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Mass-spring models are essential for the description of sloshing resonances in engineering.
By experimentally measuring the liquid’s centre of mass in a horizontally oscillated
rectangular tank, we show that low-amplitude sloshing obeys the Duffing equation. A
bending of the response curve in analogy to a softening spring is observed, with growing
hysteresis as the driving amplitude increases. At large amplitudes, complex wave patterns
emerge (including wave breaking and run up at the tank walls), competition between
flow states is observed and the dynamics departs progressively from Duffing. We also
provide a quantitative comparison of wave shapes and response curves to the predictions
of a multimodal model based on potential flow theory (Faltinsen & Timokha, Sloshing.
Cambridge University Press, 2009) and show that it systematically overestimates the
sloshing amplitudes and the hysteresis. We find that the phase lag between the liquid’s
centre of mass and the forcing is the key predictor of the nonlinear response maxima.
The phase lag reflects precisely the onset of deviations from Duffing dynamics and –
most importantly – at resonance the sloshing motion always lags the driving by 90◦
(independently of the wave pattern). This confirms the theoretical 90◦-phase-lag criterion
(Cenedese & Haller, Proc. R. Soc. A, vol. 476, no. 2234, 2020, 20190494).

Key words: waves/free-surface flows, nonlinear dynamical systems, low-dimensional models

1. Introduction

Fluid resonances occur in nature and in engineering applications. One of the most
prominent examples is the sloshing motion of surface waves, which arise e.g. in partially
filled tanks subjected to vibrations. As shown in figure 1, such surface waves generate
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Figure 1. Sloshing liquid in a horizontally oscillated rectangular tank over one oscillation period. The tank
has a width of w = 500 mm, is filled with water to the height h = 400 mm and driven with the frequency
ω = 2πf (with f = 1.13 Hz) leading to the period T = 2π/ω. Nonlinear resonances amplify periodic surface
waves (marked as a red line) and produce oscillations of the liquid’s centre of mass (indicated by •, red).
Stereoscopic particle image velocimetry measurements of the in-plane velocity (displayed as arrows) show that
the maximum velocities are reached when the surface elevation is lowest. The excitation frequency is close to
resonance (Ω = ω/ω1 = 0.917, where ω1 is the natural frequency calculated with potential theory, see (2.2))
and the excitation amplitude corresponds to A = xa/w = 0.64 %, where xa is the peak amplitude of the tank
displacement.

oscillations of the liquid’s centre of mass. In skyscrapers this effect is used to damp
vibrations after earthquakes (Çelebi et al. 2013), but in rockets the sloshing fuel can
threaten the mission goal, for example in the Saturn SA-I (Abramson 1966) and in the
Falcon I Flight 2 (Dreyer 2009).

In the vicinity of the primary resonance frequency, several modes of motion can
compete (Chester 1968a,b) and the sloshing motion can exhibit complex flow patterns
(e.g. breaking waves or swirls, see Abramson, Chu & Kana 1966). Models to predict the
sloshing dynamics are essential; Dodge (2000) argued that ‘even with super computers,
coupling the equations of motion of a flexible space vehicle to the equations of motion of
a continuous liquid is too computationally demanding’. Since the early work of Moiseev
(1958) and Bauer (1966), mass-spring models are commonly used to predict resonances in
aerospace engineering (e.g. in the SLOSH code of the NASA, see Dodge 2000). During
the critical time for the flight stability of spacecraft, the fuel level of tanks is high, which
implies that the primary resonance is typically dominated by a single mode and its higher
harmonics (Dodge 2000; Arndt & Dreyer 2008). In shallow systems, on the other hand,
the natural frequencies are often (nearly) commensurable, leading to a large number of
excited modes and a fragmentation of the primary resonance into multiple resonance
peaks. Chester (1968b) showed experimentally that several solutions with different wave
morphologies coexist near the primary resonance. The number of coexisting solutions at
a certain excitation frequency increases for decreasing filling level. As the filling level
tends to zero, the corresponding resonance peaks become closer, which is suggestive of a
chaotic evolution (see the review article of Ockendon & Ockendon 2001). Only advanced
multimodal models (see e.g. Faltinsen et al. 2000) are therefore able to faithfully describe
the interaction of competing modes in shallow experiments (Chester 1968a).

The first and most popular nonlinear mass-spring model was developed over a hundred
years ago by the German engineer Georg Duffing (1918). He observed that vibrations of
machines are ‘much calmer above resonance than at the same distance below resonance’,
which contradicted ‘the current reigning [linear] theory of these phenomena’. In order
to model this dependence of the resonance frequency on the driving amplitude, Duffing
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added a cubic nonlinear term to the classical driven harmonic oscillator. The resulting
(Duffing) equation reads

ẍ + 2δẋ + ω2
nx + εx3 = F cos ωt, (1.1)

where x is the displacement of the oscillation, δ the viscous damping, ωn the natural
frequency and ε the nonlinearity constant. The harmonic driving of the system is specified
by the excitation amplitude F and the excitation frequency ω. Depending on the sign
of ε the nonlinear resonance frequency decreases for a spring softening with growing
extension (ε < 0) and increases for a hardening spring (ε > 0). This resonance shift and
the corresponding bending of the resonance curve are key features of (1.1) and explain the
original observation of Duffing (see Kovacic & Brennan (2011), for a monograph on the
Duffing equation).

Apparently unaware of the work of Duffing, Taylor (1953) proposed a bended response
curve resembling that of a Duffing oscillator with a softening spring to explain sloshing
resonances in his experiments of a deep wavemaker tank. Tadjbakhsh & Keller (1960)
showed analytically and Fultz (1962) experimentally that, below a critical liquid depth,
the response curve changes from softening to hardening. This was interpreted by Chester
(1968a) as ‘a non-linear effect closely associated with the “hard spring” solution
of Duffing’s equation’. Exploiting an inviscid theory developed by Moiseev (1958),
Ockendon & Ockendon (1973) used an asymptotic expansion of the potential flow
solution in the vicinity of the resonance and showed that for small oscillations, sloshing
in a two-dimensional rectangular container responds exactly as an undamped Duffing
oscillator. By extending the asymptotic expansion to fifth order, Waterhouse (1994)
proved that fifth-order terms ultimately turn the hardening into a softening. Ockendon
& Ockendon (1973) further conjectured that viscous effects emanating from the Stokes
layers at the walls would lead to a linearly damped Duffing oscillator. Their conjecture
has not been confirmed experimentally and the analogy between the Duffing equation and
liquid sloshing has remained at a qualitative level.

In general, the Duffing equation (1.1) describes the dependence of the resonance
frequency with the driving amplitude for systems with linear (laminar) damping. The
complex phenomena occurring in large-amplitude sloshing are difficult to model because
of enhanced nonlinearity and dissipation. In particular, Faltinsen & Timokha (2002)
stated that the ‘improper handling of the dissipation owing to breaking waves and run-up
along the vertical walls (· · · ) limits our theory to describe the resonant sloshing of
strongly dissipative character occurring in many experiments (· · · )’. In analogy to the
Duffing equation, most models include linear viscous damping. Accurate descriptions
of the dissipation and the resulting damping remain an outstanding challenge (Shemer
1990; Faltinsen & Timokha 2002; Hill 2003). For engineering applications this implies
that neither the driving frequency nor the sloshing amplitude of the maximal nonlinear
resonance can be predicted, if complex sloshing waves emerge.

Accurate experiments elucidating the onset of complexity and quantifying its influence
on the dissipation might provide valuable insights and stimulate the development of
models. A difficulty is that experimentally the dissipation of sloshing waves cannot be
measured directly. In the literature, complex wave shapes are often shown in snapshots,
but quantitative measurements related to dissipation (like the phase lag between driving
and response) are rare. In addition, the scaling of dissipation is assumed to change with the
driving amplitude (Faltinsen & Timokha 2002), but in recent experiments response curves
are seldom measured for several driving amplitudes. Hill (2003) attributed the absence of
quantitative agreement between models and sloshing experiments to the lack of well-suited
and accurate experimental data. Other common problems stem from the control of the
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driving parameters (Feng 1997; Hill 2003), tanks of insufficient height (leading to water
impact on the tank ceiling, see e.g. Faltinsen et al. 2000) and measurement procedures
unable to detect hysteresis of the bended response curve (Fultz 1962; Arndt & Dreyer
2008; Konopka et al. 2019).

In this paper, we show experimentally that sloshing at low driving amplitudes obeys the
Duffing equation with linear damping, thereby confirming the conjecture of Ockendon &
Ockendon (1973). By quantitatively measuring the flow dynamics, we link the emerging
complexity at moderate amplitudes, to deviations from Duffing dynamics. We find that
neither the exact surface shape nor the frequency spectrum are useful to determine the
nonlinear resonance maxima. The key indicator is the phase lag between driving and
response. We systematically investigate the role of initial conditions, characterise the
sloshing amplitude with the motion of the liquid’s centre of mass and directly measure
the damping coefficient. The results obtained with our approach are compared to common
approaches used in the literature.

The paper is structured as follows. In the next section, we describe the experimental
methods and in § 3 the quantitative characterisation of the sloshing phenomena. In §§ 4
and 5, the Duffing and multimodal model of sloshing are respectively described and briefly
compared to our measured data. Detailed measurements of large-amplitude sloshing
are presented in § 6 with a focus on the nonlinear dynamics of the system, including
multiplicity and competition of several flow states. The experimental response curves
obtained for several amplitudes are presented and compared to the Duffing and multimodal
model in § 7. An assessment of the strengths and weakness of these two models, and of
the applicability of spectral submanifold theory to sloshing, is given in § 8, before the
conclusions § 9.

2. Methods

Our experiments were performed in a rectangular container subjected to harmonic
horizontal excitation. As illustrated in figure 1, the flow is quasi-two-dimensional.
Sloshing waves reaching from a quasi-planar surface, up to run-up at the tank walls and
wave breaking were investigated. A distinct feature of the sloshing waves in an oscillated
(or pitched) tank is their asymmetric shape leading to an oscillation of the liquid’s centre
of mass (shown as a red dot in figure 1). Many fundamental studies consider sloshing
in wavemaker tanks (Taylor 1953; Fultz 1962; Chester 1968a). A key difference between
oscillated and wavemaker tanks is that in the latter the primary resonant mode is symmetric
and the liquid’s centre of mass is steady in the lateral direction.

2.1. Experimental set-up
A sketch of our experimental set-up is shown in figure 2. The tank (width w = 500 mm,
depth l = 50 mm) is mounted on a platform and filled with water at room temperature to
the height h = 400 mm. The tank is displaced with an excitation of

F cos ωt = xaω
2 cos ωt, (2.1)

where xa is the displacement peak amplitude and ω the driving frequency. The two
dimensionless control parameters of the system are the excitation amplitude A = xa/w <

1 % and the excitation frequency Ω = ω/ω1, where ω1 is the natural frequency ωn for a
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Figure 2. Sketch of the experiment. A motor (a) drives an eccentric disk which converts the rotary motion
of the motor via a pushing rod (b) into a quasi-harmonic horizontal oscillation of the platform. A positioning
sensor (c) directly records the motion of the platform on which the tank (d), two high speed cameras (e) and a
USB-camera ( f ) are mounted. For the particle image velocimetry measurements a light sheet (g) is provided
by a laser passing through a cylinder lens (implemented in the stationary laser guiding arm).

rectangular container calculated with potential theory

ω2
n = gπ

w
n tanh

[
πn

h
w

]
, (2.2)

see Faltinsen & Timokha (2009). In our experiments, the mode number is n = 1, the
gravitational acceleration g = 9.81 m s−2 and ω1 = 7.800 s−1. The chosen aspect ratio
h/w = 0.8 corresponds to a deep sloshing system, i.e. with minor influence of the tank
bottom (ωn remains fairly constant as the aspect ratio is increased).

The horizontal excitation of the platform is created with a three phase motor (type
MDXMA1M 090-32 from Lenze), whose rotary motion is converted into a horizontal
oscillation by a double eccentric and a pushing rod. The length of the rod (1.1 m)
is large compared with the amplitudes on the eccentric (xa ≤ 3.180 mm) so that the
motion of the platform can be regarded as harmonic. The driving amplitude is steplessly
adjustable by manually fixing the double eccentric. The motion of the platform is
continuously monitored by a potentiometer position sensor (type 8710-100 from Burster
Präzisionsmesstechnik GmbH & Co KG) with an accuracy of ±5 μm. This enables
precise, time-resolved measurements of the tank position and therefore also of the driving
frequency, amplitude and phase. The large experimental dimensions facilitate quantitative
flow measurements at low excitation frequencies ω = 2πf (with f ∈ [0.50, 2.00] Hz) and
low excitation amplitudes xa ∈ [0.446, 3.180]mm without an influence of the tank ceiling.
LabVIEW is used to control the motor and all the measurement equipment (except for the
particle image velocimetry system), which allows automatised measurements.

Hereafter, lengths are made dimensionless with the container width w and time with
1/ω1.

2.2. Measuring the surface motion
For presentation purposes we record the flow with our mobile phone camera (1920 ×
1080 Px @ 60 Hz). The camera is stationary in the laboratory frame and positioned in an
angle so that the geometry and the motion of the tank are visible, too. The flow appears
green in these recordings due to the laser illumination. Several movies of the sloshing are
provided in the online material.
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Figure 3. Determination of the free surface. (a) Sketch of the visualisation set-up with a stationary LED panel
and a co-moving camera. (b) In raw data images the surface appears as a thick line. A side view of the surface
in (c) allows a comparison of the detected surface level (from image processing, marked as a red line) to the real
surface featuring menisci (indicted by the blue line). (d) The image analysis eliminates the effects stemming
from the menisci.

For the quantitative analysis of the sloshing surface motion, an industrial monochrome
USB-3 camera (1600 × 1200 Px; 30 Hz) is mounted on a frame co-moving with the tank
(marked as f in figure 2). The flow is illuminated from the opposite side of the tank by
an LED light, which casts a distinct shadow on a semi-transparent polyester film on the
tank wall, see figure 3(a). The light is placed approximately 2 m away from the tank to
provide a uniform illumination and to avoid heating the fluid. The shadow on the polyester
film is monitored with a camera, which displays the water surface as a dark line, as shown
in figure 3(b). The apparent thickness of the line stems from the menisci at the front and
back of the container wall as illustrated in figure 3(c). Compared with directly monitoring
the free surface, this method achieves a higher contrast. The sharpness of the interface is
achieved with a short exposure time (1/200 s) of the camera.

The USB-3 camera is calibrated by using a checkerboard pattern calibration target and
the Camera Calibrator application in MATLAB. The dark line corresponding to the water
surface is identified by light intensity thresholding. To remove the effect from the menisci
at the tank walls, the lower bound of the dark line is defined as the relevant water surface.
This is in line with the observation that at very low sloshing amplitudes the menisci seem
to ‘stick’ to the tank walls, whereas the free surface performs an oscillation. A locally
weighted scatterplot smoothing is applied to the obtained surface curve to remove outliers
caused by e.g. small air bubbles. This method is able to detect also small surface motions
and it is robust against splashes or wetting, but it is not suited to fit overturned water
surfaces. Examples of the determined surface curves are shown as red lines in figure 1.
This method relies on the assumption that the flow is quasi-two-dimensional, as will be
shown in § 3.1.

2.3. Measuring fluid velocities
The fluid velocities in the bulk are measured with stereoscopic particle image velocimetry
(PIV). The system from LaVision consists of a pulsed dual-cavity 527 nm Nd:YAG laser
(2 × 50 mJ; 1 kHz) and two high speed cameras (2560 × 1600 Px; 1.4 kHz, Phantom
VEO 640L). The laser and a cylinder lens are stationary in the laboratory frame and
provide a thin light sheet through the central plane of the tank. The cameras co-move
with the tank and therefore vibrate slightly at about 12 Hz or faster, which is at least twice
as the highest measured fluid frequencies (see § 6.2). The field of view of the cameras
was varied with a maximum size of 290 × 440 mm (as displayed in figure 1 and 4a).
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Directly beneath the free surface (∼10 mm) strong reflections prevented accurate PIV
measurements. In most of the experiments hollow glass spheres (9–13 μm from LaVision)
were used as tracer particles. At large driving amplitudes we replaced them by silver coated
hollow glass spheres (10 μm from Dantec) to enhance the contrast. Also at large driving
amplitudes highly reflective air bubbles got regularly mixed in the liquid (e.g. by wave
breaking), forcing us to reduce the laser intensity. Typical sampling rates were between
200 and 500 Hz and a spatial resolution of ∼2.86 mm was achieved by using 64 × 64 Px
subwindows with 75 % overlap.

3. Quantitive characterisation of the sloshing motion

3.1. Assessing the quasi-two-dimensionality of the flow
The geometry of our tank suppresses swirling motions and to the naked eye the
motion of the sloshing water surface appears quasi-two-dimensional for various driving
parameters and sloshing states. In order to quantify this, we performed stereoscopic
PIV measurements at the highest investigated sloshing amplitude (in which the liquid
rises steeply at the tank wall). The snapshots of the velocity field shown in figure 4(a)
were recorded when the surface elevation was minimal (and the flow velocities were
maximal). The in-plane velocities (vx, vy) reflect the sloshing motion, while the velocities
in z-direction are negligible (and remain so throughout the cycle, see the time series of
figure 4b). Note that only every eighth vector obtained from the PIV measurements is
plotted here for clarity. In the time series of figure 4(b) the deviations of the vz-component
reflect the vibrations of the cameras itself (see § 2.3) and are very small, confirming
that the flow is quasi-two-dimensional. For the following analysis of time series (in
figure 10 and 11) we applied a low-pass filter to remove these vibrations from the signal. In
figure 4(c) it is shown that the in-plane velocities decrease exponentially with the distance
from the surface, as it is expected for deep water surface waves. The exponential decrease
was observed at all positions.

3.2. Characterising the sloshing amplitude with the liquid’s centre of mass
The most common method used in the literature to characterise the sloshing amplitude
is to measure the maximum wave elevation, typically at a fixed position in the container
(Dodge 2000; Ibrahim 2005; Faltinsen 2017). This is a direct and simple method and the
data can be retrieved from wave sensors or in situ with a ruler. Using our image analysis
method, we measure the surface displacement ζ with respect to the resting liquid height
at the sidewall. The amplitudes of the wave crests (maxima) and troughs (minima) are
shown in figure 5(a) as a function of the excitation frequency for A = 0.64 %. Far from
the resonance (maximum response), the amplitudes of the waves and crests are similar, but
close to the resonance the crests are very steep and the troughs are broad (Dodge 2000;
Ibrahim 2005), leading to distinctly different amplitudes (as it is illustrated by the arrows
in the snapshot in (c)). In many studies, it is not explicitly stated whether crests or troughs
are used to characterise the sloshing amplitude, which hinders quantitative comparisons.
Clearly, the surface elevation at a fixed location does not provide global information on the
sloshing state, and as it will be demonstrated in the next section, this can cause problems
when measuring the viscous damping coefficient.

In engineering applications, the motion of the centre of the liquid’s mass is often the
main quantity of interest (e.g. for the propellant tank of a satellite). The identification
of the water surface combined with the quasi-two-dimensionality of the flows allows us
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Figure 4. Stereoscopic PIV measurements in the bulk verify the quasi-two-dimensionality of the flow.
(a) The sloshing motion is dominated by the in-plane velocities (vx, vy); vz is negligible. (b) Time series of the
velocity components at the position marked with the black square in (a). (c) The in-plane velocity components
decreases exponentially from the free surface to the bottom of the tank as indicated by the exponential fits. The
driving parameters (A = 0.64 % and Ω = 0.917) and the flow state (period-three sloshing) are as in figure 1
(at t = 1/4T). In (b,c) the velocities are spatially averaged over ±14 mm (size of the square in (a)).

to determine directly the centre of the liquid’s mass (see the red dot in figure 5c) as a
function of time, x(t), which we use hereafter as global measure of the sloshing amplitude.
More specifically, we use the amplitude of the horizontal periodic displacement of the
liquid’s centre of mass, termed x̂ (or X̂ = x̂/w for the dimensionless amplitude) hereafter.
The corresponding response curve is shown in (b). Being based on the analysis of the
whole surface shape, this method is robust against small image evaluation errors and is
well suited to quantitatively compare different flow states.

3.3. Determining the damping rate
The viscous damping rate δ1 is an important parameter required in models of sloshing,
including the Duffing oscillator and multimodal models. In this section, it is determined
experimentally and analytically for our system. In experiments, the viscous damping rate
δ1 can be extracted from the system’s natural response. After turning off the driving, the
sloshing amplitude decays over time to zero with decay rate δ1. This is determined by
fitting an exponential function to the envelope of the time series of the sloshing amplitude.
In aerospace engineering it is common to use the ‘free surface displacement at some
convenient location’ (Dodge 2000) to obtain the damping coefficient. In figure 6(a) it
is shown that this method leads to different damping coefficients for the crests and the
troughs. By contrast, the motion of the liquid’s centre of mass allows an unambiguous
determination of the viscous damping coefficient for each time series (see figure 6b).
Repeating such measurement for a range of excitation frequencies revealed only small
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Figure 5. Response curves when starting the experiment from rest at A = 0.64 %. (a) The surface
displacements of wave maxima and minima (crests and troughs) lead to different response curves of the sloshing
amplitude ζ . (b) The amplitude X̂ of the horizontal oscillation of the liquid’s centre of mass provides a global
measure of the response curve and allows a precise determination of the sloshing phase. The solid line (grey)
corresponds to a harmonic oscillator (without fitting parameters) and the red line to a Duffing oscillator (one fit
parameter, unstable solutions are denoted with dotted segments). (c) Flow snapshot (with the free surface shown
as a red line) illustrating the typical asymmetry in the surface displacement close to resonance (at Ω = 0.953).
This asymmetry causes the different response curves shown in (a). The liquid’s centre of mass is displayed as
a red dot.

deviations, δ1 = [0.065 ± 0.015] s−1 (corresponding to dimensionless damping ratio
γ1 = δ1/ω1 = 8.4 × 10−3). For very small frequencies (indicated by ◦ (red) in figure 7a)
the sloshing amplitude was too small (surface wave height < 6 mm) to accurately fit
a decaying function over the signal. As a result, these values were not considered to
compute the averaged damping rate δ1. Keulegan (1959) derived an analytical estimate
of the damping rate for liquid sloshing in rectangular containers. In his model, the
damping rate is obtained from the balance of potential energy, kinetic energy and energy
dissipation caused by a laminar viscous boundary layer on the wetted tank walls and
bottom. Keulegan’s prediction reads (Faltinsen & Timokha 2009),

γn = δn

ωn
=

√
ν

2w2ωn

⎡
⎢⎢⎣(w

l

)
⎛
⎜⎜⎝1 + 2π

n
(

1
2

− h
l

)

sinh
[

2πn
h
l

]
⎞
⎟⎟⎠ + 1

⎤
⎥⎥⎦ , (3.1)

where γn is the dimensionless damping ratio of the natural mode n. In our decay
experiments the first natural mode n = 1 dominates. Plugging the kinematic viscosity
ν = 1 × 10−6 m2/s for water at room temperature and our experimental geometry (h =

925 A22-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

57
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.576


B. Bäuerlein and K. Avila

Ca exp(–δa t)

Cb exp(–δb t)

–10 0 10 20 30 40 50 60

Time t/T
–10 0 10 20 30 40 50 60

Time t/T

–10

0

10

20
ζ/

w
 (

%
)

±C exp(–δ1 t)

–4

–2

0

2

4

X 
(%

)

(a) (b)

Figure 6. Dependence of the viscous damping rate on the observable. At t = 0 the driving was turned off to
measure the decay rate. The steady state (t ≤ 0) is a wave-breaking motion, which fades into a planar surface
wave during the decay (t > 0). (a) Time series of the dimensionless surface displacement, ζ/w, recorded at the
left tank wall (where the sloshing amplitude is maximal) for A = 0.64 %, Ω = 0.999. The asymmetry of the
oscillation amplitude reflects the asymmetric wave shape (with a higher wave crest and a shallow wide trough),
leading to different positive and negative displacements (Ca = 0.153w, Cb = 0.126w) and hence different
decay rates (δa = 0.069 s−1, δb = 0.060 s−1). (b) The same time series as in (a) but for the lateral motion
of the centre of mass. The displacement of the centre of mass is left–right symmetric and an unambiguous
damping coefficient is obtained (C = 0.035w, δ1 = 0.064 s−1).
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Figure 7. Measured viscous damping rate and natural frequency. (a) Experimentally determined values of the
viscous damping rate δ1 for different excitation frequencies and A = 0.64 %. Their average δ1 = 0.065 1/s is
shown as a red line. (b) Typical frequency spectrum of a decaying oscillation of the liquid’s centre of mass
with a peak at ω1, showing that the decaying motion oscillates with the natural frequency. The spectrum stems
from the time series of the decay shown in figure 6(b).

0.4 m, w = 0.5 m, l = 0.05 m) into (3.1) gives γ1 = 5.57 × 10−3 (δ1 = 0.0434 s−1),
which is approximately 1.5 times smaller than the experimentally determined value,
γ1 = 8.4 × 10−3. This difference is unsurprising, as (3.1) only models the effect of a
linear boundary layer and does not account for damping in the fluid bulk, turbulent
energy dissipation, surface tension or free-surface effects like wave breaking (Faltinsen
& Timokha 2009). Moreover, nonlinear effects may be relevant in the early stages
of the decay, making it eventually necessary to consider also the damping of higher
natural modes. As a consequence, the theory only gives a lower bound for the actual
damping. Similar differences were observed in past studies (Ikeda et al. 2012; Faltinsen
& Timokha 2017). In our case it is noteworthy that Keulegan’s prediction agrees with our
measurements at low sloshing amplitude (corresponding to a low excitation frequency
in figure 7a), where the theory is expected to be most accurate. However, we stress
that damping rates at low sloshing amplitudes could not be measured accurately. In
the following, we use the experimentally determined damping ratio γ1 = 8.4 × 10−3 for
comparison with sloshing models.
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3.4. Determining the natural frequency
The natural frequency of the sloshing can be calculated analytically with potential
theory (2.2) to ω1 = 7.800 s−1. Experimentally, we verified its value with the same
measurements that were also used to obtain the viscous damping rate δ1. After stopping
the forcing, the system oscillates with its natural frequency, which is seen in the frequency
spectrum in figure 7(b). The averaged value of the measurements (ω1,exp = [7.86 ±
0.10] s−1) agrees well with the prediction. This confirms that the measured damping rate
can be attributed to the first natural mode.

4. Modelling liquid sloshing with the Duffing equation

In space engineering, the sloshing of liquid fuels is usually modelled with mass-spring
models (see e.g. Dodge 2000). If the amplitude of the oscillations is assumed infinitesimal,
the sloshing motion of the first mode is described by a classic harmonic oscillator

m1(ẍ1 + 2δ1ẋ1 + ω2
1x1) = m1F cos ωt. (4.1)

where m1 is the mass that participates in the sloshing motion, x1 is the horizontal location
of the centre of the sloshing mass m1, δ1 is the viscous damping rate and m1F = m1ω

2xa is
the inertial force acting in the reference frame moving with the container. It can be shown
with potential theory that the sloshing mass

mn = cnm, (4.2)

where m is the total liquid mass and for the odd modes of a rectangular container

cn = 8
π3

tanh
[
πn

h
w

]

n3 h
w

, (4.3)

see Ibrahim (2005). For our geometry and first eigenmode, n = 1, we obtain c1 = 0.3183,
so that approximately 32 % of the total liquid mass is expected to participate in the sloshing
motion.

Motivated by the conjecture of Ockendon & Ockendon (1973) and the clear bending of
the response curve shown in figure 5(b), we augment (4.1) with a cubic displacement term
resulting in the Duffing equation

ẍ1 + 2δ1ẋ1 + ω2
1x1 + ε1x3

1 = xaω
2 cos ωt. (4.4)

In order to test the accuracy of this model equation in capturing the experimentally
measured dynamics, it is crucial to note that we measure experimentally the displacement
of the full liquid’s centre of mass, x, whereas mass-spring models are concerned with
the displacement of the centre of mass of the sloshing liquid fraction, x1. Since the static
mass does not contribute to the sloshing motion, the horizontal displacement of the centre
of mass of the full liquid is c1 times smaller than for the sloshing mass fraction. By
substituting x = c1x1 in (4.4), we obtain a Duffing equation for the horizontal displacement
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of the full liquid’s centre of mass

ẍ + 2δ1ẋ + ω2
1x + εx3

1 = c1xaω
2 cos ωt, (4.5)

where ε = ε1/c2
1. A solution to this equation can be analytically obtained with the

harmonic balance method (Kovacic & Brennan 2011). It reads

x = x̂ cos(ωt + φ), (4.6)

where the oscillation amplitude (displacement) is

x̂ = c1xaω
2√

(ω2 − ω2
1 − 3

4εx̂2)2 + (2δ1ω)2
, (4.7)

and the phase difference between excitation and oscillation is

tan φ = 2δ1ω

ω2
1 − ω2 + 3

4εx̂2
. (4.8)

The (4.7) and (4.8) are used to generate the response curves of the Duffing oscillator for
our system parameters.

4.1. Fitting the nonlinearity constant
The nonlinearity constant ε is the only parameter in (4.7) which can neither be measured,
nor estimated a priori with potential theory. The red line in figure 5(b) shows a
least-square-residuals fit of (4.7) to the horizontal displacement of the liquid’s centre of
mass, performed simultaneously for all data sets measured in this work (see § 7). This
demonstrates that, even at the large amplitude investigated here, the Duffing equation
captures the measured response very well (with a single fit parameter, ε = −1.44 ×
104 m−2 s−2). Note that the harmonic oscillator model (ε = 0), which is entirely free
of fitting parameters, is able to very precisely capture the system’s response far away from
the resonance, see the grey line in figure 5(b).

In order to ease future comparisons with numerical simulations and experiments with
other dimensions, all parameters are shown hereafter in dimensionless form. With the
dimensionless horizontal displacement of the liquid’s centre of mass, X = x/w, the
dimensionless Duffing equation reads

Ẍ + 2γ1Ẋ + X + εX3 = c1AΩ2 cos Ωt, (4.9)

where time has been rescaled with the inverse of the natural frequency ω1, γ1 = δ1/ω1 =
8.4 × 10−3 is the dimensionless damping coefficient and ε = (w/ω1)

2ε = −59.2.
A comparison between the dimensional and dimensionless parameters is shown in table 1.

5. Multimodal model of liquid sloshing

5.1. Model equations for sloshing in a rectangular tank
Faltinsen & Timokha (2009) give a solution of the potential-flow equations for
two-dimensional inviscid sloshing in a rectangular container using a Fourier expansion.
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Parameter Dimensional Dimensionless

Viscous damping δ1 = 0.065 s−1 γ1 = 8.4 × 10−3

Natural frequency ω1 = 7.800 s−1 1
Nonlinearity constant ε = −1.44 × 104 m−2 s−2 ε = −59.2

Table 1. Experimentally determined parameters of the Duffing equation in dimensional (4.5) and
dimensionless (4.9) forms. For the measurement procedure, see § 4.

The elevation of the free surface as a function of the horizontal container coordinate,
ξ ∈ [−w/2, w/2], and of time, t, can be expressed as

ζ(ξ, t) = w
∞∑

n=1

βn(t)fn(ξ), (5.1)

where
fn(ξ) = cos(πn(ξ + 1

2 w)/w), (5.2)

is the dimensionless waveform of the surface for mode n and βn describes its temporal
evolution. When this expression is inserted in the potential-flow equations, these reduce
to an infinite system of (coupled) nonlinear differential equations for the time-dependent
coefficients βn. By truncating this expansion, multimodal models of sloshing of desired
order can be obtained. Faltinsen & Timokha (2009) provide equations for βn for the
first three modes (n = 1, 2, 3), which constitute the lowest-order, consistent nonlinear
multimodal model of sloshing in a rectangular container (Moiseev 1958). The analytic
solution to these equations is given in chapter 8.3 of Faltinsen & Timokha (2009) and
reads

β1(t) = Ŷ cos(ωt) + ñ1Ŷ3 cos(3ωt) + O(Ŷ5),

β2(t) = Ŷ2(w0 + h0 cos(2ωt)) + O(Ŷ4),

β3(t) = cos(ωt)[Ñ1Ŷ3 − AP3/(1 − (ω3/ω)2)] + Ñ2Ŷ3 cos(3ωt) + O(Ŷ5),

⎫⎪⎬
⎪⎭ (5.3)

where Ŷ is a dimensionless amplitude, ωn are the natural frequencies of the three modes
(see (2.2)). Hence, the time-dependent coefficients βn of the solution (up to third order in
amplitude Ŷ) consist of harmonics of the driving frequency ω, whose magnitude depends
on the dimensionless amplitude Ŷ , and the following parameters:

ñ1 = −d2 + h0(3d1 + 4d3)

2(9 − (ω1/ω)2)
,

Ñ1 = −3q2 + q4 + 2h0(−q1 − 4q3 + 2q5) − 4q1w0

4(1 − (ω3/ω)2)
,

Ñ2 = −q2 + q4 + 2h0(q1 + 4q3 + 2q5)

4(9 − (ω3/ω)2)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.4)

and

w0 = d4 − d5

2(ω2/ω)2 , h0 = d5 + d4

2((ω2/ω)2 − 4)
. (5.5a,b)
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The coefficients di and qi depend on the ratio of filling level to container width, h/w, and
are defined as,

d1 = 2
E0

E1
+ E1, d2 = 2E0

(
−1 + 4E0

E1E2

)
,

d3 = −2
E0

E2
+ E1, d4 = −4

E0

E1
+ 2E2,

d5 = E2 − 2
E0E2

E2
1

− 4
E0

E1
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

and

q1 = 3E3 − 6
E0

E1
, q2 = −3E0 − 9

E0E3

E1
+ 24

E2
0

E1E2
,

q3 = 3E3 − 6
E0

E2
, q4 = −6E0 − 24

E0E3

E1
+ 48

E2
0

E1E2
+ 24

E2
0E3

E2
1E2

,

q5 = 6
(

1
2

E3 − E0

E1
− E0E3

E1E2
− E0

E2

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.7)

respectively, with

E0 = 1
8
π2, En = 1

2
π tanh

[
πn

h
w

]
, n ≥ 1

Pn = 2
nπ

tanh
[
πn

h
w

]
((−1)n − 1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.8)

Under the assumption of periodic (steady-state) oscillations and by further considering
linear damping added to the equation for the first mode, Faltinsen & Timokha (2017)
obtained an analytic expression for the dimensionless amplitude parameter

Ŷ = P1A√
[(ω1/ω)2 − 1 + M1Ŷ2] + γ 2

, (5.9)

where
M1 = d1(−w0 + 1

2 h0) − 1
2 d2 − 2d3h0. (5.10)

The phase lag is

cos φ = Ŷ[(ω1/ω)2 − 1 + M1 Ŷ2]
P1A

. (5.11)

Equations (5.9) and (5.11) are used to generate the response curves of the multimodal
model for our system parameters.

5.2. Similarities and differences between the multimodal model and the Duffing equation

Equations (5.9) and (5.11) for the amplitude Ŷ are very similar in structure to the
solution of the Duffing equation for the amplitude of the liquid’s centre of mass X̂
(shown in this paper only in dimensional form, i.e. (4.7) and (4.8) for x̂). The square
of the amplitude parameter Ŷ is multiplied by a nonlinearity parameter M1 akin to the
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Duffing parameter ε. The response curves of the multimodal model are thus qualitatively
similar to those of the Duffing oscillator, as will be shown later in § 7. For example,
as the driving amplitude increases, the resonance peak bends and a hysteretic region
with two stable solutions and an unstable solution develops. Depending on the sign of
M1 this resonance can be softening (bending towards smaller frequencies) or hardening
(towards higher frequencies). More specifically, at a critical filling of hcrit/w = 0.3368
the coefficient becomes zero (Ockendon & Ockendon 1973), with softening (hardening)
predicted for larger (smaller) h/w. In our case h/w = 0.8 and accordingly our system
exhibits a softening response. A clear advantage of the multimodal model over the Duffing
equation is that M1 can be computed a priori, whereas ε must be obtained with a fit to our
experimental data. Note also that M1 is a monotonically decreasing function of the driving
frequency ω. In the next section we compare experimentally measured surface shapes to
the predictions of the mulitmodal model of Faltinsen & Timokha (2017).

5.3. Comparison of the predicted and measured surface wave shapes
The multimodal model can be used to predict the temporal evolution of the surface
shape during an oscillation period (under steady-state conditions). For our geometry and
selected driving parameters, the amplitude parameter Ŷ is computed according to (5.9),
the time-dependent functions βn are evaluated according to (5.3) and then inserted into
(5.1), yielding a modal prediction of the wave elevation ζ . Three examples of calculated
waveforms are shown in the upper row in figure 8 for varying excitation frequencies.
For Ω = 0.950, shown in (a), the amplitude parameter is Ŷ = 0.084 and the wave
shape is clearly dominated by the first mode (shown as dotted line). As the second
mode is added, the prediction (dash-dotted line) becomes slightly better, but it does
not improve much when the third mode is also considered (solid line). For Ω = 0.962
in (c), the amplitude parameter is much larger, Ŷ = 0.233, and as a consequence the
contributions of the second and third modes become more significant, which results in
a steeper wave shape, a higher wave crest and a shift of the nodal point away from the
centre. These features are in qualitative agreement with our experimental measurements,
however, three distinct differences are identified. In the experiments the rising of the
liquid at the wall is substantially steeper, the trough is slightly more shallow and a local
maximum of the surface inside the trough is not observed. For larger sloshing amplitude,
Ω = 0.909 and Ŷ = 0.377, these differences are strongly exacerbated (as shown in (e)),
leading to very different crest maxima and qualitatively different wave shapes (with less
maxima/minima in the experiments). This suggests that additional (higher-order) modes or
stronger damping (especially for the modes n = 2 and n = 3, where damping is neglected)
may be necessary to accurately capture the behaviour of the system.

In the literature, the complete surface shape has rarely been quantitatively analysed
experimentally, which makes it difficult to improve and validate models. Typically, the
time series of the elevation at a fixed location, e.g. at the tank wall, is used for comparison.
For completeness, the corresponding time series for the three cases above are shown
in figure 8(b,d, f ). For Ω = 0.950 in (b) and Ω = 0.962 in (d) an excellent agreement
is obtained in both cases despite the marked differences when the whole surface is
considered. Hence, our results indicate that single-point measurements might not be
sufficient to reliably evaluate model predictions. We conclude that, at low sloshing
amplitude, the wave shape of the third-order multimodal model is in excellent agreement
with the experiments, whereas at larger amplitudes the wave shape differs substantially,
even if the time series at a particular points still yields a good agreement. At larger sloshing
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Figure 8. Comparison of the free-surface elevation from the multimodal model in (5.1) to the experimentally
obtained one for varying driving frequency Ω and constant amplitude A = 0.64 %. The black dashed lines
illustrate the experimentally obtained surface and the coloured lines the ones of the multimodal model for
increasing number of modes as indicated in the legend in a. The red solid line denotes e.g. the predicted
surface elevation based on three modes (N = 3). Snapshots of the surface elevation over the container width ξ

are shown in the upper panel and the corresponding time series at the left wall in the panel below. For a better
visual comparison, the phases of the oscillations between experiment and model are optimally aligned. The
driving parameters are in (a,b) Ω = 0.950, Ŷ = 0.084, in (c,d) Ω = 0.962, Ŷ = 0.233 and in (e, f ) Ω = 0.909
and Ŷ = 0.377.

amplitudes (closer to the nonlinear resonance and displayed in ( f )), the time series and the
wave shape deviate more substantially.

6. Nonlinear dynamics of large-amplitude sloshing

6.1. Hysteresis
As customary in the literature (Fultz 1962; Arndt & Dreyer 2008; Konopka et al. 2019), we
started our experiments from rest and waited until transients lapsed to obtain a response
curve. Subsequently, we determined the amplitude of the sloshing waves by measuring
the amplitude of the horizontal periodic displacement of the liquid’s centre of mass X̂.
As shown in figure 5(b) for A = 0.64 %, this procedure yields a resonance curve with
a slight asymmetry (softening), which can also be observed in the measurements of
the wave height at the sidewall shown in (a). However, starting the system form rest is
insufficient to fully characterise nonlinear resonances (see e.g. Strogatz 2018). In fact,
a different picture emerged when the excitation frequency was changed quasi-statically
in a sweep-up, sweep-down procedure (see figure 9a). This allowed it to track stable flow
states through the parameter space and revealed the occurrence of a pronounced hysteresis.
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Figure 9. Response curve when performing frequency sweeps at A = 0.64 %. (a) Sloshing amplitudes
obtained with quasi-static changes of the excitation frequency during a single run are marked with ◦ (blue)
for the frequency sweep-up and with • (red) for the frequency sweep-down. The observed response curve (×),
when experiments were started from rest (same measurements as in figure 5b) are included for comparison.
Arrows indicate the (jump-up/down) transitions between the lower (low sloshing amplitude) and upper (high
sloshing amplitude) branches. Hysteresis occurs in between the arrows. The line - · · - represents the fitted
amplitude curve from the Duffing oscillator, with unstable solutions as dotted segments. (b) Snapshots
of different sloshing states recorded at the marked points in (a); i: planar motion, ii: wave breaking, iii:
period-three motion. The corresponding movies of the three states (supplementary movies 1, 2, 4 are available
at https://doi.org/10.1017/jfm.2021.576) are provided online.

Compared with the measurements started from rest, the maximum sloshing amplitude
occurs at smaller driving frequencies and is substantially higher.

6.2. Classification of flow states
At low excitation frequencies (Ω � 0.9) the sloshing state consists of a quasi-planar wave,
as exemplified in the snapshots of figure 9(b.i) and figure 10(a). Its linear nature can be
observed in the velocity time series in figure 10(e), and more precisely in the frequency
spectrum in (i) dominated by the driving frequency and its higher harmonics. At low
excitation frequencies, the quasi-planar wave (termed also the lower branch state hereafter)
is the only stable flow state and is obtained independently of the initial conditions, i.e.
start from rest or sweep-up, sweep-down. Similarly, at large frequencies (Ω � 1) there
is only one stable upper branch state, distinguished by its plateau-like wave crest near
the wall, as displayed in figure 10(b). The frequency spectrum is similar, except that
the second harmonic can hardly be discerned, while the third harmonic is rather strong.
For modelling approaches, these frequency spectra provide relevant information. In the
multimodal model, the second harmonic, with amplitude O(Ŷ2), is included in β2 (see
(5.3)), whereas this does not appear in the Duffing equation, which features terms of
amplitude O(X̂) and O(X̂3) only. The weakening of the second harmonic for increasing
sloshing amplitude, combined with the strengthening of the third harmonic (which appears
naturally in the Duffing equation), indicates that a reduction of the dynamics to a spectral
submanifold (e.g. represented by the Duffing equation) might be possible (Breunung &
Haller 2018).
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Figure 10. Characterisation of the sloshing states at A = 0.64 %. (a)–(d) Exemplary snapshots of the states.
The surface is indicated with ——– (red) and the surface height at rest with ······ (orange). (e)–(h) Time series
of the horizontal velocity vx in the bulk of the flow obtained with PIV (recorded at least at 200 Hz). The
velocity is spatially averaged over Δx = 28 mm and Δy = 28 mm with the central position being at x = 0 and
y = 0.125h. (i)–(l) Spectra of the time series in (e)–(h) obtained with fast Fourier transforms. The investigated
flow states are: (a,e,i) planar motion Ω = 0.944, (b, f, j) plateau peaks Ω = 1, (c,g,k) wave breaking Ω =
0.926, (d,h,l) peaks Ω = 0.934.

In the following, we start from this plateau-like state (at Ω ∼ 1) and describe the
changes in the dynamics as the excitation frequency is decreased on the upper branch.
Progressively, the surface plateau becomes broader and extends towards the centre and
its leading front becomes increasingly steeper. As the frequency is further decreased, a
near-vertical liquid column forms and finally it overturns, causing wave breaking, see
the snapshots in figure 9(b.ii) and 10(c). We define the onset of this wave-breaking
state, when splashing is first observed. Its frequency spectrum is broader, reflecting the
enhanced fluctuations and being suggestive of chaos. For a further reduction of the driving
frequency, the wave becomes higher (without breaking) and the liquid rises steeply at
the tank wall instead of overturning. We refer to this flow state shown in figure 10(d) as
the peak state. Its frequency spectrum is again less broad and qualitatively similar to the
plateau state at substantially lower sloshing amplitudes.

For a further decrease of the driving frequency, a remarkable phenomenon is observed: a
period-three motion where every third wave peak rises higher at the tank wall. This effect
is clearly visible by naked eye (see the sequence of snapshots in figure 11a) and leads
to a sub-harmonic frequency ω/3 and additional linear combinations in the frequency
spectrum in figure 11(c). The resulting period-three motion is also visualised in the phase
portrait in figure 11(d). Interestingly, 3ω and ω/3 are classical secondary frequencies of the
Duffing oscillator, stemming from its cubic nonlinearity (Kalmár-Nagy & Balachandran
2011). To our knowledge, these have not been observed experimentally so far, neither in
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Figure 11. Period-three motion at A = 0.64 % and Ω = 0.917. (a) Snapshots of three consecutive peaks of
the oscillation. (b) Time series of the horizontal velocity vx in the bulk of the flow. The velocity is spatially
averaged over Δx = 28 mm and Δy = 28 mm with the central position being at x = 0 and y = 0.125h obtained
with PIV (recorded at 300 Hz). (c) Spectra of the time series in (b) obtained with a fast Fourier transform. (d)
Phase portrait of the dynamics. The measurements correspond to 30 periods and are plotted as symbols, but
appear as a line due to the low scatter in the data. A movie of the period-three motion (supplementary movie
4) is provided online.

sloshing fluids nor in simple systems mimicking Duffing oscillators. After a sufficient
reduction of the driving frequency the period-three motion transitions (at the so-called
jump-down transition) to the lower branch with the quasi-planar waves of low amplitude.

6.3. Co-existence of upper branch states in parameter space
Several repetitions of the above described measurements reveals that the flow transitions
are very sensitive to experimental conditions, and that the peak state and the wave-breaking
state coexist in a large span of driving frequencies, as shown in the response diagram in
figure 12(a). These flow states seem to be marginally stable, we even occasionally observed
a change from the peak state to the wave-breaking state without any change in the driving
parameters. On the other hand, the plateau state at large driving frequencies (Ω � 1) and
the period-three motion at resonance are robust and were always observed. We speculate
that further stable and also unstable states (solutions of the Navier–Stokes equations) may
exist in phase space. A full understanding of the high-dimensional dynamics observed
here poses a challenge to be tackled with the direct numerical computation of periodic
solutions of the governing equations (Kawahara, Uhlmann & Van Veen 2012).

The amplitude of the analytic solutions of the Duffing oscillator (4.7) are plotted as
lines in figure 12(a). The measurements in (a) follow closely the stable solutions (solid
lines) with the important exception that the jump-down transition (and therefore the
response maximum) occurs at substantially higher driving frequencies in the experiment.
The jump-down transition obtained from the Duffing oscillator fit is at Ω ≈ 0.78 with
an amplitude of X̂ = 9.44 %. In the sloshing experiments such high amplitudes are not
reached, suggesting that enhanced dissipation prevents the development of such flow
states.

In undamped (inviscid) systems the phase lag between excitation and response is zero.
The phase lag of the Duffing oscillator (4.8) is plotted as lines in figure 12(b), together
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Figure 12. Nonlinear competition of sloshing states at A = 0.64 %. (a) Measured sloshing amplitudes as
function of the driving frequency and (b) corresponding phase lag between sloshing motion and driving.
The different symbols represent the observed flow state for each measurement point. The measurements
in this figure were obtained with different methods (starting from rest and frequency sweeps with variable
frequency increments). Differentiation between states is best seen in the phase difference. In this visualisation
lower and upper branches appear exchanged, because of the strongly negative phase lag characteristic of the
large-amplitude sloshing branches.

with the experimentally measured values. Note that, only the sloshing amplitude was used
to obtain the fitting parameters and not the phase difference. It can be seen that the phase
lag of the low-amplitude sloshing with quasi-planar waves (marked as green triangles), as
well as of the plateau state, are again in excellent agreement with the Duffing oscillator fit.
However, the phase lag of the larger-amplitude sloshing states (peak state, wave breaking,
period three) substantially deviates from the Duffing curve. This suggests that the damping
is nonlinear for these complex flow states.

The transition from the period-three motion – dominating close to the response
maxima – to the quasi-planar waves occurs at approximately 90◦. Indeed, the phase lag
measurements shown in figure 12(b) evidence that there are two distinct period-three states
– both exhibiting the jump-down transition at about 90◦.

We conclude that the sloshing amplitude (defined by the liquid’s centre of mass) is
neither suited to distinguish between flow states, nor does it act as an early indicator for the
response maxima – as the jump-down transition appears without warning. The phase lag,
on the other hand, allows a better distinction of the flow states and of the deviations from
Duffing dynamics as the jump-down transition is approached. It seems that the jump-down
transition occurs at a phase lag of 90◦, which we further test at different driving amplitudes
in the next section.

7. Response curves of sloshing for varying driving amplitudes

7.1. Comparison of the experiments to the response curves of a Duffing oscillator
In this section, we quantitatively compare our experimentally obtained response curves
for three additional driving amplitudes, A = 0.32 %, 0.17 % and 0.09 % to the Duffing
oscillator. The only parameter of the Duffing equation in (4.9) that could neither be
obtained from potential theory nor measured directly is the nonlinearity constant ε =
−59.2, which was freely fitted. The response curves are shown in figure 13, where
experimental measurements are represented by symbols and the solid (dotted) lines denote
stable (unstable) solutions of the Duffing equation.
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Figure 13. Quantitative comparison between sloshing experiments (symbols) and Duffing oscillator (lines)
with a single free fitting parameter, ε = −59.2 in (4.9). (a) Sloshing amplitude X̂ exhibiting the characteristic
bending of the resonance curve of a softening spring and the development of hysteresis for increasing excitation
amplitude A. Solid (dotted) lines denote stable (unstable) solutions of the Duffing equation. The measurements
(symbols) were obtained by quasi-statically changing the excitation frequency Ω , whilst keeping the excitation
amplitude A fixed. The experimentally determined maximum sloshing amplitudes are indicated by crosses (×).
At A = 0.64 % the upper branch is composed of at least three branches of competing states (see figure 12).
(b) Phase lag between sloshing and excitation. The transition from high- to low-amplitude sloshing occurs at a
phase difference of φ ≈ −90◦.
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At the lowest driving amplitude investigated, quasi-planar waves are found across the
whole frequency range. The system behaves here nearly like a harmonic oscillator, but
with the maximum sloshing amplitude slightly below the linear prediction (Ω = 1), and
with the response curve marginally asymmetric (see figure 13a). Both features are perfectly
captured by the Duffing solution. For increasing driving amplitude hysteresis emerges, and
the onset of hysteresis is in agreement with the analytical nonlinearity threshold for the
Duffing oscillator (Ac ≈ 0.13 %, see Brennan et al. 2008). In the lower branch, the waves
remain quasi-planar (as is the case for all A), whereas in the upper branch the wave peaks
becomes higher and slightly more pointed. All our analyses suggest that the flow behaves
here like an ideal Duffing oscillator, which is also reflected in the high quality of the fit
(with discrepancies at the level of measurement uncertainty).

At A = 0.32 % the agreement with the fit is still excellent, but in the experiments
the jump-down transition occurs much earlier than in the Duffing curve. This behaviour
becomes more pronounced at A = 0.64 %, whereas the agreement in the jump-up
transition point (Ω ≈ 0.95) remains excellent. In the Duffing oscillator, the jump-up
transition depends on the nonlinearity only, whereas the jump-down transition depends
also on the damping (Brennan et al. 2008). The premature jump-down transition in our
experiments suggests a nonlinear increase of the damping, which is in line with the
emergence of highly dissipative waves (with liquid steeply rising at the wall or wave
breaking, see figure 10c,d) close to resonance.

As shown earlier, a more useful characterisation of the deviations from Duffing
dynamics is provided the phase lag between excitation and response (shown in figure 13b).
For all driving amplitudes, we find that the phase lag deviates from the Duffing prediction
well before the resonance is reached. At the resonance (and thus at the jump-down
transition) the phase of the sloshing always lags the driving by 90◦. Interestingly, in
Duffing oscillators this jump-down transition at the response maxima occurs exactly at
90◦ and it seems that this feature persists in our experiments despite the complex flow
dynamics and the increased damping.

7.2. Comparison of the experiments to the response curves of the multimodal model
In this section, we quantitatively compare our experimentally obtained response curves
to the analytical predictions of the multimodal model. We recall that the damping rate
was determined from experimental measurements (see § 3.3), as for the Duffing equation,
whereas all other parameters are predicted by the theory and cannot be freely fitted.
As shown earlier, the horizontal motion of the liquid’s centre of mass X provides an
unambiguous determination of the sloshing amplitude and phase from experimental
measurements, and is less sensitive to the exact wave shape than the surface elevation
at a particular location. The horizontal oscillation of the liquid’s centre of mass X can be
computed from the multimodal model as

XN(t) = 1
w h

∫ w/2

−w/2
ξ

[ N∑
n=1

(wβn(t)fn(ξ)) + h

]
dξ/w. (7.1)

The response curve of the first three modes (N = 3) is shown together with the
experimental measurements in figure 14.

At the lowest driving amplitude A = 0.09 % the model agrees well with the
measurements sufficiently far from the resonance. However, in its vicinity no hysteresis is
observed in the experiments and the response maximum reaches only approximately half
the value of the model prediction. We stress that at these parameters the flow dynamics
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Figure 14. Comparison between the response curves from multimodal model (lines) and the experimentally
measured values (symbols). (a) Response of the centre of mass amplitude for different forcing amplitudes
A. For the curves from the model the centre of mass location is computed using (7.1) including the first three
modes N = 3. The amplitude X̂ is selected as the maximum displacement over one oscillation period t ∈ [0, T].
(b) Response curve of the phase lag between sloshing oscillation and excitation from the multimodal model
with (5.11) and from the experiment.

is almost linear (with quasi-planar surface waves and frequency spectra similar to the
one shown exemplarily in figure 10(i)). For increasing driving amplitudes A the lower
branch and its jump-up transitions are well described in the multimodal model. Here, the
wave shape is almost harmonic (as in figure 8a) leading to the excellent agreement of
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the response. At the upper branch, the sloshing amplitude obtained from the experiments
is systematically below the model prediction (between 8 % and 30 %) with growing
deviations as the nonlinear response maxima are approached.

The damping rate is the only parameter not derived rigorously in the multimodal
model. Modifying this value has little influence on the sloshing regimes, where the model
predictions agree well with the experiments (e.g. at the lower branch solution and at the
jump-up transitions). By contrast, the value of the damping ratio significantly affects the
resonance amplitudes and the occurrence and the size of the hysteresis. If the damping
ratio is decreased (e.g. γ = 5.57 × 10−3 from Keulegan’s theory), the discrepancies with
the experiment worsen. On the other hand, selecting larger values of the damping ratio
(e.g. γ = 15 × 10−3), leads to better predictions of the hysteresis regions, especially at
low amplitudes (A = 0.09 %, 0.16 %). The prediction of high-amplitude sloshing remains,
however, poor independently of the value of γ . These observations indicate that the
assumption of linear damping (applied only to the first mode) is at the root of causing
the deviations from the experimental observations. This is further confirmed when
comparing the phase difference φ between the driving and the sloshing response, shown
in figure 14(b). Overall discrepancies are very large, even in regimes in which the sloshing
amplitude X̂ is reasonably predicted, and increase with the driving amplitude. Further
comparsion of the surface displacement amplitude from the multimodal model and the
measurements is given in Appendix A.

8. Assessment of modelling approaches to sloshing

In this section, we provide a brief summary and discussion of fundamentally different
modelling approaches to sloshing with respect to our experimental observations. The
Duffing equation and the multimodal model have already been assessed quantitatively in
the preceding sections. Key to satisfactory comparisons between theory and experiment,
is the direct measurement of the motion of the liquid’s centre of mass in the experiments,
which was carried out in this work for the first time. The third and only recently developed
approach (spectral submanifold theory) is substantially more general (and thus abstract)
and has to our knowledge not been compared to experiments so far. We believe that our
experiments can be equally stimulating to these three approaches, and to other modelling
approaches.

8.1. Potential flow theory: multimodal model
The multimodal model developed by Faltinsen & Timokha (2009) is based on potential
flow theory. It is analytical and does not have free fitting parameters. It is able to predict the
full free-surface elevation and response curves for varying filling ratios, where for example
the resonance shifts from softening to hardening. The multimodal analysis applied here
is a single dominant system with three degrees of freedom and has therefore a solid
physical foundation. Intrinsically, dissipation and damping are not included because of
the underlying potential-flow equations. Typically, a linear viscous damping is added to
the equation for the first mode only. The corresponding damping coefficient can either
be experimentally determined or analytically estimated following Keulegan (1959). In
our study, the experimentally determined coefficient leads to a better agreement of the
multimodal response curves with the experimentally measured ones. In general, the model
only gives accurate amplitude predictions on the lower branch or far the resonance. The
sloshing amplitude at the resonance peak and the size of the hysteresis band are strongly
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overestimated even for small driving. The predicted phase difference between driving and
response substantially deviates from the experimental measurements.

Our measurements indicate that the assumption of linear damping applied to the first
mode only is a plausible cause of the observed deviations. As the driving increases,
the amplitude of the second and third modes increases and the damping associated
with them likely become non-negligible. We, however, stress that the multimodal model
provides the best purely analytical, nonlinear prediction of the sloshing behaviour. It is,
for example, able to describe the competition and interaction between modes in shallow
systems or in other tank geometries (e.g. of cylindrical form). Our rectangular tank
geometry and large filling height, on the other hand, were selected to generate a sloshing
dynamics with a well-distinguished response peak (i.e. free of mode competition) and a
quasi-two-dimensional flow. This simple setting paves the way for modelling the dynamics
with the two following approaches.

8.2. Mechanical mass-spring model: Duffing oscillator
Simple mass-spring models have long been used in aerospace engineering to describe
sloshing (Dodge 2000). The (linear) harmonic oscillator emerges from a mechanical
analogy, which enables the analytical calculation of the equivalent forcing amplitude and
the equivalent spring constant. The Duffing equation extends the harmonic oscillator
by including a nonlinear (cubic) spring deformation and therefore lacks an a priori
justification for modelling sloshing. A surprisingly good agreement between response
curves of the amplitudes is achieved with a single free fitting parameter (e.g. the
nonlinearity constant ε). Measuring a single response curve in the experiments is sufficient
to obtain ε, and therefore also the response curves at other driving amplitudes (including
the correct threshold value for the resonance to become hysteretic). However, at large
driving amplitude the height of the resonance peak and the size of the hysteresis are
overestimated. The predicted phase lag between driving and response agrees well at
low sloshing amplitudes and deviates progressively for increasing amplitude. Although
the agreement of the experiments with the Duffing oscillator is overall excellent, it is
likely to fail for a further increasing driving amplitude, low filling height or other tank
geometries. These would lead to highly complex effects and internal resonances that
cannot be described by the Duffing equation anymore. Our study and the discovery of the
Duffing dynamics might open avenues for modelling approaches that have the potential to
capture and predict such effects. One of the most promising approaches is described in the
following.

8.3. Dynamical systems approach: spectral submanifold theory
Sloshing is described by an evolutionary partial differential equation (the Navier–Stokes
equation), i.e. formally by an infinite-dimensional dynamical system (Ockendon &
Ockendon 1973). The main idea of the spectral submanifold theory is that the relevant
dynamics may be lower-dimensional and limited to a spectral submanifold. The excellent
agreement of our experiments (at low to moderate driving amplitudes) with the
forced–damped Duffing equation can only be explained by such a behaviour. It seems that
the sloshing dynamics of our system is confined to a low-dimensional attractor on which
the leading-order dynamics is just the Duffing equation. The recently introduced concept
of time-periodic, spectral submanifolds guarantees in these types of oscillatory problems
precisely a two-dimensional, time-periodic, attracting invariant manifold (Breunung &
Haller 2018). The increasing deviations from the Duffing equation at larger driving
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amplitudes indicate that higher-order polynomial models are required to approximate
the dynamics on the reduced two-dimensional, time-periodic spectral submanifold.
In principle these polynomials could be fitted to the experimental data, but this approach
is outside of the scope of this work. Note that in our experiment internal resonances seem
to be absent, although an exception could be the reported period-three motion. These are
likely to occur in other tank geometries or at lower filling levels and would lead to a
dynamics that cannot be described anymore in a two-dimensional spectral submanifold.
In that case, higher-dimensional spectral submanifolds (with coupled Duffing-type
equations) might provide again accurate predictions.

9. Conclusions

Accurately describing and modelling the sloshing motion of liquids is an important topic in
aerospace engineering and an outstanding scientific challenge. In previous works, several
different approaches have been employed to investigate and even control sloshing. In this
paper, we provide a detailed analysis of the sloshing dynamics in a deep rectangular tank
with the overarching goal to bring together the theoretical fundamentals of nonlinear
dynamical systems with standard methods used to investigate sloshing in tanks of e.g.
space vehicles.

For fundamental studies, as well as for applications, the observation of the nonlinear
resonance maxima in laboratory experiments is the key point. We stress the importance of
measuring the response for several forcing amplitudes, because as pointed out by Breunung
& Haller (2018) ‘a single response curve for a given forcing is meaningless for different
forcing amplitudes’ given the ‘essential nonlinear relationship between forcing and
response amplitude of nonlinear systems’. We performed measurements for four driving
amplitudes. The dynamics ranges from an almost ideal Duffing oscillator with a softening
spring, up to complex dynamics with competing modes, wave breaking and period-three
motion. We showed that the true nonlinear resonance maxima can only be detected if the
dependence on the initial conditions is carefully considered, as done here and in the past
(see e.g. Abramson et al. 1966) with a sweep-up, sweep-down procedure. By contrast, in
many recent investigations of spacecraft tanks, the response curves are obtained by starting
all experiments from rest, which may severely underestimate the maximum possible
response of the system. It is noteworthy that Duffing already highlighted the relevance of
such ‘hidden’ nonlinear resonances for engineering applications by stating that ‘when one
wants to get out of a danger, it is good to know which way one has to go’ (Duffing (1918),
translated from German by Kovacic & Brennan 2011). This must be considered in active
feedback controls, as currently in development for rockets (Konopka et al. 2019), where
the excitation of an unknown resonance state with the active control could be catastrophic.

By obtaining the motion of the liquid’s centre of mass from our flow visualisation
and using it to characterise the sloshing amplitude we were able to unambiguously
measure the damping rate and the phase lag between driving and response. Compared
with classic single-point measurements of the surface height, our procedure drastically
reduces the scatter of the experimental data (e.g. stemming from varying flow states).
The motion of the liquid’s centre of mass can equally be computed from the multimodal
model of Faltinsen & Timokha (2009) and is ideally suited to compare to nonlinear
mass-spring models, such as the Duffing oscillator. In this paper, we presented quantitative
comparisons of unprecedented quality between experiment and models. Deviations
between the models and the experiment significantly increase with the sloshing amplitude.
Arguably, to model the surface waves at larger sloshing amplitudes correctly substantially
more modes would be required in the multimodal analysis. However, the comparison
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with the Duffing oscillator indicates that damping is probably more important. In the
multimodal model the damping is only included in the first mode and our data suggest
that this might be the main reason causing the deviations.

We hope that our measurements stimulate the further development of models. However,
the modelling of wave breaking and run up of liquid on the tank walls, as often occurring
in engineering application, still poses a great challenge and hinders a reliable prediction of
the nonlinear response maxima. Our experiments provide here a new perspective and show
that neither the exact surface shape, nor the frequency spectrum are the key indicators for
the response maxima. Instead, we find the phase lag between the sloshing and the driving
is an excellent predictor of the nonlinear resonance: independently of the flow state (and
thus of the degree of dissipation) the response is always delayed by 90◦ at resonance. This
remarkable behaviour is perhaps our most important observation reported here and was in
fact theoretically predicted to occur in all periodically driven mechanical systems having
‘any damping that is a polynomial function of the velocities and positions’ (Breunung &
Haller 2018). Very recently a rigorous mathematical argument that covers both primary
and subharmonic resonances was obtained also for systems, without the assumptions
of synchronous motion and linear damping by Cenedese & Haller (2020). Originally,
this so-called 90◦-phase-lag criterion was developed for the modelling of the primary
resonance of structure vibrations (Peeters, Kerschen & Golinval 2011), but it is quickly
gaining attention, because it is highly relevant for the determination of the backbone curve
(which connects the resonance maxima for varying driving frequency and amplitude). For
experimentalists it serves as an in situ indicator, if the response maxima is reached. It
would be interesting to test whether this behaviour is also found for other tank geometries
(e.g. cylindrical) as employed in aerospace engineering.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.576.
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Appendix A. Comparison of the predicted and measured response curves based on a
single-point surface elevation

In § 7.2, we compared the response curves of the multimodal model with those measured
in our experiments. The comparison was based on the amplitude of the liquid’s centre of
mass. In this section, we apply the more commonly used method of evaluating the sloshing
amplitude as a point measurement of the surface elevation at the tank wall. As discussed
in § 3.2, the surface displacement between wave crests and troughs can vastly differ, which
leads to difficulties in unambiguously determining an amplitude from the experiments.
The same applies to the multimodal model function of the surface displacement (5.1),
where the addition of higher modes causes the difference between crest and troughs (see
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Figure 15. Comparison between the response curves from multimodal model (lines) and the experimentally
measured values (symbols) based on the maximum dimensionless surface elevation at the tank wall, ζmax.
In the multimodal model, this quantity is calculated evaluating the first three modes (N = 3) of (5.1). In the
experiments, the value is obtained from the surface identification of the image processing. Surface waves of
the multimodal model and the experiment are shown in figure 8 at the parameters denoted with i, ii and iii.

§ 5.3). We here define sloshing amplitude as the maximum surface displacement ζmax at
the outer wall over one oscillation period (t ∈ [0, T]). The resulting response curves are
shown in figure 15.

At low sloshing amplitudes, the agreement between the multimodal model and the
experiments is satisfactory and similar to the analysis based on the liquid’s centre of
mass (displayed in figure 14). Moreover, the nonlinear response maxima occur at the
same excitation frequency in both analyses. By contrast, at the largest driving amplitude
A = 0.64 % the characterisation of the sloshing amplitude does have a significant impact
on the scatter of the experimental data. Several flow states coexist at these parameters with
very similar mass displacements, but largely differing surface elevations at the tank walls.
The latter causes the scatter of the experimental data presented here and hinders a reliable
assessment of the prediction of the multimodal model.
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