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PARTIAL REGULARITY OF STABLE
p-HARMONIC MAPS INTO SPHERES

MIN-CHUN HONG

In this paper we prove partial regularity for a weakly stable p-harmonic map from
Q into S* when k> 2p—1.

1. INTRODUCTION

Let n and k be positive integers with n > 3. Let 2 be a bounded smooth domain
in the n-dimensional Euclidean space R™ and let N C R! be a compact k-dimensional
Riemannian manifold without boundary for some integer (.

For a map u € WP(Q,N) := {v € WVP(Q,R') | v € N for almost everywhere
z € Q}, its p-energy is given by

(11) &wm=£wwm,

where Vu is the gradient of u.
A map u € WHP(Q, N) is said to be a p-harmonic map if u satisfies

(1.2) div(|VulP~2Vu) + |VulP~2A(u)(Vu, Vu) =0,

in the distribution sense, where A(:)(:,-) is the second fundamental form of N in Rf.
A p-harmonic map u € W1P(Q, N) is called stable if the 2nd variation of the

p-energy functional Ep(u) = / |Vu|P dz i3 nonnegative (see [9]).
Q

The study of partial regularity of various classes of weakly harmonic maps has been
of great interest for a number of years. Schoen-Uhlenbeck in [17] and Giaquinta-Giusti
in (5] established that an energy minimising map u : M — N between Riemannian
manifolds is smooth in M away from a singular set ¥ that has Hausdorff dimension
€ n — 3, where n is the dimension of M. Evans [3] and Bethuel [1) proved that a
weak stationary harmonic map u : M — N is smooth away from a singular set of
vanishing (n — 2)-dimensional Hausdorff measure. Lin [10] proved an important result
that if there is no non-constant harmonic map from S? to N, then the singular set of
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any stationary harmonic map into N has to be (n — 4)-rectifiable. Lin’s paper led to a
series of interesting results on harmonic maps by Lin-Riviére [11} and on the heat flow
of harmonic maps by Lin-Wang [12, 13, 14].

Without any assumption on weak harmonic maps, Rivitre in [15] gave an example
to show that weakly harmonic maps may have singularities everywhere. Motivated
by the result of stable minimal hypersurfaces in [16], some optimal results about the
estimate of the set of singularities of stationary-stable harmonic maps were obtained by
the author in [8] and with Wang in [9)].

In this paper, we shall prove partial regularity for a new class of weakly harmonic
maps, which are stable, but not necessarily stationary. We restrict ourselves to the case
that N = S*, where S* is the unit sphere in R¥+!,

The main result of this paper is the following.

THEOREM A. Let u € W1P(Q; S*) be a weakly stable p-harmonic map from
into S*. Then, for k> 2p — 1, u is belong to C1*(Q\E), where T is the singular set
of u. Moreover, we have H" P~%(X) = 0 for some § > 0, where H"~P-% denotes the
Hausdorff measure of dimension n —p — 6.

For p = 2, Theorem A yields that when k > 3, a stable harmonic map
u € W12(Q; S*) is smooth in an open subset Q% of Q and H™ 2-5(Q\Qp) = 0 for
some § > 0. When k = 2, the weakly harmonic map in [15] having singularities in
everywhere is also stable, so we can not expect to have the partial regularity of a stable
harmonic map from B3 into S2.

In Section 2, we present a proof of Theorem A. The key to the proof of Theorem A
is to prove that a stable harmonic map is a quasi-minimiser in W?(Q, S*). Combining
this with Hardt-Lin's extension Lemma, we obtain a Caccioppoli’s inequality for such
maps. Then it follows from a well-known result that weakly p-harmonic maps satisfying
a Caccioppoli inequality have partial regularity.

2. PROOF OF THEOREM A
We recall that a function u = (ul,...,uF*1) belongs to WP(Q, S¥) for p > 2 if
u belongs to the standard Sobolev space W' (Q,R*¥+!) and |u| = 1 almost everywhere

in Q.
A map u: Q — S* is called weakly p-harmonic if u € WP(£2, S*) satisfies

(2.1) /ﬂ |Vu|P~2Vu . Védz = /ﬂ |VulPu - ¢ dz

for all functions ¢ € Wy'P N L®(Q, RF+1),
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We say that a p-harmonic map u is stable if the second variation of E, of u is
non-negative. Then the stability of u implies

2
dgﬁ o /n IVul”dz = p /ﬂ Va2 IVef — IVul’g® - |V(u- 9)|"] da
(2.2) +P/n[(p + 2)|V‘u|p(u . ¢)2 _ 2plvulp—2(vu . V¢)(u . ¢)] dz

+p(p-2) /ﬂ |VulP~4(Vu - V¢)2dz > 0

for all ¢ € C}(2, R¥+1), where u; = (u + td)/|u + t¢|.
Using (2.2), we have (see [8]):

LEMMA 1. Assume that k > p. For a stable p-harmonic map u into S*, we
have

-2
(2.3) / IVulPé? dz < f—;i”—— / Vo2 VulP~ dz
Q -p Q

for all smooth ¢ with support in 2.

Next, we prove that a stable p-harmonic map is a quasi-minima of the energy
functional E, in W1 ?(Q; R*+!) for a sufficiently large k.

DEFINITION: A function u € W1P(Q; S¥) is a quasi-minimiser of E, in W1?(Q, S¥)
if there exists a constant @ such that

By (u;8) < QB (w; )
for all sub-domains Q C  and for all functions w € W?(Q, $*) with
u—w € WP ((; R¥1).

Applying Lemma 1, we have the following,.

PROPOSITION 2. When k& > 2p — 1, a stable p-harmonic map is a quasi-
minimiser of the energy functional E, in WP (S; SF).

PROOF: Let w be a map in H'?(Q; S¥) with u — w € Wy'P(Q; RF+1).
Setting ¢ = [u- (u — w)jw = (1 —u - w)w on 2, one notes

Vo=(Q1-u -w)Vw-V(u ww.
Taking the above ¢ as a test function in (2.1), we obtain

/ |VulP~2Vu - Vw(l - u- w)dz ~ / |VulP~2(Vu - w) - V(u-w)dz
Q n

=/ [VulPu - w(l — u - w)dz.
Q
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This implies
/ [VulP~2|Vu - w|? dz = f [VulP(u - w)? dz — / Vul? (s - w) dz
1] Q [1]
(2.4) +/ |VulP~2Vu - Vw(l — u-w)dz
4]
- / IVufP~2(Va - w)(u - V) dz.
Q

Since u is a stable p-harmonic map into §*, it follows from Lemma 1 that
k -2
[ivupetas < 22222 [ wup-sionitaz
Q k-p Ja
for all smooth function n with support in Q. Taking 7=u-(u - w)=1—u-w in the
above inequality, we obtain

/ |V‘u|"[1+(u-w)2 —2u-w|dz
Q

k+p—2
g TP <
- ’°—+—”—-3 f V- w| |Vu|?~2dz+w——2 / u - Vol?|VufP-2 dz

+M/ (Vu - w)(u - Vw)|VulP~2 dz.

f |V (u- w)||VulP~? dz
(2.5)

It follows from (2.4) with (2.5) that

2
/ [|Vu|2— %(u-w)2|Vul -1|Vu-w|2] VulP~2dz
[1]

+ (2— kT“L—-% / |Vu(u - w)?|VulP~2dz
< (k—%—f—_——z - l / Vu:Vw(l - u-w)|VulP~2dz
(2.6) P

(k+p 2_ )/ |Vul?u - w|VulP~2 dz
Q
(k +p—2

+ —l)/ |u - Vw|?|Vu|P~2dz
2/ Ja

(k +p- 2
k—p
Letting ¢ = u — w in equation (2.1), we have

+ —%)/n(Vu-w)(u-Vw)Wul””dz.

/ [VulP~2Vu - V(u — w)dz = / VaulPu - (u - w)do
Q [1]

https://doi.org/10.1017/50004972700039678 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039678

(5] p-harmonic maps 301

implying
/Vu-VwIVu|p_2dz=/ |Vu|*(u - )| VulP~2 dz.
] fy!

Since (k+p—2)/(k—p) <3 for k> 2p— 1, we have
2 1 2 2 1 2 -2
[|Vu| — Z(u- )} |Vuf? ~ =|Vu - vl ]qul" dz
a 2 2

@2.7) + (2 - "—’L—’l‘—z) / (Vul2(u - w)?[VufP-2 dz
k-p Q
<C f (Vwp? +¢ / VulP? dz,
y! Q
where C; is a constant depending only on k and € is a sufficiently small constant which

will be determined later.
For a fixed point zq, let A = w(zq). Then we claim

(2.8) |V - A2 + |u- A2Vl < [Vul?
In fact, since A € S*, there exists a k-dimensional tangent plane to S* at A. Assume
that €;, 1 = 1,...,k, is an orthonormal basis of the tangent plane. Then A and §&;,

k
i=1,...,k, form a new basis of R¥*!. We write u = (u-A)A+ 3 (u-&)e;, then
=1

luf? = ju- A;2+E|u &lr=1

=1
and

K
|Vul? = |Vu- A2 + Z |Vu - &2

i=1

Using the fact that |u| = 1, we obtain
K
(u-A)(Vu-A) = —Zu-?i (Vu-&).
=1

By the Cauchy inequality, we have

2
(w-A) |Vu A2 = (Zu & (Vu- e,)

zk: (u- e,) Z (Vu- e. = (1= u- AP)(|Vul® - |Vu- A]P).

=1
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This proves our claim (2.8).
It follows from (2.4), (2.6) and (2.8) that

k -
(2.9) (3 - —i-’i———z) / IVulP(u-w)’dz < e / IVulP dz + C / |Vwl? dz.
k-p ! o )
Choosing a sufficiently small ¢ in (2.7) and (2.9), Proposition 2 is proved. 0

We modify a lemma in {7, Appendix| to obtain:

LEMMA 3. (Hardt-Lin’s Extension Lemma) Let  be a bounded domain in R™
and assume 2 < p < k. For any v € WHP(Q,R*+1) with |v| =1 on 09, there exists a
function w € W'?({; S*) such that

w—-veE Wol’p(ﬁ; R+,

2.7) /~ IVwlP dz < C /~ V[P dz,
[¢] 0

for a constant C independent of u and Q.

PRrOOF: The proof is essentially due to one in [7]. Without loss of generality, we
assume that  is Q. For any a € R**! with |a| < 1/2, consider the function

Then
Vwe, = |v—a|" Vv~ jv-a|™3(v —a) ® (v — a)Vv.

Integrating over (! with respect to z and over By;, with respect to a, we obtain

/ /|Vw,,|vdzda=// IVwalpdzdaSC/IVul"dz.
31/2 Q 1] Bl/2 0

due to the fact that
/ jv —al"Pda < K,
By ;2

where K is a positive constant depending on k. Hence there exists a point ag with
lao| < 1/2, such that

(2.8) /n |Vawe, [P dz < C /ﬂ V[P dz.
Let ¢
-a
Mal®) = e

https://doi.org/10.1017/50004972700039678 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039678

(7] p-harmonic maps 303

II, is a C!-bilipshitz diffeomorphism of S* onto itself. Indeed,

7' = a+ [(@- ) + (1— laf)] "n.

with
[VIL; ' (n)| < A,

for a constant A uniformly independent of a with |e| < 1/2. Thus taking

— 171
w= IIao 0 Wqy,

we have
(2.9) IVw| < C(A)|Vwe,|.
QOur claim (2.7) follows from (2.8) and (2.9). 1

PROPOSITION 4. (Caccioppoli’s inequality)
Let u be a quasi-minimiser of E, in W}?(Q,52%). Then for all zo € Q and R
with 0 < R < dist (zq, 82), we have

(2.10) / |VulP £ CR"’/ |u — uzg,r|P dz.
Bps2(zo)

Br(=zo)
ProoF: Note that u is a quasi-minimiser of E, in W2P(Q2,R?), that is,
Ep(u; ﬁ) < QEp(v;(l),

for any v € W-# (ﬁ, R3), where  is a sub-domain of Q. Taking € = B, and using
Lemma 1, we have

(2.11) /B IVulP dz < QC(A) fB Vol dz

for any v € W}?(B,).

Let g €  and R > 0 such that Bgr(zg) C 2. For any two positive numbers ¢, s
with R/2 <t < 3 < R, we choose a cut-off function 7 € C§°(B,) such that 0 <7 <1
with =1 in B, and |Vn| < C/(s —t). Taking v = u —n(u — uzy,g) in (2.11), we see

Vo =(1~n)Vu - Vn(u — uz r)

By the standard filling hole trick, there exists a positive # < 1 such that

/ Vul? < 6 / IVulP + C(s — ) / It = tng &IP dz
B B, Bpr
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for all ¢, s with R/2 < t < s < R. It implies from a lemma in [4, Lemma 3.1 in
Chapter V] that for all zg € Q and R with 0 < R < dist (zg, 92), we have

/ [Vul? < CR"”/ |4 — uzy,r|P dz.
Bpr/a Bp

This proves our claim. 0

For any function f on Bpg(zg), we write

][ fdz = |Bn(zo)|“/ fdz.
Bpr(zo) BRr(zo)

By Proposition 3, it easily follows from the standard reverse Holder inequality that
there exists an exponent g > p such that u € W;7(Q, R*+1); that is, for all zo € Q
and R < dist (zq,952), we have

1/q 1/p
(2.12) (7[ |Vu|? dz) <C (][ |Vul? dz) ,
BR./Z(:‘O) Bpr(zo)

where C is a constant independent of u.

THEOREM 5. Let u be a weakly p-harmonic maps from Q into S*, satisfy-
ing a Caccioppoli’s inequality, that is, inequality (2.4) holds for any positive R with
R < dist(zo,%2). Then there exists a subset Qo of Q such that u is C1*(p; S¥).
Moreover,

H™ P~ (Q\Q) = 0,

for some 6 > 0.

PRrROOF: The proof is standard by using the reverse Hélder inequality (2.12) (see
[5]). See a different proof in [2].

Theorem A follows from Theorem 2, Proposition 4 and Theorem 5.
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