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Abstract: Comet C/1850 Q1 (Bond) is one of a number of comets catalogued with parabolic orbits. Given

that there are sufficient observations, 104 in right ascension and 103 in declination, it proves possible to

calculate a better orbit. Some of the difficulties of working with 19th century observations, which show

considerable scatter, are discussed. Rectangular coordinates, both of the comet and the Sun, are interpolated

by a recursive version of Aitken’s method, rendering unnecessary the need to specify an order for the

interpolation. Comet Bond’s orbit is slightly hyperbolic.
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1 Introduction

Many comets observed during the 19th century are still

catalogued with parabolic orbits. This may be understand-

able given that, for long period comets at least, a parabola

gives an acceptable first approximation to the orbit and

is easier to calculate than an elliptic or hyperbolic orbit.

But some of these comets have good observational his-

tories, implying that we may be able to do better than a

parabolic orbit (may because one must show that, given the

errors of 19th century observations, a more refined orbit

is statistically superior to a parabolic orbit). Apparently

orbit calculators never got around to calculating a defini-

tive orbit. But why should it be of interest to improve a

parabolic orbit? What do we gain from doing so, particu-

larly if the orbit is hyperbolic or of such large eccentricity

that the comet, for all practical purposes, is gone forever?

Then, who cares? To these questions three answers may

be given. The first answer addresses craftsmanship. It is

aesthetically displeasing to leave an orbit in a sloppy state

when better can be done. The second is more practical in

this age of interest in Near Earth Objects. Suppose the orbit

turns out to be elliptical, albeit of high eccentricity? Sup-

pose the comet returns within a few score years? Suppose

that it passes close to the Earth? Suppose that the comet

may impact with the Earth? Then we would regret having

left the orbit in such a sorry state. Finally, good orbits are

necessary for statistical analyses of comet orbits, essential

for a study of the origin and evolution of comets.

Comet C/1850 Q1 (Bond) falls into this group of

comets with parabolic but we can do better orbits. The lit-

erature disclosed 104 observations in right ascension (α)

and 103 in declination (δ), implying that we can indeed

do better than a parabolic orbit. Why start with Comet

Bond rather than some other? George Bond discovered

the comet on 29 August 1850 with the 15 in refractor

of the Harvard College Observatory, the same refractor

that William Bond, George’s father, used that year to

obtain the first clear daguerreotype of the moon (previous

attempts had given blurry images). Thus, to calculate an

orbit for Comet Bond honours, in some sense, an important

milestone in astronomical history.

2 Treatment of the Observations and Ephemerides

I conducted a literature search of the journals published

in the 19th century that include comet observations and

also annual reports of some of the major observatories.

Observations of Comet Bond were found in The Astronom-

ical Journal, Monthly Notices RAS, and Astronomische

Nachrichten. Table 1 shows the observatories and the num-

ber of observations made at each. The first observation,

29 August, and the last, 13 November, were made at the

Harvard College Observatory. Figure 1 shows the obser-

vations. Observations were reduced to the common format

of Julian Day (JD), referred to Terrestrial Time (TT), right

ascension, and declination. This was necessary because

some of the observers used north polar distance instead

of δ, some expressed α in degrees, minutes, and seconds

rather than hours, minutes, and seconds, most, with the

exception of the English observers, used mean time of

place rather than Greenwich for the time of the obser-

vations, and the Dorpat observers recorded the time as

sidereal rather than mean. The observations were all made

with equatorial telescopes and filar or ring micrometers,

the comet measured with respect to a nearby reference star.

The comet’s position was sometimes published as merely

a mean or apparent place, but frequently the observer also

published the reference star and sometimes even the dif-

ference in α and in δ from the reference star,�α and�δ.

Given that modern star catalogues are more precise than

19th century catalogues, it is more accurate when a defi-

nite reference star is mentioned to recalculate its apparent

position, using the algorithm in Kaplan et al. (1989), from

a recent modern catalogue, Tycho-2 (Høg et al. 2000), and

apply �α and �δ, corrected for differential aberration,
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Table 1. Observatories and observations with sources

Observatory Obsns. Obsns. Reference1

in α in δ

Kremsmünster, Austria 10 10 AN, 1850, No. 741,

pp. 329–30

Copenhagen, Denmark 3 3 AN, 1850, No. 742,

pp. 347–48

Cambridge, England 2 2 AN, 1850, No. 739,

pp. 299–300

Durham, England 3 3 MN, 1850, Vol. 11, p. 13

Liverpool, England 2 2 AN, 1850, No. 734,

pp. 213–14

Marseilles, France 19 18 AN, 1850, No. 738,

pp. 285–86

Paris, France 8 8 AN, 1850, No. 734,

pp. 219–20

Berlin, Germany 1 1 AN, 1850, No. 740,

pp. 309–10

Bonn, Germany 3 3 AN, 1850, No. 738,

pp. 277–78

Hamburg, Germany 7 7 AN, 1850, No. 734,

pp. 211–12

AJ, 1850, Vol. 1, p. 154

Leipzig, Germany 1 1 AN, 1850, No. 738,

pp. 275–76

Markree Castle, Ireland 2 2 AN, 1850, No. 734,

pp. 13–14

Dorpat, Russia 6 6 AN, 1850, No. 735,

pp. 229–30

Geneva, Switzerland 5 5 AN, 1850, No. 734,

pp. 211–12

Cambridge, USA 18 18 AJ, 1850, Vol. 1,

pp. 141, 154

New Haven, USA 4 4 AJ, 1850, Vol. 1, p. 156

(Old) US Naval, USA 10 10 AJ, 1850, Vol. 1, p. 140

1AJ: Astronomical Journal; AN: Astronomishe Nachrichten; MN: Monthly

Notices RAS
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Figure 1 The observations.

to the new position. If �α and �δ were not given, the

differences in the positions between the older catalogue

and Tycho-2 were applied to the published positions of

the comet. Given that the stated precision of the proper

motions in the Tycho-2 catalogue is less than 0.5 mas yr−1,

even after 150 years the error in a star position should be

under 0′′.1, much better than the errors of 19th century

catalogues.

The rectangular coordinates and velocities of the comet

and the Earth were calculated by a program, used in

numerous investigations previously, that treats the solar

system as an n-body problem. The program is a 12th order

Lagrangian predictor-corrector that incorporates relativity

by a Schwarzschild harmonic metric. To obtain coordi-

nates and velocities for the Earth, the moon is carried as

a separate body. This means a small step-size, 0d .25. To

correct the comet’s orbit partial derivatives are calculated

by Moulton’s method (Herget 1968), which integrates the

partial derivatives to correct for the osculating rectan-

gular coordinates and velocities at epoch JD2397020.5

along with the coordinates and velocities. The rectan-

gular coordinates, after interpolation to the moment of

observation for the Earth and to the moment of observa-

tion antedated by the light time correction to allow for

planetary aberration, are then converted to a unit vector

that is transformed to a mean or apparent place in α

and δ by application of precession, nutation, annual aber-

ration, relativity, and so forth. Because we are dealing

with 19th century observations it is necessary to correct

for the E terms of the aberration during the calculation

of a mean place. The final step calculates an observed

minus a computed place, (O–C), in α and δ. To interpolate

coordinates and partial derivatives I developed a more flex-

ible procedure, recursive Aitken interpolation explained

in the next section, that obviates the need to specify

an order for the interpolating polynomial; one merely

specifies the desired error for the interpolated quantities.

Although there is mention of recursive interpolation in

the literature, I have yet to find a specific algorithm. The

Web site www.netlib.org, for example, a veritable treasure

trove of numerical algorithms, has nothing for recursive

interpolation.

3 Recursive Aitken Interpolation

To interpolate coordinates one is given a series of val-

ues for the arguments, x0, x1, . . . , xn, and corresponding

function values, f (x0), f (x1), . . . , f (xn). With ordinary

interpolation one then specifies the order of the polyno-

mial and the argument to be interpolated. The routine used,

whether Lagrange, Bessel, Aitken, or some other, returns

the interpolated function value and an estimate of its error.

If h is the interval of tabulation the formal error for a given

order n, En, is given by h(n+1)f (n+1)(ξ)/(n+ 1)!, where

ξ is some unknown value for x between x0 and xn. This

error represents what all polynomial interpolation meth-

ods give. If f (x) is sufficiently smooth, then its higher

derivatives do not oscillate violently and En depends on

h and n; a higher order interpolation should give smaller

error. If f (x) or its higher derivatives are not smooth,

then higher order does not imply greater precision in the

interpolation.
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Aitken’s method uses an array of coefficients Pi,j
defined as

Pi,0 = f (xi), i = 0, 1, . . . , n,

Pi,k+1 = [(x − xk)Pi,k − (x − xi)Pk,k]/(xi − xk),

i = 0, 1, . . . n, k = 0, 1, . . . , i − 1, (1)

where f (xi) refers to the data points, usually equally

spaced although equal spacing is not required, and x to

the value to be interpolated. Equation (1) generates a lower

triangular array of coefficients

P0,0

P1,0 P1,1

P2,0 P2,1 P2,2

...

Pn,0 Pn,1 Pn,2 · · · Pn,n

the last coefficient of which, Pn,n, interpolates the value,

and the difference of the nth and (n−1)th interpolated val-

ues, Pn,n − Pn−1,n−1, estimates the error. To use Aitken’s

method one stipulates the order of the interpolation and

looks at the estimated error. If the latter is unacceptable,

the order is increased. This implementation of Aitken’s

method is usually referred to as iteration because, accord-

ing to equation (1), the P s are generated by iterating from

P0,0 to Pn,n.

But a glance at equation (1) shows that use of recur-

sion permits reversing the process: if the coefficients P0,0,

P1,1, . . . , Pn,n are generated recursively, one can first

specify the error desired and generate the coefficients

recursively until Pn,n − Pn−1,n−1 satisfies the criterion.

Modern languages such as Fortran 90, unlike earlier ver-

sions of Fortran, and C/C++ permit recursion. Suppose

that we wish to interpolate planetary coordinates and

velocities from an ephemeris tabulated at a one-day inter-

val. A Fortran array y(i, j), defined as a global variable

in a module ‘global’, contains the data, where i indexes

the date and j the coordinate or velocity we wish to inter-

polate. Table 2 shows possible Fortran 90 code for the

polynomials.

Table 2. Fortran 90 code for recursive Aitken interpolation

!!

!!

!! Recursive function to calculate the Aitken polynomials: k is the order

!! of the interpolation, i != k,j the coordinate or velocity to be

!! interpolated, and t the argument to interpolate

!!

!!

recursive double precision function p(i,k,j,t) result(results)

use global

implicit none

integer, intent(in)::i,k,j

double precision, intent(in)::t

double precision results

if (k.eq.0) then; results=y(i,j)

else; results=((t−x(k−1))*p(i,k−1,j,t)−(t−x(i))*p(k−1,k−1,j,t))/(x(i)−x(k−1))

end if

end function p

How do the two techniques, iteration and recursion,

compare regarding workload? From equation (1) the cal-

culation of each P involves, aside from the Pi,0 values,

only an assignment, two multiplications, one division, and

four subtractions, or seven arithmetic operations per P .

(This assumes that each arithmetic operation consumes the

same clock cycles. On machines for which multiplications

and divisions are slower than additions and subtractions,

the count per P becomes three.) From equation (1) the

iterative technique requires

n∑

i=0

i−1∑

k=0

7 = 7n(n+ 1)/2 (2)

operations to generate the lower triangular matrix of P s.

The recursive technique uses the same number of arith-

metic operations per P , but each recursive call generates

two more, plus the overhead of placing values on the stack.

Thus, the operation count becomes

7

n∑

i=1

2i = 7(2n+1 − 2). (3)

The ratio of recursion to iteration may be expressed as

f (n) = 4(2n−1)/n(n+1). For various values ofnwe find

n f (n)

8 14

10 37

12 105

14 312

16 964

18 3066

20 9986

Thus, the expense of using recursion over iteration

increases dramatically as the order increases. With the

speed of modern computers computational efficiency is

really a secondary concern unless the depth of the recur-

sion becomes excessive or the stack becomes exhausted

and aborts the program. It is, therefore, a good idea to
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specify a limit for the order of the recursive calls to handle

pathological functions that give poor results regardless of

the order used, such as functions with violently oscillat-

ing higher derivatives. Recursion’s main advantage lies in

permitting automatic control over the order of the interpo-

lation. For the interpolation of the coordinates and veloc-

ities for Comet Bond the order always started at eight, but

frequently increased to nine or sometimes ten. The user

need not concern himself with establishing an order for

the interpolation and then checking if it is adequate. In this

sense recursive interpolation becomes analogous to auto-

matic control of the interval with numerical integration of

differential equations or numerical quadrature.

4 The Observations

After the first differential corrections, corresponding to

orbits with large (O–C)s, it became evident that the

(O–C)s and post-fit residuals nevertheless still embodied

some large errors; the mean error of unit weight σ (1) from

the final solution is 5′′.16. This is higher than the 3′′.62

mean error from observations made of minor planets in

1847–1849 in a previous study of mine (Branham 1991).

A number of reasons explain this. The comparison stars

were taken from catalogues that have large errors com-

pared with modern catalogues. Lalande’s Histoire Celeste

Francoise, as updated by Baily, used byValz at Marseilles,

sometimes shows errors over 1s in α and 20′′ in δ com-

pared with Tycho-2. Fortunately, Valz also published his

observations as �α and �δ as well as apparent places

and they could thus be referred to places calculated from

Tycho-2. But this was not always possible, and one had to

take the apparent or mean place as given by the observer.

But even differential observations referred to an appar-

ent place calculated from Tycho-2 contain some large

errors because the comet itself was frequently difficult to

observe. Typical observers’ comments are: ‘comet faint’;

‘very diffused and faint nebulosity…no nucleus’; ‘weak,

round nebulosity, without noticeable nucleus or coma’.

Micrometric observations of such an object will not be

easy. Not only the comet itself presented problems, but the

observations themselves were often made at large zenith

distances (median zenith distance is 72◦). One observer

mentions specifically that the comet was measured when

very close to the horizon. (There was, however, no sig-

nificant correlation between the zenith distance and the

size of the residual: the correlation coefficient was equal

to −0.049.) There were also numerous clerical errors. One

�δ was published with the wrong sign, and at least five of

the reference stars were incorrect. This type of error could

only be found by detailed detective work. The wrong ref-

erence star, for example, could sometimes be detected by

taking an abnormally large (O–C) and seeing if there was

a relatively bright star near the published reference star

that would reduce the (O–C) to something acceptable. But

some clerical errors may nevertheless remain undetected.

But given that the data are noisy, one must consider

ways of assigning higher weight to the better observations.
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Figure 2 Distribution of weights from the biweight.

Differential observations referred to an apparent place

calculated from Tycho-2 should be better than apparent

places published by the observer. Weighting, however, is

tricky and often degenerates into an exercise into one’s

visceral feeling as to the quality of the observation. To

achieve some objectivity in such a subjective endeavour

I decided to use a weighting scheme that assumes noth-

ing as to the quality of a given type of observation, but

rather assigns weight based on the magnitude of the post-

fit residual.This type of weighting is common in iteratively

reweighted least squares (Branham 1990). I decided to use

the weighting known as ‘biweight’ because it gave good

results in a previous study of mine (Branham 1986). One

scales the post-fit residual ri by the median of the residuals

and assigns a weight wt as

wt = [1 − (ri/4.685)2]2; ri ≤ 4.685
(4)

wt = 0; ri > 4.685.

Rather than start from a least squares solution, I decided

to use the robust L1 criterion (Branham 1990) for the

first approximation, calculate the residuals from this solu-

tion, compute the weights, and then calculate a least

squares solution. Because the first approximation is good,

it becomes unnecessary to iterate the solutions. Figure 2

shows the distribution of the weights. The median weight

was 0.91; 82.1% of the observations received weights

greater than 0.5, 76.8% weights between 0.7 and 1, and

67.2% weights between 0.8 and 1. Only 9.7% of the

weights were under 0.1, including 11 zero weights. The

biweight, therefore, eliminated 11 residuals, 5.3% of

the total, modest but not excessive trimming.

5 The Solution

Table 3 shows the final solution for the rectangular coor-

dinates, x0, y0, z0, and velocities, ẋ0, ẏ0, ż0, along with

their mean errors. Table 4 exhibits the covariance and

correlation matrices for the solution. The correlations are

high, but the solution itself is stable because a singular
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Table 3. Solution for rectangular coordinates and velocities

Unknown Value Mean Error

x0 0.800062585008864 0.000015116006889

y0 0.254178352285609 0.000022025333264

z0 0.202299258909604 0.000017377821954

ẋ0 −0.018968619113946 0.000001491359962

ẏ0 0.015197473728116 0.000000205744985

ż0 −0.009745969276271 0.000001242258420

σ(1) 5′′.16

Table 4. Covariance (upper triangle) and correlation (lower

triangle) matrices

0.2869 −0.4137 −0.3236 0.0280 0.0010 0.0230

−0.9896 0.6091 0.4767 −0.0404 −0.0019 −0.0339

−0.9810 0.9919 0.3792 −0.0315 −0.0017 −0.0266

0.9889 −0.9797 −0.9675 0.0028 0.0001 0.0023

0.2659 −0.3313 −0.3689 0.2172 0.0001 0.0001

0.9775 −0.9858 −0.9805 0.9686 0.3558 0.0019

Table 5. Hyperbolic orbital elements and mean errors

Unknown Value Mean Error

T0 JD2397050.32539 0d .00683

19.82539 Oct. 1850

a −923.723665704311 201.508457295895

e 1.00061230501936 0.00013373819465

q 0.565600637009132 0.016286429624161

 234◦.492067975171 0◦.005157521916

i 21◦.8798895958628 0◦.0015069065954

ω 69◦.1265933409261 0◦.1965992486476

value decomposition shows that the condition number of

the matrix of the equations of condition is 261, hardly

excessive.

Table 5 gives the orbital elements corresponding to the

rectangular coordinates of Table 3: the time of perihe-

lion passage, T0; the eccentricity, e; the semi-major axis

(negative for hyperbolic orbits), a; perihelion distance, q;

the inclination, i; the node,  ; and the argument of peri-

helion,ω.The orbit itself is hyperbolic, although the mean

error of e indicates that the possibility of a highly eccentric

ellipse cannot be excluded. The calculation of the mean

errors of the orbital elements is onerous and exhibits one

of the weaknesses of Moulton’s method, at least when

used to correct rectangular coordinates and velocities. To

calculate the orbital elements themselves from the rectan-

gular coordinates and velocities is straightforward, but the

mean errors have to be computed by use of the elements

of the covariance matrix and the partial derivatives of the

orbital elements with respect to the coordinates and veloc-

ities, ∂e/∂x0 for example; see Rice (1902) for a detailed

discussion. Because the orbital elements are related to the

coordinates and velocities in a highly transcendental man-

ner, the calculation of these partial derivatives is extremely

tedious.

Figure 3 shows the residuals from the final solution.

Although they exhibit considerable scatter — the median
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Figure 3 Residuals from the final solution.

absolute value for the residuals is 4′′.54 — they are ran-

dom. A runs test for randomness shows 106 runs out

of an expected 103.5 with a standard deviation of 7.1.

Nor does spectral analysis of the residuals reveal any

periodicities. Random, but not normal. The residuals are

slightly skewed, factor of skewness = 0.063, and platykur-

tic, kurtosis = −0.909. But given that they are random one

can consider the solution acceptable.

Is the new orbit better than the parabolic orbit initially

used? The answer is a definite yes. The ratio of the sum

of the squares of the pre-fit (O–C)s between the initial

orbit and the final orbit, before treating the observations

in any way such as eliminating outliers, is 382. By any

statistical test one cares to use this represents significant

improvement.

6 Conclusions

One hundred and four observations inα and 103 in δ, made

between 29 August and 13 November 1850, are used to

calculate an orbit for Comet C/1850 Q1 (Bond). The orbit

is slightly hyperbolic.
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