottom heaviness, we introduce a dimensionless number Gbh,
defined as

Gbh = 4πρgah
3η0Vs

. (2.8)

Here, Gbh is proportional to the ratio of the time to swim a body length to the time for
the axis orientation p of a non-swimmer to rotate from horizontal to vertical. When Gbh
is sufficiently large, the gravitational torque due to the bottom heaviness balances the
hydrodynamic torque due to the background shear flow, and squirmers tend to align in
a particular direction.
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Figure 6. Effect of bottom heaviness on the excess apparent viscosity (Sq = 1, φ = 0.7, β = 3, 0 and −3).
(a) Effect of Gbh (α = 0). (b) Effect of the angle of gravity α (Gbh = 100).

The effect of Gbh and the gravitational angle α on the apparent viscosity is shown in
figure 6. Since an external torque due to the bottom heaviness is exerted on a squirmer,
the particle stress tensor becomes asymmetric, and the xy and yx components become
different. We see that Gbh considerably affects the value of η. For β = 0 and −3, in
horizontal flow (α = 0), η is decreased by the bottom heaviness, and ηyx with β = −3 even
becomes negative when Gbh � 50. The decrease in the apparent viscosity may be caused
by two mechanisms: (a) squirmers with large Gbh tend to swim in the same direction,
and cell–cell collisions are suppressed; and (b) aligned squirmers induce a net squirming
stresslet when β /= 0, which directly contributes to ηxy and ηyx. The effect of α is also
significant: η with β = 3 takes its maximum values around α = π/8, whereas that with
β = −3 takes its minimum values around α = π/8. So the tendencies are almost opposite
between the pusher and the puller.

In order to clarify the mechanism of bottom-heavy effects, we here discuss the
orientation of bottom-heavy squirmers in shear flow. Figure 7 shows normalised
probability density distribution as a function of angle ζ that is defined from the x-axis
in the counter-clockwise direction as shown in figure 7(b). When I(ζ ) = 1 for all ζ ,
the orientation distribution is isotropic. We see that the peak of I(ζ ) is higher, and at
a larger value of ζ , in the Gbh = 100 case than in the Gbh = 30 case due to the strong
bottom heaviness. Squirmers with Gbh = 100 are oriented with approximately ζ = 0.38π
regardless of β. When β = −3, i.e. pushers, the stresslet with α = 0 is directed as in
figure 7(b) bottom left, and the apparent viscosity decreases. If the direction of gravity is
rotated to α = π/2, as in figure 7(b) bottom right, the direction of the stresslet becomes
opposite, and the apparent viscosity increases. These schematics can qualitatively explain
the results in figure 6. When the squirmers are pullers, the sign of the stresslet is opposite
to that shown in figure 7(b). Thus, the apparent viscosity increases with α = 0 whereas it
decreases with α = π/2, which is again consistent with figure 6. We note that the internal
configuration, at α = 0, is more regular for β = −3 than for β = +3; this is not only
indicated by the higher peak for β = −3 in figure 7(a) but also by movies of the motion:
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Figure 7. Orientation of bottom-heavy squirmers in shear flow. (a) Normalised probability density distribution
as a function of angle ζ (Sq = 1, φ = 0.7, α = 0, Gbh = 30 and 100, β = 3 and −3). (b) Definition of angles,
and schematics of stresslet directions under different angle of gravity α.
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Figure 8. Effect of the angle of gravity α on the normal stress differences (Sq = 1, φ = 0.7, Gbh = 100,
β = 3, 0 and −3). (a) First normal stress difference. (b) Second normal stress difference.

see supplementary movies 2 and 4. It is interesting that the latter movie, for β = +3, shows
that large numbers of the squirmers are aggregated and almost jam the system.

The first and second normal stress differences are affected by the angle of gravity α, as
shown in figure 8. The first normal stress difference with β = 3 increases as α is increased,
whereas that with β = −3 decreases. The second normal stress difference with β = 3
takes its minimum values around α = 3π/8, whereas that with β = −3 takes its maximum
values around α = 3π/8. So the tendencies are again almost opposite between the pusher
and the puller. The opposite tendency can be explained by the sign and rotation of the
stresslet, as schematically shown in figure 7(b).

Last, we investigate the rheology under constant GbhSq conditions. This product
represents the ratio of the gravitational torque to the shear torque, independently of the
swimming speed Vs. Thus, a solitary squirmer under constant GbhSq conditions is expected
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Figure 9. Rheology under the condition of GbhSq = 30, in which the orientation angle of a solitary squirmer
relative to the gravity is expected to be the same (φ = 0.7, β = ±3, α = 0). (a) Excess apparent viscosity and
(b) normal stress differences.

to have the same orientation angle relative to gravity. The results for excess apparent
viscosity and normal stress differences under the condition of GbhSq = 30 are shown in
figure 9. We see that η is considerably increased in the small Gbh regime. The effect of
swimming is larger than that of the background shear in the small Gbh regime. The large
swimming velocity enhances near-field interactions between squirmers, which results in
the large apparent viscosity. The normal stress difference N2 for β = −3 is also enhanced
in the small Gbh regime. This is because the active stresslet, caused by the squirming
velocity, plays a dominant role compared to the passive stresslet, caused by inert spheres,
in the small Gbh regime. Hence, the rheology under constant GbhSq conditions is strongly
affected by Sq especially when it is large.

3. Shear viscosity calculated by lubrication interactions

3.1. Problem setting and numerical method
In this section, we present a complementary method for calculating the rheological
properties of a suspension of steady, spherical squirmers. The methodology for measuring
the bulk viscosity is similar to that of a rheometer; a suspension of squirmers situated
between flat parallel plates is sheared using Couette flow, and the drag force on the plates
is measured. The overall dynamics of the active suspension is solved by summing pairwise
lubrication interactions between closely separated squirmers, along with hydrodynamic
forces and torques associated with solitary squirmers in shear flow. This approach utilises
elements of previous work (Brumley & Pedley 2019), but with several key advances.
Firstly, in the present formulation, an arbitrary areal fraction of squirmers is permitted,
so that cells are no longer confined to a hexagonal crystal array. Secondly, the entire
suspension will be subject to a background shear flow. The dependence of the rheology
on a number of key suspension and external parameters are presented. Despite the key
differences between this approach and that of § 2, the results are in good quantitative
agreement at sufficiently large areal fractions.

Two infinite no-slip plates situated at y1 = +H/2 and y2 = −H/2 move with velocities
γ y1ex and γ y2ex, respectively, so that the fluid between the plates is subject to a uniform
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Image
squirmers
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Plate force L y = –H/2

y = +H/2

y

x

g

F̄x
T

u∞ = γyex

ε0a

α

F̄x
B

Figure 10. A suspension of N = nxny = 132 spherical squirmers, subject to a background shear flow u∞ =
γ yex between two parallel plates. The position, xi, and orientation, ei, of each squirmer are confined to lie in
the x–y plane. The direction of gravity is g = −g(sin α, cos α, 0).

shear with rate γ . That is, the fluid velocity is given by u = (ux, uy, uz) = (γ y, 0, 0).
A suspension of N identical squirmers is introduced into the fluid (see figure 10).

The position and orientation vectors of all squirmers are restricted to lie in the x–y plane,
so that each squirmer has 2 + 1 degrees of freedom. Moreover, the domain is subject to
periodic boundary conditions in the x-direction, with period L such that the squirmer areal
fraction φ = Nπa2/LH, where N = nxny. This can also be expressed in the following way:

φ = Nπa2

LH
= 2πny√

3(2 + ε0)[(2 + ε0)ny + ε0]
, (3.1)

where ε0a is the spacing between adjacent squirmers in the case where they are arranged
in a regular hexagonal array (as depicted in figure 10). The total dimensional force F i and
torque T i on the ith squirmer are composed of several contributions, as outlined below.
As in Brumley & Pedley (2019), these will be scaled by η0πa and η0πa2 respectively, so
that they have units of velocity. As in § 2, the parameter η0 is the viscosity of the solvent
around the squirmers. The resistance formulation for the spheres in Stokes flow is given
by

R ·
(

V
aω

)
= −

(
F̄ sq + F̄ rep + F̄ prop + F̄∞

T̄ sq + T̄ grav + T̄∞

)
, (3.2)

where the resistance matrix is given by R = Rsq-sq + Rsq-wall + Rdrag. Explicit
hydrodynamic coupling between squirmers is limited to lubrication interactions. For two
squirmers i and j, with minimum clearance εij = (|xi − xj| − 2a)/a (subject to periodic
boundary conditions), lubrication interactions occur only if εij < 1. This value is chosen
because log εij, the functional dependence of these forces and torques, is equal to zero at
that point. These terms therefore increase continuously from zero as squirmers approach
one another from afar. The matrix Rsq-sq captures the hydrodynamic forces and torques
acting on every pair of spheres sufficiently close to one another, arising from their linear
and angular velocities. These expressions, evaluated for no-slip spheres, can be found in
Kim & Karrila (2005) and Brumley & Pedley (2019). In a similar fashion, Rsq-wall captures
the forces and torques due to motion of the spheres in close proximity to the bounding
walls. The matrices Rsq-sq and Rsq-wall, composed of blocks for each pair of squirmers,
are non-zero only for pairs that are sufficiently close to permit lubrication interactions.
The sparsity pattern of these resistance matrices therefore depends on the physical
configuration of the system, and must be computed at every time step. Conversely, the
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Rheology of a monolayer of squirmers

final component of the resistance matrix is always diagonal, and is given by

Rdrag =
( −6I2N 0

0 −8IN

)
, (3.3)

where In is the n × n identity matrix. This captures the drag on a solitary translating and
rotating sphere in Stokes flow. Inclusion of this matrix ensures that even widely separated
spheres that do not experience lubrication interactions, are subject to solitary Stokes drag.

There are a number of contributions to the forces and torques that are independent of
the squirmer velocities. First, there are the contributions which depend on the arrangement
of cells with respect to one another. The squirming motions generate contributions for all
pairs that are sufficiently close to one another. We refer the reader to Brumley & Pedley
(2019) for detailed expressions of these forces and torques, F̄ sq and T̄ sq, respectively,
noting that a change of reference frame must be made for each pair, in order for the
expressions to apply. Closely separated pairs of squirmers and squirmers near the no-slip
plate also experience a repulsive force F̄ rep parallel to the vector joining their centres
(or perpendicular to the wall). This follows the same functional form as in (1.6), but in
principle we allow squirmer-squirmer and squirmer–wall interactions to have different
strengths F0 and interaction ranges τ−1.

There are several forces and torques which do not require pairwise geometries. Every
squirmer is subject to a propulsive force parallel to its orientation vector, pi, according to

F̄ prop
i = 6Vspi, (3.4)

where Vs is the swimming speed of a solitary squirmer. Each squirmer also experiences a
gravitational torque in the z-direction due to bottom heaviness

T̄ grav
i = − 1

π
VsGbhpi × g, (3.5)

where g = −g(sin α, cos α, 0) and g is the strength of gravity. Finally, the effect of the
background shear flow is to exert a hydrodynamic force and torque on each squirmer as
follows

F̄∞
i = 6γ yiex, (3.6)

T̄∞
i = −4γ ez, (3.7)

where yi is the y coordinate of the ith squirmer. Before proceeding, it is instructive to
consider the dynamics of the system if interactions between squirmers and the bounding
plates are completely neglected. Under these conditions, the matrix system (3.2) reduces
to the following:

Rdrag ·
(

V
aω

)
= −

(
F̄ prop + F̄∞

T̄ grav + T̄∞

)
. (3.8)

Since Rdrag is diagonal, it is easily inverted, and the following results are obtained:

V i = Vspi + γ yiex, (3.9a)

aω = − 1
8π

VsGbh(pi × g) − 1
2
γ ez. (3.9b)

Equation (3.9a) reveals that a solitary squirmer will swim at speed Vs in the direction
of its orientation, and be advected by the background shear flow in the x-direction.
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Similarly, the orientation of the squirmer will evolve according to the gravitational torque
and background vorticity (Jeffery 1922). In addition to this solitary dynamics (3.9), the
complete resistance formulation in (3.2) includes hydrodynamic and steric effects through
pairwise interactions, but only for sufficiently close squirmers.

The ability for ‘solitary’ squirmers – i.e. squirmers with no neighbours within
lubrication range – to propel themselves is a critical advancement of the present model.
This maintains realistic behaviour at low areal fractions of the suspension, when it is quite
feasible that a squirmer i will have εij > 1 ∀ j, and ensures that the matrix system in (3.2)
is well conditioned for all configurations.

The dynamics of the sheared squirmer suspension is calculated numerically by solving
(3.2) with the MATLAB solver ode15s. The squirmers, initially distributed on a hexagonal
close-packed array with mean spacing ε0, are each subject to a random translational
perturbation within a disk of radius ε0/2, ensuring that cells are non-overlapping. Initially,
the squirmers’ orientations are taken to be random.

3.2. Calculation of shear viscosity
For the configuration presented in figure 10, determining the effective suspension viscosity
requires calculating the wall shear stress on each of the no-slip plates at y = ±H/2.
We emphasise that only squirmers which are sufficiently close to the walls to facilitate
lubrication interactions will contribute to the wall shear stress. Of the full set of squirmers
S = {1, 2, . . . , N}, the following subsets can be identified:

ST =
{

i ∈ N

∣∣∣∣
∣∣∣∣H2 − ( yi + a)

∣∣∣∣
/

a < 1
}

, (3.10)

SB =
{

i ∈ N

∣∣∣∣
∣∣∣∣( yi − a) + H

2

∣∣∣∣
/

a < 1
}

. (3.11)

The sets ST and SB identify squirmers that have a clearance of less than a with the top and
bottom plates respectively (i.e. ε < 1), and therefore whose behaviour contributes to the
lubrication forces and torques. The x-component of the force on the bottom plate is given
by

Fx
B = FB

x /(η0πa) =
∑
i∈SB

(Fsq(i)
x + Ftrans(i)

x + Frot(i)
x ), (3.12)

where the three terms

Fsq(i)
x = −6

5 aγ Sq[1 − β(pi · ey)](pi · ex) log εB
i , (3.13a)

Ftrans(i)
x = −16

5

[
H
2

γ + V i · ex

]
log εB

i , (3.13b)

Frot(i)
x = −4

5 aωi log εB
i , (3.13c)

represent the x-component of the force on the plate, due to the squirming motion of
the ith sphere, the difference between the squirmer velocity, V i, and the plate velocity,
−(Hγ /2)ex, and the angular velocity of the squirmer, respectively. Similar expressions
exist to calculate the tangential force, Fx

T
, on the top plate. Here, the value εB

i a represents
the minimum clearance between the ith squirmer and the bottom plate. The repulsive force
acts normal to the wall, and therefore does not contribute to the shear force. Although the
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Rheology of a monolayer of squirmers

background shear and gravitational torques influence the motion of the squirmers, their
combined effects are encapsulated in (3.13b) and (3.13c).

In dimensional form, the tangential shear stresses on the top and bottom plates are given

by σ T = η0πaFx
T
/(Lδ) and σB = η0πaFx

B
/(Lδ), respectively, where L = (2 + ε0)anx

and δ = 2.1a is the thickness of the monolayer (see § 2). The effective bulk viscosity is
therefore equal to

η = σB − σ T

2γ
= η0πa

2γ Lδ

(
Fx

B − Fx
T)

. (3.14)

The above expression utilises the mean value of the shear stress across both plates. The
excess apparent viscosity is therefore equal to

η − η0

η0
= π

(
Fx

B − Fx
T)

4.2aγ (2 + ε0)nx
− 1. (3.15)

Upon first glance, it appears that the viscosity depends on the system size through the
denominator in (3.15). Although the number of squirmers interacting with the wall would
depend on suspension micro-structure, to leading order the number of terms in (3.12) is
proportional to nx. Moreover, the terms in (3.12) have the dimensions of velocity, matching
the dimensions of aγ in (3.15). In what follows, we will compare the results of § 2 using
(2.3), with the present lubrication formulation (3.15).

We should note here that the lubrication-theory (LT) based method does not give an
obvious way to compute normal stresses, so the results that follow will concentrate on
predicting the shear viscosity.

3.3. Results for non-bottom-heavy squirmers
We first calculate the excess apparent viscosity in the absence of gravity. Suspensions
of N = 132 spheres with an areal fraction of φ = 0.80 were simulated over t ∈ [0, 150],
for both active squirmers (Sq = 1, β = 1) and passive spheres (Sq = 0). The suspension
viscosity can be calculated at every time step using (3.15), the results of which are plotted
in figure 11(a). It is evident that the squirmer suspension (blue) has a higher mean viscosity
than the suspension of passive spheres (black), and also exhibits greater excursions from
the mean value.

The contribution to the mean squirmer suspension viscosity (blue curve in figure 11b)
arising purely from linear and angular velocities is η/η0 − 1 = 20.6, approximately 90 %
of the total mean viscosity (η/η0 − 1 = 22.8). This is still considerably higher than the
mean value for the passive sphere case η/η0 − 1 = 12.0. Despite the propensity for active
swimmers to redistribute themselves, the interior interactions still give rise to a higher
suspension viscosity. This interpretation is supported by supplementary movie 8, taken
from the LT simulations at the same parameter values as supplementary movie 3 from the
Stokesian dynamics (SD) simulations.

The areal fraction of cells was systematically varied in the range 0.5 < φ < 0.8 for
both squirmers and passive spheres. A sufficiently long averaging window (10 < t <

150) was taken when calculating the time-averaged suspension viscosity. Figure 11(b)
shows the results of the lubrication simulations (circles) together with the findings using
Stokesian dynamics (dashed, cf. figure 2). There is good quantitative agreement between
the complementary simulation methods across all values of φ studied.

The effect of the squirmers’ swimming properties was also studied. The two
dimensionless parameters are Sq = Vs/aγ , the swimming speed relative to background
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Figure 11. Excess apparent viscosity of a suspension of 132 spheres. (a) Time-dependent viscosity for inert
spheres (black) and squirmers (blue) with Sq = 1 and β = 1. In both cases, the areal fraction is φ = 0.80.
(b) Time-averaged suspension viscosity as a function of areal fraction φ. Results are shown for lubrication
simulations (circles), alongside the Stresslet method of § 2 both with (dashed) and without Ewald summation
(dotted). Shading represents the standard deviation of the time-dependent viscosity.
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Figure 12. Effect of swimming properties on the mean suspension viscosity. (a) Excess apparent viscosity as
a function of normalised swimming speed, Sq (with β = 1, φ = 0.7). Inset shows that the standard deviation in
the viscosity increases with Sq. (b) Excess apparent viscosity as a function of swimming mode β (with Sq = 1)
for φ = 0.6 (open) and 0.7 (closed). Shading represents the standard deviation of the time-dependent viscosity.

shear rate, and β which effectively controls the stresslet sign and strength. Figure 12(a)
for β = 1 shows that the suspension viscosity increases for small Sq before plateauing
around Sq = 1. Increasing Sq further does not result in a noticeable shift in the viscosity,
on average.

The dependence of the suspension viscosity on the swimming mode β is shown in
figure 12(b) for two different areal fractions. The viscosity is higher for φ = 0.7 than
for φ = 0.6 for all values of β studied. The viscosity for pushers (β < 0) does not vary
significantly with β, whereas for pullers (β > 0) the viscosity increases dramatically with
β. This increase is much more marked than the SD findings (see figure 4a). Cross-channel
probability distributions for the squirmer positions reveal that pullers spend more time
near the boundaries than pushers do, and this likely has a corresponding effect on the
suspension viscosity.

3.4. Results for bottom-heavy squirmers
The effect of bottom heaviness is to provide an external torque on each squirmer,
which tends to reorient the cell in the gravitational field (see figure 10). In the absence
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Figure 13. Effect of bottom heaviness on the excess apparent viscosity (Sq = 1, φ = 0.7). (a) The excess
apparent viscosity as a function of Gbh (with α = 0). (b) The effect of changing the gravity angle α (with
Gbh = 100). Results for pullers (β = 3), pushers (β = −3) and neutral squirmers (β = 0) are shown. Shading
represents the standard deviation of the time-dependent viscosity.

of hydrodynamic interactions or external shear, the orientation of each squirmer pi
will become anti-aligned with the gravity vector g over a time scale that is inversely
proportional to the normalised strength of gravity, Gbh. A series of simulations were
performed in which the strength of gravity and the angle with respect to the shear flow,
were independently varied.

Figure 13(a) illustrates the excess apparent viscosity as a function of Gbh for three
different squirming modes, β (all with Sq = 1, φ = 0.7, α = 0). For small Gbh, the
ordering matches the results of figure 12(b), since hydrodynamic effects alone result in
the strongest accumulation of pullers near the wall. As Gbh is increased, the viscosity
differences become more pronounced, with both neutral squirmers and pushers exhibiting
η/η0 − 1 ≈ 0, i.e. no enhancement over the solvent viscosity. The internal squirmer
motions are similar to those computed by the SD method: compare supplementary movies
7 and 9 with 2 and 4; pullers with high Gbh generate near-jamming aggregates. As the
gravitational angle, α, is varied (for fixed Gbh = 100), the curves exhibit cross-over points
(see figure 13b). For −π/4 � α � π/4, puller suspensions exhibit the greatest viscosity.
However, for α � π/4 and α � −π/4, pusher suspensions have a greater viscosity. In
figure 13(b), the large peak in the β = 3 curve around α = −π/4, corresponds to a
situation where the (clockwise) viscous torques due to background shear balance the
(counter-clockwise) gravitational torques for upward-swimming squirmers. This results
in a system which is, to leading order, equivalent to the Gbh = 0 case (1 % difference
between respective viscosities).

The dependence on α can be understood in terms of the fluid mechanics of propulsion
in each case. For α ≈ 0, squirmers will tend to align vertically in the shear flow (i.e.
perpendicular to the channel), so that their poles are closest to the walls. Moreover, since
squirmers swim upwards, the lubrication interactions will be dominated by anterior poles
interacting with the upper plate. Under these conditions, pullers will be drawn closer
to the wall than pushers, and so will impart a greater lubrication drag on the top plate.
For α ≈ π/2, gravity will tend to align squirmers parallel to the walls, so that equatorial
regions of the squirmers are in the lubrication zones. The movement of fluid away from
the poles in the case of pushers, means that under these circumstances, they will be drawn
closer to the translating plates than their puller counterparts, and therefore exhibit a higher
viscosity.
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4. Discussion

The main focus of this paper has been to calculate the particle stress tensor in a
concentrated suspension of spherical squirmers (modelling swimming cells) in a planar
monolayer exposed to a uniform shear flow, over a wide range of parameter values, in the
hope that the union of such results could act in place of an analytical constitutive relation,
which appears unlikely to be achievable. For non-bottom-heavy squirmers, the particle
stress tensor is symmetric and the rheology can be represented in terms of a single effective
shear viscosity η, together with relatively small normal stress differences (figure 3). The
suspension is non-Newtonian because of these and the fact that η depends on the value
of the shear rate γ . However, for bottom-heavy squirmers the particle stress tensor is
asymmetric (ηxy /= ηyx) and exhibits significant normal stress differences: the suspension
is clearly non-Newtonian. We have principally investigated how the time average of η

(=(1/2)(ηxy + ηyx) when the two off-diagonal components are different) varies with the
areal fraction φ, the squirming parameter β, the ratio Sq of swimming speed to a typical
speed of the shear flow, the bottom-heaviness parameter Gbh (2.8), the angle α that the
shear flow makes with the horizontal, and the two parameters F0 and τ that define the
repulsive force that is required computationally to prevent the squirmers from overlapping
when their distance apart is too small.

We have employed two different numerical methods, SD, which takes account of all
cell-cell interactions, including those between distant cells although high-order multipoles
are neglected, and a LT based method that ignores all cell–cell interactions except those
between a cell and its closest neighbours, which are calculated using the approximations
of LT. We emphasise, also, that the method by which the viscosity is calculated is very
different in the two approaches (stresslet vs. boundary forces). Both computations are
started from given initial conditions and results are taken when the effective viscosity has
reached a statistically steady state. Both also use periodic boundary conditions in x. In the
SD method, the underlying shear flow is imposed by applying a y-dependent translation to
all the spheres, so that those at y = L, say, are displaced in the x-direction by an amount
Lγ t relative to those at y = 0; periodic boundary conditions in y can then be applied.
The particle stress tensor is given by the average over all spheres of the stresslet of an
individual sphere (1.2). In the LT method, the shear is applied by translating two infinite
planes at y = ±H/2 parallel to each other with velocity ±Hγ /2, and the suspension is set
into motion by the viscous shear stresses σB (bottom wall) and σ T (top wall) exerted on
them by the spheres nearest to those planes. The effective viscosity is η = (σB − σ T)/2γ .
Thus the method of computing η is very different between the two methods. They would
give the same values only if most of the relevant physics took place in the interior of the
suspension and not at the y-boundaries. In other words, although the only forces to be
calculated in the LT method are the shear stresses at the walls, the viscosity depends on
the internal interactions which drive changes to the configuration of the whole suspension
by which the behaviour of the cells near the boundary are determined.

As shown in figure 11(b), there is good agreement between the values of η derived
by the two methods for non-bottom-heavy squirmers, over the areal fraction range 0.5 <

φ < 0.75. Since the SD method takes into account multi-body interactions on top of the
pairwise lubrication interactions, the agreement indicates that the relevant interactions
are basically pairwise in the regime 0.5 < φ < 0.75 and confirms the basic validity of
the LT approach. The variation of η with various parameters also shows qualitative
agreement between the two methods, although not good quantitative agreement: compare
figures 5(a) and 12(a) for η(Sq), figures 6(a) and 13(a) for η(Gbh) and figures 6(b)
and 13(b) for η(α). In particular, the variation of η with β for pullers (positive β) is
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SD LT

(F0, τ ) inert spheres squirmers inert spheres squirmers

(10/3, 100) 1.98 2.41 1.32 2.86
(10, 100) 1.96 2.40 1.26 2.87
(30, 100) 1.87 2.28 1.18 2.92
(10, 100/3) 1.76 2.25 0.98 3.47
(10, 300) 2.01 2.68 1.36 2.53

Table 1. Effect of the repulsive force on the excess apparent viscosity (η − η0)/η0. Particles are non-bottom
heavy and the areal fraction is φ = 0.5. Results are shown for inert spheres and squirmers (with β = 1, Sq = 1),
for both SD and LT methods.

much more marked according to the LT method (figure 12b), even for non-bottom-heavy
squirmers. To understand this, consider the respective interactions of pushers (β < 0) and
pullers (β > 0) with a translating wall. The cells oriented towards the wall will have
a tendency to reside there longer than cells pointing away from the wall, although this
interpretation can obviously break down in various situations. It follows that the anterior
hemispheres of the squirmers are most likely to constitute the lubrication interaction
with the wall. As squirmers are ‘tilted’ clockwise by the translating boundary, pullers
will more strongly oppose the motion of the plate, thereby leading to a higher viscosity.
This mechanism partly overrides the similarity of the internal configurations; it is a new
physical mechanism, which, unlike those considered in previous studies, is not based on
cell elongation.

There are situations in which the effective suspension viscosity becomes negative (see
figure 6a). This arises because the aligned structure of the squirmer configuration actually
assists in the shearing motion of the suspension (e.g. supplementary movies 2 and 7). It
is worth noting that the shear rate is held constant in our simulations, and is unaffected
by the sign change in the viscosity. In principle, work could be extracted from the system
in order to prevent, for example the bounding plates in the Couette flow configuration
from accelerating. In this regard, a condition of constant shear stress would yield different
results to the present model of constant background velocity gradient. We should repeat
that the possible appearance of negative viscosity in the present system is not the same as
that elucidated for elongated cells by Hatwalne et al. (2004).

It was seen in figure 2(b) that the contribution to the effective viscosity of the repulsive
forces between squirmers becomes larger at high volume fraction (φ � 0.6) than the
contribution from hydrodynamic forces. The results in that figure were obtained for β = 1,
Sq = 1, using our ‘standard’ values of repulsive force parameters, F0 = 10, τ = 100 (F0
controls the strength of the repulsive force, whereas 1/τ represents the distance over which
the force plays a role). The dependence of the excess effective viscosity on the repulsive
forces, calculated using the SD and LT methods, is shown in table 1. The viscosity
is only slightly affected by the parameters F0 and τ . The dependence of the normal
stress differences on the repulsive forces, calculated using SD, is also shown in table 2.
The normal stress differences are again only slightly affected by the parameters. On the
other hand, the difference between the squirmers and inert spheres is pronounced, and of
approximately the same magnitude, across all force combinations studied, indicating that
the results are not critically dependent on the values of these parameters. The difference
between squirmers and inert spheres is presumably induced by two mechanisms: (a) the
surface squirming velocity generates a direct contribution to the stresslet, and (b) the
squirming motion determines the suspension microstructure in the first place.
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N1 N2

(F0, τ ) inert spheres squirmers inert spheres squirmers

(10/3, 100) −0.355 −0.003 −0.602 0.882
(10, 100) −0.329 0.002 −0.631 0.819
(30, 100) −0.373 −0.003 −0.581 0.864
(10, 100/3) −0.403 0.087 −0.683 0.506
(10, 300) −0.365 −0.283 −0.491 0.859

Table 2. Effect of the repulsive force on the normal stress differences. Particles are non-bottom heavy and
the areal fraction is φ = 0.5. Results are shown for inert spheres and squirmers (with β = 1, Sq = 1), for SD
method.

The magnitude of the repulsive force has a similar moderate influence on the apparent
viscosity in the LT simulations. Both the magnitude F0, and characteristic length scale
1/τ , of the repulsive force influence the spacing, ε, between the bounding walls and
the squirmers adjacent to them. Since the effective viscosity is determined solely by
lubrication interactions which scale as log ε (see (3.12)), the repulsive force does influence
the measured viscosity slightly. However, as in the SD method, we emphasise that the
differences between the passive spheres and the squirmers prevail regardless of the specific
choices of F0 and τ .

Although the present paper is mainly concerned with the mean rheological properties,
we also analysed time-dependent viscosity of the suspensions (see for example figure 11a).
The squirmer suspensions always exhibit a higher mean viscosity than the passive sphere
case. Furthermore, the fluctuations about the mean, shown explicitly in figure 11(a) and
displayed as confidence intervals in subsequent figures, increase with areal fraction φ. It
is appropriate to note here that the maximum packing fraction for spheres in a monolayer
is φ ≈ 0.91.

The model active suspension analysed in this paper is extremely idealised: a planar
array, of identical, non-colloidal, spherical cells, which swim through the fluid by
squirming with an unchanging distribution of tangential velocity on their surfaces. Their
concentration (areal fraction φ) is high (up to 0.8). It follows that there is not much
previous literature against which the results can be compared, either computational
or, especially, experimental. As discussed in § 2.2, the only monolayer predictions of
suspension rheology that we could find are those of Singh & Nott (2000), who considered
passive spheres and predicted a greater increase with φ of effective viscosity than found
in this paper, as shown in figure 2(a), and our own earlier work on squirmers at lower
values of φ (Ishikawa & Pedley 2007b). The computational work referred to here was
conducted using SD; analysing the same system using LT alone has been tried only
by Leshansky & Brady (2005), for inert spheres (in three dimensions) – and this was
referred to only in a footnote – and Brumley & Pedley (2019), for squirmers, but not
in order to predict the rheology. There have been predictions of suspension rheology
in three-dimensional flows, using concentrated suspensions of rigid spheres (Sierou &
Brady 2002), and experiments on dilute suspensions of swimming bacteria (López et al.
2015), but even in three dimensions there appear to be no findings on the rheology of
concentrated suspensions of micro-swimmers, apart from Ishikawa & Pedley (2007b).
Predictions of coherent structures, such as clusters or aggregates, in which the squirmers’
swimming may or may not be aligned depending on the squirming mode β (alignment
seems to be stronger for β close to zero), that develop in suspensions of squirmers in the
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absence of a background shear flow, have been made in three as well as two dimensions
(Ishikawa & Pedley 2008; Evans et al. 2011; Alarcón & Pagonabarraga 2013; Zöttl & Stark
2014; Delmotte et al. 2015). Such structures in the interior of a suspension will clearly be
important in determining the rheological properties when there is a shear flow, as can be
seen (for two dimensions) in supplementary movies 4 and 9.

The absence of previous relevant work, however, means that there is plenty of scope for
future research. We would like to extend the LT method to three dimensions, where it might
be quicker and easier to use than SD, enabling predictions of three-dimensional suspension
behaviour for a range of parameter values, building up a graphical representation of
a suspension’s constitutive relation, as we have tried to do here in two dimensions.
A more complete description of the rheology, however, either in two dimensions or three
dimensions, will require a quantitative representation of pressure gradients, which are
absent in our current simulations since the particle stress tensor, derived from (1.2), is
traceless and does not contribute to the pressure P in (1.1), though it does determine the
normal stress differences. The presence of walls, for a suspension in a channel or pipe,
introduces a particle pressure distinct from the average bulk pressure, because of the forces
exerted by the particles that interact hydrodynamically with the walls. A clear explanation
of this effect is given by Guazzelli & Pouliquen (2018). Singh & Nott (2000) computed
normal stresses and pressure in their SD simulations of a suspension of inert spheres in a
channel, and we would expect to follow their lead for squirmers.

Other possible extensions to this work include consideration of particles of different
shapes, such as prolate spheroids, to represent bacteria (Saintillan 2018), or squirmers
that rotate about their axes, to represent Volvox (Pedley, Brumley & Goldstein 2016).
Either of these extensions would affect the dynamics of solitary squirmers, and hence
their trajectories in shear flows and suspensions. At higher areal fractions reminiscent of
granular media, shape would influence the propensity of cells to pack together, and control
their nematic order. Moreover, lubrication interactions with the bounding walls would also
be influenced by organismal shape (Manabe, Omori & Ishikawa 2020) or rotation.

The current model assumes that all particles are identical and move deterministically. In
any real suspension, however, stochastic factors play a part, because of (possibly small)
differences between individuals’ shapes and locomotory apparatuses. As long as the
differences are small, perturbation theory may be feasible, but since the motions of the
particles in a suspension become effectively random after a small number of collisions
(see Ishikawa & Pedley 2007a) this is unlikely to be profitable.

Finally, although Gbh is designed to mimic gravitactic micro-organisms such as Volvox,
the analysis could also be applied to other systems in which an external field tends to align
the cells (e.g. phototaxis, magnetotaxis).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.885.
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