
15 

States of lowest energy: statics 

Quantizing the Abraham model results in the Pauli-Fierz Hamiltonian which is a 
self-adjoint operator under rather general conditions. Thus the dynamics is well 
defined and we can start to investigate some of its properties. The most basic item 
is the states of lowest energy. They really come in two varieties: (i) If the electron 
is bound by a strong external electrostatic potential, like the Coulomb potential of 
a nailed-down nucleus, then the lowest energy state is the ground state, where the 
electron is at rest modulo quantum fluctuations. (ii) If there are no external poten­
tials, then the total momentum is conserved and the state of lowest energy must be 
determined for every fixed total momentum, which then describes the electron to­
gether with its surrounding photon cloud traveling at constant velocity. Physically 
the most important information is the energy-momentum relation which gives the 
lowest energy E at given total momentum P. Both item (i) and item (ii) are dis­
cussed in this chapter. In case (i) one expects to have always a ground state pro­
vided the external potential is binding. In case (ii) the infrared divergence of the 
Pauli-Fierz model becomes visible. As will be explained in more detail in section 
19.1, for total momentum P #- 0 the state of lowest energy is not in Fock space. 
An electron traveling at nonzero velocity binds an infinite number of photons. To 
avoid such a subtlety, for item (ii) we proceed as if the photon had a tiny mass. 

The external fields manufactured with macroscopic devices under laboratory 
conditions are weak and have a slow variation when measured in units of the effec­
tive size of the charge, roughly given through the inverse size of the form factor (if. 
Such external fields thus constitute a small perturbation in item (ii) and, as for the 
Abraham model, an important dynamical issue is to understand the motion of the 
charge in terms of an effective one-particle Hamiltonian. The energy-momentum 
relation must play an important role, but there will be additional pieces accounting 
for the spin precession. Our discussion of this topic is postponed to section 16, to 
keep the lengths of the chapters in reasonable proportion. 
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15.1 Bound charge 

The hydrogen atom has a stable ground state and thus makes the size of atoms of 
the order of a few angstroms. The problem under discussion is whether this ground 
state persists as the quantized transverse modes of the Maxwell field are taken 
into consideration. Since the electron now has the opportunity to bind photons, 
one would expect it to have effectively a larger mass. This intuition is confirmed 
through the path integral of chapter 14, which suggests that the fluctuations in the 
stochastic trajectories are reduced due to the additional interaction energy W from 
the integration over the Maxwell field. Thus the coupling to the photons should 
enhance binding. 

To put such reasoning on more solid grounds, we recall that for a Schrodinger 
operator Hs = -(Ij2m),6. + V with a Coulomb-like potential, i.e. a potential V 

such that limlxl--+oo V (x) = 0, it is rather straightforward to ensure a stable ground 
state. Let us assume that V is infinitesimally bounded with respect to - ,6.. Then 
the bottom of the continuous spectrum, denoted by Ec, satisfies Ec = 0 and one 
only has to make sure that the energy is lowered when the electron is moved from 
infinity to the potential region. This means that one has to find a trial wave function 
such that ( 1/f , Hs 1/f) < 0. By the Kato-Rellich theorem Hs is bounded from below. 
Thus Hs must have an eigenvalue at the bottom of its spectrum. The ground state 
wave function o/g is nodeless, since e-tHs is positivity improving; compare with 
section 14.3(i). Hence the ground state is unique. To adapt such reasoning to the 
Pauli-Pierz Hamiltonian 

I 
H = -(p- eAcp(x))2 + Hf + V(x) = H 0 + V, 

2m 
(15.1) 

one faces the difficulty that there are photon excitations of arbitrarily small ener­
gies. Thus H has no spectral gap and a variational bound will not do. The 
convential approach is to first assume an infrared cutoff in the form factor cp by 
setting cp(k) = 0 for lkl :Sa and to adopt the construction explained in property 
(vi) of section 15.2.1. This yields the existence of a ground state 1jf g,a for the cutoff 
Hamiltonian Ha . One is then left to show that as a --+ 0 the sequence of ground 
states 1/f g,a has a limit 1/f g which is the desired ground state for H. The difficulty is 
that as a --+ 0 the number of bound photons could increase without limit resulting 
in the physical ground state lying outside of Fock space. This is one aspect of the 
infrared problem to be discussed in more detail in section 19.1. Thus one has toes­
tablish a bound on the number of low-energy (soft) photons in the ground state. We 
explain some parts of the argument which allow us to illustrate the pull-through 
formula that will also be handy later on. 

https://doi.org/10.1017/9781009402286.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.016


202 States of lowest energy: statics 

Theorem 15.1 (Soft photon bound). Let 1/fg be a ground state of the Pauli-Fierz 

Hamiltonian H of (1 5.1), H 1/fg = El/fg. Then the average number of photons is 

bounded as 

(15.2) 

Proof Clearly 

(1/fg, Nfl/fg) = L J d3klla(k, A)l/fgll 2 . 

A.=l,2 

(15.3) 

Through a virial-type argument we plan to make use of the fact that 1/fg is an 
eigenfunction, and start with the pull-through formula 

1 'k 1 
[H, a(k, A)]= -w(k)a(k, A)+ ecp ~e-1 ·x_eA.(k) · (p- eA'P(x)). (15.4) 

v2w m 

Note that 

1 
-(p- eA'P(x)) = i[H, x]. 
m 

(15.5) 

Therefore 

1 'k 
(H + w)a(k, A)- a(k, A)H = ecp ~(i[H, e-1 ·xeA.(k) · x] 

v2w 
-i[H, e-ik·x]eA.(k) · x). (15.6) 

The commutator with e-ik·x is 

'k 1 'k 1 2 'k [H -[ ·X] - k ( A ( )) -[ ·X k -[ ·X , e --- · p- e x e -- e 
m 'P 2m 

(15.7) 

and applied to 1/fg, 

I 
a(k, A)l/fg = ie(ii ~(H-E+ w)- 1 

v2w 

( 1 2 1 ) ik X (H-E)+ 2m k + m k · (p- eA'P(x)) e- · eA.(k). xl/fg 

~ 1 = iecp ~((Pi+ (h + (/JJ). (15.8) 
v2w 

Thus, choosing e > 0 for notational convenience, 

~ 1 
lla(k, A)l/fgll::: elcpl ~(11(/Jlll + ll(hll + ll¢311) (15.9) 

v2w 

https://doi.org/10.1017/9781009402286.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.016


15.1 Bound charge 203 

and 

To estimate the norm of ¢3 we use 

II(H- E + w)- 1 k· (p- eA10 (x))ll =Ilk· (p- eA10 (x))(H- E + w)- 1 11 
(15.11) 

and 

(1/f, (H - E + w)- 1 (k · (p- eA10 (x))) 2(H - E + w)- 11/f) 
:S (1/f, (H-E+ w)- 1(p- eA10 (x)) 2(H- E + w)- 11/f) 
::: (1/f, (H-E+ w)-\qH + c2)(H- E + w)- 11/f) 

:S (1/f, 1/f)[ sup (c1 (A+ E)+ c2)(A + w)-2], 
A.:>:O 

provided V_ isH bounded. Inserting in (15.10) 

ll¢311 :S lk I ( c1 ~ + c2v'w) llxl/fg II 

is obtained. With these estimates we return to (15.3) to get 

which proves (15.2). 

(15.12) 

(15.13) 

D 

Bounds on llxl/fgll are available from the diamagnetic inequality combined with 
functional integration, see section 14.3(i), and from yet another pull-through-type 
argument, see section 20.1. 

Note that in (15.14) we can still afford the two extra powers w-2 close to k = 0. 
This is consistent with a decay as It 1-4 in the effective action given at the end of 
section 14.2. 

The modern variant for the existence of a ground state relies on having an energy 
gain when the electron is moved from infinity to the potential region. Thereby, as 
discussed at length in section 20.1, the existence of a ground state for atoms and 
molecules is also ensured. To be complete we now state 

Theorem 15.2 (Unique ground state). Let V = V+- V_ be the decomposition 
of the external potential V into positive and negative parts. It is assumed that V _ is 
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injinitesimallyboundedrelativeto p2, i.e.l(o/, V_1fr)l::: £(1/r, p21jr) +b(t:)('ljr, 1/r) 
for every£ > 0, and that 2:11 p2 + V has a ground state with isolated ground state 

energy. Then the Hamiltonian H of(J5.1) has a unique ground state 1/rg E 1-i, i.e. 
H 1/rg = E'ljrg and E is the lowest energy. 

Proof The existence is proved by Griesemer, Lieb and Loss (2001 ). The unique­
ness relies on the fact that the semigroup e-tH is positivity improving in a suitable 
basis, see Hiroshima (2000a) and section 14.3. D 

Note that in Theorem 15.2 there is no restriction on the magnitude of the charge. 

15.2 Energy-momentum relation, effective mass 

For the Abraham model the motion of the charge subject to slowly varying ex­
ternal potentials is determined by the energy-momentum relation E ( P). There is 
good reason to expect the same scenario quantum mechanically, which poses two 
problems. First of all one has to study E(P), which makes a two-line computation 
classically but turns out to be much harder in quantum theory. Secondly, given 
E(P), we have to explain how it governs the effective one-particle theory. This 
topic is deferred to chapter 16. 

Since there are no external forces acting on the electron, the Pauli-Pierz Hamil­
tonian reads 

1 2 
H = 2m (p- eAcp(x)) + Hf. 

As shown already, the total momentum 

P = p + L J d3kka*(k, A)a(k, A) = p + Pf 
A=l,2 

(15.15) 

(15.16) 

is conserved, [H, P] = 0. Therefore H can be decomposed according to the sub­
spaces of constant P. This is achieved through the unitary transformation 

(15.17) 

which more explicitly is given by 

n 

(Uo/)n(k, k1, )q, ... , kn, An)= Vrn(k- LkJ, k1, A], ... , kn, An), (15.18) 
J=l 

using the momentum representation p = k, x = iY'k. Then 

I 1 2 U HU- = -(P- Pf- eAcp) + Hf 
2m 

(15.19) 
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with the shorthand 

Arp = Arp (0). (15.20) 

Not to overload notation we return top instead of P, remembering that p is still 
canonically conjugate to x but now stands for the total momentum. The Hamilto­
nian under study is then 

1 2 
H = -(p- Pf- eA ) + Hf. 

P 2m rp (15.21) 

For each fixed p, Hp acts on Fock space F. Thus we may think of the uni­
tary U as a map from L 2 (l~3 ) Q9 :F to the direct integral J'B d3 p:Fp such that 
U Hu- 1 = J'B d3 pHp. For the remainder of this section we will regard p sim­
ply as a parameter. The scalar product(-,·) is in Fock space throughout. 

Definition 15.3 The energy-momentum relation, E (p ), of the Pauli-Fierz 

Hamiltonian is given by 

E(p) = inf (1/f, Hpl/f). 
1/1.111/rll=l 

(15.22) 

The effective mass meti is the inverse curvature of E (p) at p = 0. Since E (p) is 
rotation-invariant, 

(15.23) 

There is no simple scheme to compute E (p) and men, but we will establish 
some qualitative properties of E (p) which point in the right direction. In order not 
to lose sight of the goal we state 

Claim 15.4 (Energy-momentum relation). Let w(k) = Jm~h + k2 with mph > 

0. There exists a threshold value, Pc· of the total momentum such that for all I pI < 

Pc. Hp has a unique ground state 1/fp E F, 

(15.24) 

E (p) is separated by a gap from the continuous spectrum, i.e. if Ec (p) denotes the 

bottom of the continuous spectrum, then 

Ec(p)- E(p) = f:.(p) > 0. (15.25) 

In Claim 15.4 we assumed a small photon mass mph· Thus at p = 0 excitations 
require at least an energy mph· For physical photons mph = 0, however. Arbitrarily 
small-energy excitations are possible and the spectral gap closes, which is one 
part of the infrared behavior of the Pauli-Pierz model. The assumption mph > 0 
introduces a spectral gap, so to speak, by hand. An alternative scheme to separate 
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206 States of lowest energy: statics 

the ground state band from the continuum is to decouple all modes with lkl ::: CJ 

by replacing the true $by $cr, where $cr =$for lkl :::: CJ and $cr = 0 for lkl < CJ. 

We made the proviso that the ground state band ceases to exist beyond the 
threshold Pc, where we allow for Pc = oo. If Pc < oo, then the electron cannot 
be accelerated beyond the maximal momentum Pc· For IPI > Pc, Hp has no 
ground state. States with IPI > Pc decay into lower-momentum states through the 
emission of Cerenkov radiation. In fact the same phenomenon occurs classically 
if in the given medium the speed of light propagation is less than the maximal 
speed of the charge. 

To investigate E (p), let us first have a look at the uncoupled system, 
e = 0. Then the eigenstate in (15.24) is the Fock vacuum Q with eigenvalue 
p2 /2m. The energies in the one-photon subspace are w(k) + (p- k) 2 /2m, 
which is already part of the continuous spectrum. The energy in the n-photon 

subspace is (2m)- 1(p- LJ=l kj)2 + LJ=l w(kj):::: (2m)- 1(p- LJ=l kj)2 + 
w (LJ=l k j) and for low energies it suffices to take the one-photon part of the con­
tinuous spectrum into account. If pis small, IPI < m (=me), the lowest energy 
is p 2 /2m separated by a gap of order w (0) = mph from the continuum. On the 
other hand, for IPI > m, the eigenvalue p2 /2m is embedded in the continuum and 
expected to turn into a resonance, once e is different from zero. In some model 
systems it is found that Pc < oo for e = 0, but Pc = oo at any e =J. 0. Whether 
Pc = oo depends also on the form of the kinetic energy of the electron. If instead 
of 2~7 p 2 as kinetic energy one repeats the argument just given for the relativis-

tic cousin J p 2 + m2 , then Pc = oo at e = 0 and it remains so for e > 0. For the 
Pauli-Pierz model (in three dimensions) the accepted opinion is that the electron 
cannot be accelerated beyond Pc ~ O(mc). 

Perturbation theory assures us that the isolated ground state energy band for 
I pI < Pc at e = 0 will persist for small nonzero e. The range of validity of per­
turbation theory is set by w (0) = mph and is therefore very narrow. To improve 
and to be able to let mph --+ 0 we have to employ nonperturbative techniques, for 
which we follow Frohlich (1974). Only the core of each argument is explained; the 
shorter ones are given immediately in the text and the longer ones are shifted to an 
appendix. Here is our list. 

Property (i): E (p) is rotation invariant. 

According to section 13.5 there is a unitary operator U R such that U~ H PUR = 
HRp with Ran arbitrary rotation. Therefore E(p) = E(Rp). 

Property (ii): The bound 

E(O) :S E(p) (15.26) 

holds. 
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From the functional integral representation, compare with chapter 14 and the fur­
ther explanations in the appendix, it will become clear that 

I(F, UeirrNtl2e-tHPe-irrNtl2u-lF)I::: (IFI, ue-tHou-liFI) (15.27) 

fort:::: 0. We choose e-irrNtl2u-I F = 1/fp, or else an approximate ground state 
if 1/f P does not exist. Let J-L ( dA.) be the spectral measure for U -I IF I under Ho and 
Amin be the left edge of its support. Taking the limit t --+ oo in (15.27), we obtain 

E(p) :::: Amin:::: E(O). (15.28) 

One would expect E(p) to be increasing in I pi, but no conclusive argument seems 
to be available. 

Property (iii): As a bound we have 

1 
E(p)- E(O) ::::; 2m p2. 

The inequality (15.29) follows from a variational argument. One has 

(15.29) 

( 1 2 1 ) 
E(p) ::: (1/fo, Hpo/o) = (1/fo, 2m p +Ho-m p · (Pf +eArp) o/o) 

1 2 1 
= E(O) + 2m p - m p · (1/fo, (Pf + eArp)o/o) 

1 
= E(O) + -p2 , 

2m 
(15.30) 

since Hoo/o = E(O)o/o and ~(1/fo, (Pf + eArp)o/o) = \7 E(O) = 0 by rotation in­
variance. 

Property (iv): As a bound we have 

E(p) ::::; E(p- k) + w(k). (15.31) 

In particular, E(p)- E(O) ::::; w(p). 

The proof is given in the appendix. There is also a corresponding lower bound. 

Property (v): There are constants CJ > 0, c2 such that E(p) :::: c1IPI + c2. 

The proof is given in the appendix. 

The next property expresses the stability against one-photon excitations. Define 

~(p) = inf{E(p- k)- E(p) + w(k)}. 
k 

Then by property (iv) ~(p) :::: 0. 

(15.32) 
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Property (vi): For the bottom of the continuous spectrum we have 

Ec(P) = E(p) + l:!.(p). (15.33) 

If l:!.(p) > 0, then Hp has a ground state at E(p). 

The proof is given in the appendix. We want to infer from the bounds on E (p) 
that ~::!,. (p) > 0, at least for small I p 1. As a substitute for the missing proof of the 
monotonicity of E (p ), note that from second-order perturbation in p 

I 
oPa()Pf! E(p) = m Oaf! - 2(1/fp, (m- 1 (p- Pf- eArp) - V E(p) t(Hp - E(p))- 1 

x (m- 1(p- Pf- eArp)- V E(p)) 13 1/fp). (15.34) 

This leads to 

Property (vii): E (p) = 2~ p2 + t (p). t is convex down. 

From property (ii) we conclude that t(p)- t(O) ::::_ - 2~p2 , which means that 
t (p) - t (0) cannot bend down too fast. This allows us to establish 

Property (viii): If IPI ::: (,J3- 1)m, then l:!.(p) > 0 and Hp has a ground state 
separated by the gap l:!. (p) from the continuum. 

Finally, the uniqueness follows from the overlap with the Fock vacuum. 

Property (ix): If I pI < Pc and if 

- d3ki9Jfw- 1 E(p)(E(p- k)- E(p) + w)-2 < -, 2e2 I 1 
m 2 

(15.35) 

then Hp has a unique ground state. 

Again the proof is given in the appendix. If IPI < (,J3- 1)m::: Pc and (15.35) 
holds, then E(p, e) is analytic jointly in p and e as a standard consequence of 
perturbation theory. 

In summary, properties (i)-(ix) lend support to the qualitative behavior of the 
energy-momentum relation as schematically presented in figure 15.1. The bold 
line indicates the ground state. E (0) increases with the coupling. The gap of size 

mph is not shown. As mph ---+ 0 the gap closes. To understand what really happens 
in this limit, one has to study the infrared scaling of the Pauli-Pierz Hamiltonian 
with care. Explicit expressions for E (p) do not seem to be available. Computa­

tionally only perturbation in e is accessible. To second order one obtains 

E(p) =.!!:._~I d3k19JP(2w)- 1 
2m3 

+ -1 p 2(1- e
2 ~I d3kl~1 2 (2w(w + -1 k2))-I) + 0(e4), (15.36) 

2m m3 2m 

which can be trusted only for sufficiently small p. E(O) increases in e and in the 
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E 

p 

Figure 15.1: The energy-momentum relation for the Pauli-Fierz Hamiltonian. 

ultraviolet cutoff, as does m eff. Equation (15.36) confirms the physical intuition 
that the coupling to the Maxwell field effectively increases the mass of the electron. 
Note that already to order e2 the effective mass differs from that obtained in the 
dipole approximation, compare with (14.58), and thus from the effective mass of 
the classical cousin, the Abraham model. 

The nature of the excited states, even close to the ground state band, is left un­
touched by the present considerations. Physically one expects, as we have indeed 
established for the Abraham model, a dynamically transient stage when by radi­
ating photons the electron adjusts to the long-time freely propagating state of the 
form e-itE(p) f(p)l/fg(p). Here the amplitudes f(p) vanish for IPI > Pc and are 
determined through the initial conditions. In spectral terms, this implies that H P 

has a purely absolutely continuous spectrum except for the possible eigenvalue at 
E (p). The only powerful technique available for establishing such a property is 
the method of positive commutators and, as its sisters, Mourre estimates and com­
plex dilations, cf. chapter 17. Let us see how this method applies to the Pauli-Pierz 
Hamiltonian Hp. 

In the abstract setting one starts from a self-adjoint operator H on some Hilbe1t 
space Hand searches for another self-adjoint operator, the conjugate operator D, 
such that 

[H, iD] ::::co > 0. (15.37) 

Then H has a purely absolutely continuous spectrum. The example to keep in 
mind here isH= x and iD =-ox. In our context, clearly, (15.37) is too strong. 
The appropriate modification reads 

[H, iD] :::: co- R (15.38) 
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with R a positive trace class operator. This form allows one to count eigenvalues. 
If H1.frn = Enlfn, 111/fnll = 1, then (1/fn, [H, iD]1/fnhi = 0 :=::co- (1/fn, R1/fn) and, 
by summing over n, trPpp :::; c01trR, where Ppp is the projection onto the linear 
span of all eigenfunctions. The Mourre estimate (15.38) ensures that H restricted 
to (1 - Ppp)H has a purely absolutely continuous spectrum. Inequality (15.38) 
could be still too strong and is weakened by projecting onto an appropriate energy 
interval ,6. as 

(15.39) 

where E!:;. is the spectral projection of H for the interval ,6. c JR. 
For the Pauli-Pierz operator the natural candidate for the conjugate operator is 

the generator D1 of dilations in photon space, i.e. (e-iD1t f)(k) = t 312 f(tk). Then 

(15.40) 

as operator on L 2 (JR3 , d3 k). We denote the second quantization of D1 by 

D = L J d3ka*(k, A)D1a(k, A). 
A.=l.2 

(15.41) 

With these preparations 

1 1 
[Hp, iD] = Nf- -dl(k) · (p- Pf- eAcp) + -eAcp1 • (p- Pf- eAcp), 

m m 
(15.42) 

where dr(k) = LA.=l.Z J d3kka*(k, A)a(k, A) and tPI = y'WiD1 JwiP. 
Let us abbreviate B = p- Pf- eAcp. By the Kato-Rellich theorem 

__:__ (Acp 1 • B) :::; ____:____ ( (Acp 1 )
2 + B2) 

m 2m 
e 

:::; 2m (CJHp + cz) + eHp :::; e(qHp + cz) (15.43) 

with coefficients CJ, cz independent of p and e and whose value may change from 
line to line. Similarly, using the fact that [Nf, B] is Hp-bounded and O(e), 

(15.44) 
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Let Er:. be the spectral projection of Hp onto the interval ( -oo, ~]. Combining 
(15.42), (15.43), and (15.44) and using the property that Nf :=:: 1 -Po,, the final 
result reads 

Er:. [Hp, iD]Er:. :=:: Er:. (1 - Po,)Er:. (~ - ~ ~) - e(q ~ + c2)Er:.. (15.45) 

Inequality (15.45) has the structure anticipated in (15.39) with ~ = ( -oo, ~] 
and R the one-dimensional projection Po,. Thus we count the number of eigenval­
ues in ( -oo, ~] as 

( ( 1 1 )-])-] 
tr[PppEr:.] ::::; 1- e(c1 ~ + c2) l- m ~ (15.46) 

which can be made strictly less than 2 by adjusting e. We have not tried to optimize 
the constants. But the net result is that, upon fixing eo, Pc sufficiently small and 
~ = p;j4m, say, in the interval ( -oo, ~]the operator Hp has a purely absolutely 
continuous spectrum and a single, nondegenerate eigenvalue located at E(p), 

provided lei < eo and IPI ::::; Pc· To study the high-energy/high-momentum part 
of the spectrum other methods will have to be developed. 

15.2.1 Appendix: Properties of E (p) 

We prove properties (iv), (v), (vi), (viii), and (ix). 

Property (vi): Fix p and choose the momentum lattice (8:23) 3 with lattice spacing 
8 > 0. The 3-axis of the lattice is parallel to p. Correspondingly, JR3 is partitioned 
into cubes Cs(n) = {kl(na- ~)8 ::::; ka < (na + ~)8, a= 1, 2, 3} with integer na. 

The one-particle space L 2 (JR3) @ CC2 = ~ is decomposed into a discrete and a fluc­
tuating part, 

(15.47) 

1/f E ~dis constant over each cube and 1/f E ~f satisfies fcs(n) d3kljf(k, A)= 0 for 

all n E :233. Such an orthogonal decomposition of the one-particle space factorizes 
the Fock space as 

(15.48) 

If Qf is the Fock vacuum of :Ff, we set Fs = Fct @ Qf and :F = Fs EB Fl. 
We want Hp to respect the factorization (15.48). This is achieved by replacing 

k, cpj,JlW, and w by their lattice approximation ks, (cpj,JlW)s, and ws, where 
we set fs(k) = 8-3 fcs(n) d3kj(k) for k E Cs(n). Then Hp is approximated 
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by Hp(8) = 2~ (p- Pf(8) - eAcp(8))2 + Hf(8), which factorizes according to 
(15.48) as 

1 2 
Hp(8) = 2m (p- Pf,d ®I- I® Pf,f- eAcp,d ® 1) + Hf,d ®I+ 1 ® Hf,f. 

(15.49) 

The fluctuating part of Acp(8) vanishes, since J d3k(cpj~)sljf = 0 for each 
o/ E fJf. Note that [Hp(8), 1 ® PQt] = 0, with P!:lt the projection onto Qf, and 
therefore H P ( 8) is reduced by the subs paces Fo, :F f. The bottom of the spectrum 
of Hp(8) is denoted by E(p, 8). 

We want to establish a lower bound on Hp(8) r Ff. We choose o/ E Fct and e E 

:Ff with fixed n, i.e. e Cfs_, ~) = e (kJ' )q' ... ' kn' An), n ::: I. Then, with cp = o/ ®e' 

(cp, Hp(8)cp)F = (o/ ® e, Hp(8)1/f ® e)F 

=~I d3n~_le(k, ~)1 2 (1/f, 2~ (P- Pf,d-~ kjo -eAcp,d )
2 

o/)Fct 

+ (1/f, Hf,ctlfr)Fct(e, e)Ft + (1/f, o/)Fct(e, Hue)Ft 

= L I d3n~le(~, ~)1 2 (1/f, Hp-'£]= 1 k; 3 .ctlfr)Fct 
A. 

+ (1/f, o/)Fct (e, Hf,tB)Ft 
n n 

::: inf{E(p- Lkjo. 8) + .L:wo(kj)}(ljf, o/):Fct(e, e)Ff 
k . . 
- j=l j=l 

::: inf{E(p- k, 8) + w0 (k)}(cp, cp)F. (15.50) 
k 

By finite linear combinations this bound extends to a dense set: if cp = o/1 ® e1 + 
o/2 ® e2 with both e1 and e2 in the n-photon subspace, one only has to repeat the 
computation in (15.50). If they belong to different photon numbers, we use e1..le2 . 

If Ej_(p, 8) denotes the bottom of the spectrum of Hp(8) r Ff, we conclude that 

Ej_(p, 8) :=:: inf{E(p- k, 8) + w0(k)}. 
k 

(15.51) 

Hp(8) r Fo consists of a large, but finite number of oscillators with strictly pos­
itive frequencies. Therefore H p ( 8) r Fo has a discrete spectrum. Let 

~(p, 8) = inf{E(p- k, 8)- E(p, 8) + w0(k)}. 
k 

(15.52) 

If ~(p, 8) :=:: ~o > 0 independently of 8, then Ej_(p, 8)- E(p, 8) :=:: ~(p, 8) :=:: 
~0 by (15.5I) and the ground state of Hp(8) is in :F8. The spectral projection 

X[E(p,8),E(p,8)+!1oJ(Hp(8)) is a nonzero compact operator. 
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The next step is to show that Hp(8) converges to Hp as 8 --+ 0. Technically one 
proves that for the difference of resolvents the limit 

lim II(Hp(8)- z)- 1 - (Hp- z)- 1 11 = 0 
8--+0 

(15.53) 

holds provided z is sufficiently negative. The argument uses the first-order ex­
pansion for the resolvent and Kato-Rellich bounds of the type used in the 
proof of Theorem 13.3. The norm resolvent convergence (15.53) ensures that 

X[E(p,8),E(p,8)+t:.oJ(Hp(8)) converges in norm to X[E(p),E(p)+t:.oJ(Hp) and that this 
operator is compact as a norm limit of compact operators. Since the limit operator 
is nonzero by construction, Hp has a ground state at E(p). 

To confirm that Ec(p) = E(p) + ~(p) with ~(p) = infk{E(p- k)- E(p) + 
w(k)} the first part of (15.50) is repeated with a one-photon wave function 
8(k1, AJ) well concentrated at ko with ko such that ~(p) = E(p- ko)- E(p) + 
w (ko). There is an infinite number of orthogonal states, which by construction have 
an energy arbitrarily close to E(p) + ~(p). This proves (vi). 

Property (iv ): From the pull-through formula for a* we obtain 

* * e ~ Hpa (k, A.)= a (k, A.)(Hp-k + w(k))- ~ cp(k)eA. · (p- Pf- eArp). 
mv2w(k) 

(15.54) 

Let 1/f p-k,8 be an approximate ground state for Hp-k with energies in the inter­
val [ E (p - k), E (p - k) + 8] (or let 1/f p-k be equal to the ground state if it exists), 
and let us consider the one-photon excitation cp0 = a*(f0)o/p-k,8 with fo sharply 
centered at k. From (15.54) one infers 

E(p)(cp8, CfJ8) :S (cp8, HpCfJ8) 

= (cp8, Hpa*(f8)o/p-k,8) 

= w(k)(cp8, CfJ8) + (cp8, a*(f8)Hp-ko/p-k,8) 

-" J d3 k' e ~(k') f' (k' A.') 7 mJ2w(k') cp Jo ' 

X (cp0 , eA.r(k') · (p- Pf- eArp)o/p-k,8) 

:S (cp8, CfJo)(w(k) + E(p- k) + 0(8)) 

1 1 1/2 I /2 + rmuo. ~rp)f)(CfJ8, C(J8) (o/p-k,8. Hpo/p-k,8) . (15.55) 

We can now choose fo such that the last term multiplied by (cp0, cp0)- 1 vanishes in 
the limit 8 --+ 0. Thereby the bound of property (iv) results. 
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Property (v): We have for 0 < a1 < 1, a2 > 0, (1- ai)(1 + a2) = 1, 

( 2 2 2 2m(tjf, Hpt/f) :=: a1 (tfr, p- Pf) tfr)- a2(tjf, e Acptfr) + 2m(tfr, Hft/f) 

:=: a1 (tfr, (p- Pf)2 tfr) +(2m- a2a)(tjf, Hft/f)- a2b(tjf, tfr), 

(15.56) 

where the relative bound ( tfr, e2 A~ tfr) :S a ( tfr, Hft/f) + b ( tfr, tfr) is used. We choose 
a2 such that 2m - a2a > 0. Since for a > 0 

(15.57) 

the constants in (15.57) and (15.56) can be adjusted so as to give the desired 
bound. 

Property (viii): By rotational invariance it suffices to consider (15.32) along a line 
passing through the origin. We will denote these functions by the same symbol as 
before. Using properties (ii) and (iv) we obtain 

E(p- k)- E(p) + w(k) = E(p- k)- E(O)- E(p) + E(O) + w(k) 

:=: -w(p) + w(k) (15.58) 

and it suffices to take the minimum over the intervallkl :S I PI· By reflection sym­
metry, one may pick p :=: 0. We use the decomposition of E from property (vii) 
and will show that 

f..(p) = min {-1 (p- k) 2 - _I p 2 + t(p- k)- t(p) + w(k)} > 0 (15.59) 
lkl<::p 2m 2m 

provided p < m j2. This will come about by 

Lemma: Let f: lR--+ lR be convex, even, with f(O) = 0 and f(x) :S 2~x2 . Then 

the bounds 

1 I I 
-I + -x :S f (x) :S I + -x (15.60) 

m m 

hold for lx I :S m. 

Proof If (15.60) holds for x :=: 0, by reflection symmetry it also holds for x :S 0. 
So let us take x :=: 0. f' (0) = 0 and f' is increasing. Therefore we only have to 
check the upper bound. Let xo be the smallest x such that f' (xo) = I + ~ xo. Then, 
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since j 1 is increasing, 

1 
0:S-f(x)+ 2mx2 

1 . 2 ~X ( 1 1 ) = -x0 - f(xo)- dy f (y)- -y 
2m xo m 

1 2 ~X ( I 1 ) :S -x0 - dy f (xo)- -y 
2m xo m 

1 2 ( 1 ) = -x + 1 + -xo (xo- x) 
2m m 

for all x 2::: xo, which can be satisfied only if xo 2::: m. 

215 

(15.61) 

D 

The lemma is used in (15.59) with f(k) = -t(k) + t(O), which by properties 
(ii) and (vii) satisfies the assumptions, and we set 

f p-k 

t(p- k)- t(p) = P dxt 1(x). (15.62) 

If k > 0, the lower bound in (15.60) is applicable provided p < m, 0 :S k :S 2p. 

If k < 0, the upper bound in (15.60) is applicable provided p- k :S m and thus 
p :S m j2. The bounds put together yield 

1 1 
- (p- k) 2 -- p2 + t(p- k)- t(p) + w(k) 2::: -lkl + w(k) > 0 (15.63) 
2m 2m 

for p :S m /2 and lk I :S p. Refining the last step of the argument the bound can be 
improved to p :S ( .J3 - 1 )m, which implies Pc 2::: ( .J3 - 1 )m. 

Property (ix): As in the second part of the proof of Theorem 15.5 below, one 
estimates the overlap of the ground state vector with Q by using the analog of 
the pull-through formula (15.76). (15.69) is replaced then by (15.35). 

Finally we have to show (15.27), for which purpose we Trotterize Hp as 
the sum of 2~7 (p - Pf- eA'P)2 and Hf in the function space representation. 
We have 

since [Hf, Nf] = 0 and e-tHt has a positive kernel in function space. Recall the 
transformation (14.67). Linearizing the square with the Gaussian measure /.lG of 
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mean zero and variance t / m, one obtains 

(U ein Nfi2e-t(p-Pt-eA.p)2 /2me-in Nf!2u-1 F)(A(-)) 

= (U e-t(p-Pt-eEj_0)2 /2m u-1 F)(A(·)) 

= J f-lc(dA)eiA.·rue-iA.·(Pt+eEj_0)u-1 F(A(·)) 

= f /-lc(dA)eiA.·p F(A(· +A)+ Aecp(-)), (15.65) 

since Pf shifts and E _icji translates the field. In fact the components of (p - Pf -
eE_1_cji) do not commute and in (15.65) there are errors of order t2 which vanish as 
the Trotter spacing tends to zero. Taking absolute values on both sides of (15.65) 
yields 

I· I :::: f /-lc(dA)IF(A(x +A)+ Aecp(x))l 

and similarly for functionals of a finite number of fields. Therefore 

IU ein Ntf2e-t(p-Pt-eA'P) 2 j2me-in Nt/2 u-1 Fl 

:=:: UeinNfi2e-t(Pt+eA'P)2 /2me-inNf!2u-1IFI. 

Iterating the bounds (15.64) and (15.67) results in (15.27). 

15.3 Two-fold degeneracy in the case of spin 

(15.66) 

(15.67) 

For the effective spin dynamics a crucial input is the two-fold degeneracy of the 
ground state of the Pauli-Pierz operator with spin, which will be established here 
for sufficiently small e. The restriction one is presumably an artifact of the method. 

The Hamiltonian under consideration is 

1 2 e 
Hp = 2m (p- Pf- eArp) - 2m a· Brp + Hf (15.68) 

acting on C2 @ :F, where Arp = Arp(O), Brp = Brp(O); compare with Eq. (15.21). 
We require mph > 0. Let Pg be the projection onto the ground state subspace and 
Po be the projection onto the subspace spanned by X@ Q, X E C2, trPo = 2. We 
assume IPI < Pc· Then trPg :::: 1 by the arguments for the proof of property (vi). 

Theorem 15.5 (Two-fold degeneracy of the ground state band). If~ (p) > 0 and 
whenever 

2e2 f d3klqJJ2w-1 (E(p) + _1 k2) (E(p- k)- E(p) + wr2 < ~' (15.69) 
m 2m 3 

then tr Pg = 2. 
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For the Pauli-Pierz model with spin a proof of property (ii) is missing. If, very 
reasonably, it is assumed, then ~ (p) > 0 for I pI ::::; ( v'3 - 1 )m. 

Proof We assume cp to be real which can always be achieved through a suitable 
canonical transformation. 

Let z be real and sufficiently negative. We claim that 

Po(z- Hp)-1 Po= a(z)Po (15.70) 

with real coefficient a(z). 

In (15.68) we set Ho = 2~7 (p- Pf)2 + Hf and Hp = Ho + H1. Ho does not 
depend on spin and when restricted to the n-photon subspace it is multiplication 
by a real function. By the Kato-Rellich theorem the resolvent expansion 

00 

(x Q9 n, (z- Hr)- 1x Q9 Q) = L(X Q9 n, (z- Ho)- 1(HI(z- Ho)- 1tx Q9 Q) 
n=O 

is convergent. Expanding the product yields as generic term 

m 

n(aj +ibj ·a) 
}=1 

(15.71) 

(15.72) 

with real coefficients a i, b i, depending on k 1, A. 1, ... , k 111 , Am. Using the equality 

(a1 + ib1 · a)(a2 + ib2 ·a)= a1a2- b1 · b2 + ia · (a1b2 + a2b1 - b1 x b2) 
(15.73) 

it follows that 

(X Q9 Q, (z- Hp)- 1 X Q9 Q) = a(z)(x, X)+ ib(z) ·(X, ax) (15.74) 

with real coefficients a(z), b(z). Since the left-hand side is real, b(z) = 0 which 
proves (15.70). 

Equation (15. 70) holds on the negative real axis and therefore extends by ana­
lyticity to the full resolvent set. In particular, one can integrate (15.70) over a small 
contour encircling E(p), the ground state energy of Hp. Then 

(15.75) 

By the pull-through argument 

[a(k, A.), Hp] = (Hp-k - Hp + w(k))a(k, A.) 

e cp 1 
----(eA.· (p- Pf- eA ) --(eA. x ik) ·a). (15.76) 
m~ rp 2 
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Let now 1/f E Pg H. Then 

(1/f, Nfl/f) = L J d3klla(k, A)l/fll 2 

A=l,2 

(15.77) 

Since tr[Pg(1- Po)] ::: tr[PgNf] ::: cotrPg, one concludes 

(1 - co)trPg::: tr[PgPo] ::: 2. (15.78) 

If co < 1, then q > 0, with q the constant in (15.75). Suppose trPg = I. Then 
Pg projects along 1/f and PoPgPo along Pol/f which contradicts (15.75). Thus 
trPg ::::_ 2. On the other hand if co < ~'then trPg < 3. In conjunction, trPg = 2 as 
was to be shown. D 

An alternative approach would be to use the positive commutator technique as 
explained at the end of section 15.2. It says that, provided lei < eo, IPI < Pc, the 
ground state of H P is exactly two-fold degenerate and that in a band above the 
ground state energy there is only an absolutely continuous spectrum. 

Notes and references 

Section 15.1 

Our discussion of the soft photon bound is taken from Bach (private lecture notes) 
and Bach, Frohlich and Sigal (1998a). If the potential V is attractive, but so weak 
that Hat has no ground state, then a sufficiently strong coupling to the radiation 
field will generate a ground state, since the mass of the particle is effectively in­
creased (Hiroshima and Spohn 2001; Hainzl2002; Hainzl et al. 2003; Chen et al. 
2003). The property of e-tH to be positivity improving is not known to hold un­
der additional terms, for instance including an external vector potential or spin. As 
explained to us by V. Bach, a soft photon bound as in Theorem 15.1 automatically 
estimates the overlap with the Fock vacuum. If lei is sufficiently small, this overlap 
is larger than I j2 and uniqueness is guaranteed. 

With the Maxwell field replaced by a scalar field, compare with section 19.2, 
ground state properties are investigated in Gerard (2000) and Betz et al. (2002), 
where references to earlier work are given. 
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Section 15.2 

The key properties of the energy-momentum relation are established in Frohlich 
(1974), where also the missing points of rigor are supplied. In fact Frohlich dis­
cusses Nelson's model of a particle coupled to a scalar field, compare with sec­
tion 19.2. In that case, as for example explained in Spohn (1988), e-tH(p), t > 0, 
is positivity improving in Fock space, within an exponentially small error e-t. 
From this property uniqueness of the ground state 1/f P is deduced by the argu­
ment explained in section 14.3. The overlap argument of property (ix) is a sub­
stitute which works only for small e. In his recent PhD thesis Chen (2001) es­
tablishes that E (p) has a limit as mph ---+ 0. The limit function E (p) is twice 
continuously differentiable for I pI sufficiently small. Thus the effective mass of 
the electron remains well defined even in the physical case mph = 0, under the 
restriction of small e and, of course, an ultraviolet cutoff. An example where 
Pc = 1 for e = 0 and Pc = oo for e > 0 is the Frohlich polaron in two dimensions 
(Spohn 1988). Positive commutator methods at fixed total momentum are devel­
oped in the highly recommended paper by Frohlich, Griesemer and Schlein (2003), 
where the complete proof for the Nelson model, see section 19.2 for its definition, 
can be found. Positive-commutator methods and the related Mourre estimates are 
most useful also in cases where the electron is confined by an external potential. 
We refer to Skibsted ( 1998), Bach, Frohlich and Sigal ( 1998b ), Derezinski and 
Gerard (1999), Bach, Frohlich, Sigal and Soffer (1999), and Georgescu, Gerard 
and Moller (2004). A precusor is Hubner and Spohn (1995b). 

Section 15.3 

The material is taken from Hiroshima and Spohn (2002). 
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