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For distributive double p-algebras, a close connection is established between being congruence coherent and
congruence regular. Every congruence regular distributive double p-algebra is congruence coherent. Even
though every congruence coherent distributive double p-algebra that has either a non-empty core or finite
range is congruence regular, an example is given that is congruence coherent but not congruence regular.

1991 Mathematics subject classification. Primary: 06D15.

1. Introduction

An algebra A is said to be congruence coherent providing, for each congruence 0 and
subalgebra B, whenever B contains some 0 congruence class, then B is a union of the 0
congruence classes contained in it. A variety is coherent if every one of its members is
coherent. This notion was introduced in Geiger [7] who showed that coherent varieties
are definable by a Mal'cev condition and are congruence regular, but not conversely.
For an arbitrary algebra A, if A x A is congruence coherent, than, as shown by Duda
[6], A is congruence regular and, as subsequently shown by Clark and Fleisher [4],
congruence permutable.

Some specific varieties of algebras have also been investigated. In [3], congruence
coherent de Morgan algebras were characterized by showing that a de Morgan algebra
is congruence coherent if and only if it is a Boolean algebra or isomorphic to one of
three other finite de Morgan algebras. Furthermore, it was shown that a distributive p-
algebra or a Heyting algebra is congruence coherent if and only if it is Boolean.

In this paper, we shall see that the situation for distributive double p-algebras is
considerably more complicated. Although, ultimately, we are unable to characterize the
congruence coherent distributive double p-algebras, we shall show that they are closely
linked with those that are congruence regular.

It will be shown that every congruence regular distributive double p-algebra is
congruence coherent (Theorem 3.3). Although (as will be seen in Section 5) not every
congruence coherent distributive double p-algebra is congruence regular, it is if it has
either a non-empty core or finite range (Theorem 3.4). In Section 4, a necessary
condition is given for a distributive double p-algebra to be congruence coherent: for any
two distinct prime ideals which are neither minimal nor maximal, there exists a minimal
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or a maximal prime ideal which is comparable with precisely one of them (Theorem
4.1). In Section 5, we give an example of a congruence coherent distributive double p-
algebra which is not congruence regular. In fact, with [4] in mind, we give an example
that is not congruence permutable which, since the algebra in question is a distributive
double p-algebra, automatically yields that it is not congruence regular. Obviously, our
example has an empty core and infinite range.

The variety of distributive double p-algebra is dually equivalent to a category of
ordered topological spaces. On balance, the results given here are better presented in the
dual category. As such we will work strictly in the dual category rather than crossing
backwards and forwards between the two. All necessary background will be given in
Section 2.

2. Preliminaries

An algebra (L; v, A , *, +,0,1) of type (2,2,1,1,0,0) is a distributive double p-algebra if
( L ; V , A , 0 , 1) is a distributive (0, l)-lattice, * is the unary operation of pseudo-
complementation (that is, for a and beL, a A b = 0 \f and only if b ̂  a*), and + is dual
pseudocomplementation (that is, for a and beL, a v b = l if and only if b^a+).

For a distributive double p-algebra L, a e L is dense providing a* = 0 and dually dense
providing a+ -\. If D(L) and Dd(L) denote the sets of dense and dually dense elements
of L, respectively, then the core of L is given by K{L) = D(L)nDd(L). Standard
computation (see, for example, [2] or [8]) shows that, for aeL, a+*^a. Thus, for n^O,
an(-M)^an+l(+.) w h e r e a0( + *) d e n Q t e s fl a n d a*+K+*) = a*< + ') + « for a n y fc^Q. If a"(+*» =

a"+i(+») for some n^O, then a is said to have finite range; L has finite range in the event
that every element does.

An algebra A is congruence regular providing 0 = T whenever congruences 0 and *P
on A have a congruence class in common and congruence permutable providing, for any
congruences 0 and yV, 0ovF = vPo0 where o denotes relational product. As shown by
Varlet [11], a distributive double p-algebra L is congruence regular if and only if there
is no 3-element chain in its poset of prime ideals and, as shown in [1], it is congruence
permutable if and only if there is no 4-element chain in its poset of prime ideals. Of
particular interest for distributive double p-algebra is the determination congruence <J>
where, for a and beL, <D is defined by a = b(<S>) if and only if a* = b* and a+=b+. As
shown by Varlet [11], L is congruence regular if and only if O = co. (In fact, the
congruence regular distributive double p-algebras form a variety.)

In [9], Priestley showed that the variety of distributive (0, l)-lattices is dually
equivalent to a suitable category of topological spaces. Since every distributive double p-
algebra is a (0, l)-distributive lattice, there is a corresponding subcategory to which the
variety of distributive double p-algebras is dually equivalent. A brief outline sufficient for
our basic requirements follows (for further details see, for example, the text [5] or the
survey paper [10]).

Let (P;^) be a poset. For X s P , let ( J f J ^ y e P i y g x for some xeX} and
[X) = {yeP:y^.x for some xeX} denote, respectively, the order-ideal and order-filter
generated by X (denoted (*] and [x) in the event X = {x}). Sometimes we may write
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or [X)P to emphasise that the order-ideal or order-filter is in the poset P. Then X
is convex providing X = (X]n[X). Let Min{P) and Max{P) denote, respectively, the set
of minimal elements and the set of maximal elements of P and Ext(P) =
Mm(P) u Max(P). For xeP, let Min(x) = Min{P) n (x] and Max(x) = Max(P) n [x). For
a poset (6 ;^ ) , a mapping <t>:P-*Q is order-preserving providing 0(x) ^ <£(y) whenever

Given a topology T defined on a poset P, (P; ^ , T) is called an ordered topological
space. It is totally order-disconnected if, for any x and yeP, x£y implies that there
exists a clopen order-ideal l / c ? such that xeU and y$U. If (P; ^ , T) is a compact
totally order-disconnected space, then it is called a Priestley space. For a Priestley space
(Q; ^ ,p) , a map 4>:P->Q is a Priestley map if it is continuous and order-preserving. Let
P denote the category of all Priestley spaces together with all Priestley maps. As shown
in [9], the variety D of distributive (0, l)-lattices is dually equivalent to P. Under this
dual equivalence, for a distributive (0, l)-lattice L associated with a Priestley space P, L
is isomorphic to the distributive (0, l)-lattice (D(P);u, n,0,P) where D(P) denotes the set
of all clopen order-ideals of P, (P; ^) is order-isomorphic to the post (S(L); g) where
S(L) denotes the poset of all prime ideals of L ordered by inclusion, and T has a sub-
basis the family of sets ({IeS(L):a$I}:aeL) together with their complements. Further,
for KeD associated with QeP, if f:K->L is associated with the continuous order-
preserving map 0:P->g, then f(a) = b if and only if <p~l(A) = B where A and B are
clopen order-ideals that represent a and b. Moreover, / is one-to-one or onto if and
only if 4> is onto or a one-to-one order-isomorphism, respectively. Since congruences
correspond to onto (0, l)-lattice homomorphisms, it follows that the congruence of L are
in one-to-one correspondence with the closed subsets of P. Thus, for a congruence 0 on
L associated with a closed subset Y of P, a = b(0) if and only if An Y = BnY. We shall
adopt the convention that u, v, w, x,... denote points of P and that a, b, c, d,... denote
elements of L. Whenever we wish to implicitly refer to the correspondence between
elements of an algebra and clopen order-ideals of the associated Priestley space, we will
let elements a, b, c,... correspond to clopen order-ideals A, B, C,....

A Priestley space (P; ^ , T) is a dp-space if, for every clopen order-ideal or clopen
order-filter 1/gP, both [[/) and ([/] are clopen. For dp-spaces P and Q, a continuous
order-preserving map <f>:P-*Q is a dp-map if, for every xeP, #(Min(x)) = Mm(#(x)) and
(p(Max(x)) = Max(cj)(x)). We shall need the fact that the variety of distributive double p-
algebras Ddp is dually equivalent to the category Pdp whose objects are all dp-spaces and
morphisms are all dp-maps. For a distributive double p-algebra L associated with a dp-
space, P, if aeL, then A* = P\[A) and A+ =(P\A]. A closed subset Y of P is a c-subset
providing Ext( Y) g Y. As can be seen from above, it follows that congruences on L are
in one-to-one correspondence with c-subsets of P. In particular, the determination
congruence <D corresponds to the closed subset Ext(P).

3. The relationship to congruence regularity

Let K be a subalgebra of a regular distributive double p-algebra L and 0 a
non-trivial congruence of L. Let (P; ^ , T ) and (Q,^,p) be the dp-spaces corresponding

https://doi.org/10.1017/S0013091500022793 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022793


74 M. E. ADAMS, M. ATALLAH AND R. BEAZER

to L and K, respectively. Since the identity is an embedding of K into L, there is an
associated onto dp-map <t>:P-^Q. Further, there is a c-subset Y of P such that, for a and
beL, a = b{@) if and only if A n Y = Bn Y. Let aeL be such that [a]© g/C.

Lemma 3.1. If, for distinct x and yeP, (j>(x) = (t>(y), then xeY.

Proof. Since L is congruence regular, P has no 3-element chain (see Section 2) and,
hence, Y is an order-component of P. Suppose, contrary to hypothesis, that x $ Y.

Consider first when x \\y. Suppose ye A. Then, z g x for every zeY. Because P is a dp-
space and Y is a closed subset, it follows that there is a clopen order-ideal U such that
x$U and Y^U. By hypothesis, there exists a clopen order-ideal V such that x$V and
yeV. Thus, for the clopen order-filter C=P\(UVJV), xeC, y$C, and Yr\C=</>. Set
B = A\C. Consequently, for the clopen order-ideal B, x$B and yeB which, since
<f>(x) = 4>(y), implies that B^=(t>~i(D) for any clopen order-ideal D^Q and, hence, b$K.
However, by choice, Ar\Y = Br^Y and, so, a = b{&), a contradiction. Alternatively,
suppose y$A. Then there exist a clopen order-filter U such that x^U and Y^U and a
clopen order filter V such that x$ V and ye V. Thus, for C = P \ ( [ / u F ) , x e C , ^ C , and
Yr\C = ty. Set B = / l u C . It follows that, for the clopen order-ideal B, xeB, y$B, and
A n Y = B n Y. Thus, once more, ft £ /C and a = b(&), a contradiction.

Without loss of generality, it remains to consider x<y. In which case there exist a
clopen order-filter U such that x$U, yeU, and Un F = P and a clopen order-ideal F
such that xeV, y$V, and 7n F=0. For ye A, set fl = /*n(P\l/) and, for y$A, set
B = AKJV. Either way, for the clopen order-ideal B, b$K and a = £>(©), a contradiction.

•
Lemma 3.2. / / a s £>(©), (/ien y = x whenever <j>(y) = <£(x) and x e (A\B) u (B\A).

Proof. Suppose xe(/l\B) u(B\/l) and <f>(x) = 4>(y). If x#y, then, by Lemma 3.1, xeY
which is impossible since A nY = BnY. •

Theorem 3.3. / / a distributive double p-algebra is congruence regular, then it is
congruence coherent.

Proof. It is to be shown that b e K whenever a = b(&).
Since aeK, there exists a clopen order-ideal C£<2 such that A = $~l(C). It is to be

shown that if B £ P is a clopen order-ideal such that A n Y = Br\ Y, then B = <t>~1(D) for
some clopen order-ideal D^Q.

Set

We establish first that B = 4>~l(D). Consider xeB. Then xeB\/l or <t>~l(C) depending
on whether or not xeA. Consequently, <f>(x) e C u <p(B\A). If (f>(x) e <j)(A\B), then
<f>(x) = <t>{y) for some yeA\B. Since xeB, x^y which violates Lemma 3.2. Thus,
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ct>(x)e(Cv(l>{B\A))\<l)(A\B) = D and B<=,<t>-\D). Alternatively, consider x&(j>~\D).
Since $(x)eCu(f){B\A), (f>(x)eC or (p(x) = </»(}') for some .yeB\/4. Thus, either xeA or,
by Lemma 3.2, xeB\X. If xe/1, then, since <f>{x)$<t>(A\B), x$A\B and, hence, xeB.
Either way, xeB. Thus, ^" '(D)gB and, as required, B = <f>~1{D).

It remains to show that D is a clopen order-ideal. Since </> is onto, the image of any
clopen set under <j> is clopen and, hence, D is clopen. Suppose then that y -< x for some
xeD. It is to be shown that yeD. If ye(f){A\B), then y = (p(u) for some ue/l\B. Since
x > y and K is congruence regular, xeMax(Q). It follows, as (f> is a dp-map, that
* = <£([;) for some u>u. Thus, veB and, hence, weB, a contradiction. Thus y$4>(A\B)
and it remains to show that either yeC or ye$(BV4). Since xeD, either xeC or
xetf>(BV4). If xeC, then yeC. If xe<fi(B\A), then x = #>) for some veB\A. Since x >y
and K is congruence regular, y e Mi/i(0. Thus, y = 4>(u) for some u < v. If u $ A, then
>> e <j>{B\A). Hue A, then jieC. Either way, yeD. •

As we shall see in Section 5, a congruence coherent distributive double p-algebra is
not necessarily congruence regular. However, as Theorem 3.4 shows, the converse does
hold when some natural extra hypothesis is added.

For the remainder of this section, L is a congruence coherent distributive double p-
algebra with dp-space (P; g , T).

Theorem 3.4. / / a distributive double p-algebra is congruence coherent and has either
non-empty core or finite range, then it is congruence regular.

Proof. Suppose L is not congruence regular. Then there exists a chain u < w < v in P
where u and veExt(P). Since both Min(P) and Max(P) are closed subsets of P,
Exts(P) = Min(P) n Max(P) is too.

For any ceL, ceK(L) if and only if Min(P)^C and Max(P)nC = % Consequently, if
K(L)#0, then £x£s(P) = p. If £xts(P) = 0, then set C = 0 and observe that C"(+'' = P for
every n^O.

Alternatively, K(L)=0 and, since u$Ext^P) by hypothesis, there exists a clopen
order-ideal C such that ExtlP)<=,C but u£C. Since cn+1(+*)gC"(+*), w^C*"1"*' for any
n^O. Further, if xeExt^nC^'K then x$CM+')+ and, hence, xeC"(+*>+>. In other
words, £xts(P)gC"(+#) for any n^O. By choice, ExtlP)¥^ty and, by hypothesis, L has
finite range. Thus, c( +*) = Cn+1(+*) for some M^O.

Either way, choose n such that cn(+*) = C"1+1(+*) and observe that C"(+<) is an
order-filter. Were this not the case then, for some x and yeP, x>y, x$C{**\ and
yeC«+'\ Since x$Cni+'\ xeC( +*) + . Thus, yeC^')+ and, so, y<£C(+*)+* which is
absurd.

Since P\C«+"> is clopen and Min{P)n(P\C"(+')) and Max(P) n(P\C(+*)) are disjoint
closed sets, there exists a clopen order-ideal A such that we A, (Mm(P)n(P\Cl(+*)))g/l,
Max(P) n /I=0, and C"^*' n /I = 0.

Choose W'GC1"1"*' (if possible) and consider the dp-space (Q;^Q, TQ) where Q =
{u,w',t>}, ^ Q is the order relation on Q inherited from P, and TQ is the subspace
topology on Q (note that, since Q is finite, TQ is discrete).

https://doi.org/10.1017/S0013091500022793 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022793


76 M. E. ADAMS, M. ATALLAH AND R. BEAZER

Consider <j>:P-*Q given by

f v, for xeP\(AuCi+y,
<p(x) = < W, for xeC"(+t );

L M, otherwise.

It is not hard to see that (p is an onto dp-map. Let K denote the corresponding
subalgebra of L.

Consider the determination congruence Q> on L. Since [l]<I> = }l}gK, K is the union
of the $ congruence classes contained in it. For A = <p~1({u}), aeK and, hence
[«]<£ <= K. Arguing as before, there exists a clopen order-ideal B such that w $ B but, as
for A, (Min(P)r\(P\Cn(+')))^B, Max(P)n B = </>, and C"(+*)nB=0. In particular, An
Ext(P) = B n Ext(P) and, so a = b(<D). However, B^(p~l(D) for any order-ideal D<=Q
and, hence, b$K a. contradiction. •

The following corollary is immediate, since if L has a chain K as a subalgebra with
^ 4 elements, then it is neither congruence regular (see Section 2) nor does it have an
empty core (since |

Corollary 3.5. / / a distributive double p-algebra is congruence coherent, then no chain
having ^ 4 elements can be a subalgebra.

4. A necessary condition for congruence coherence

The next theorem is better stated in terms of the duality.

Theorem 4.1. For a distributive double p-algebra L associated with a dp-space P, if L
is congruence coherent, then, for distinct u and v e P\Ext(P), Ext(u) ¥=• Ext(v).

Proof. Suppose, contrary to hypothesis, that there exist distinct u and veP\Ext(P)
such that Ext(u) = Ext(v).

Let X denote the smallest closed convex set containing u and v. Then either X = {u,v}
or, say, u<v and X = [u,v~\. Let Q = (P\X)KJ {W} for some new element w$P.

Define an order relation -< on Q by, for x and yeQ, x-<y if and only if one of the
following holds:

x < y, for x and y e P\X;
x<r and s<y, for x and yeP\X and some r and seX;
x<r and y = w, for x$X and some reX;
x = w and s < y, for y $ X and some s e X.

To see that (Q; ^ ) really is a poset, it must be shown that, for every x, y and zeQ, x<,x
is false and that x-<z whenever x < v and y<z. For xeQ, the only possibility for x-<x
to hold is that x<r and s<x for some r and seX with x£X. Since X is convex, this is
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impossible. Suppose then that, for x, y and zeQ, x<.y and y-<z. Consider first when x,
y and zeP\X. If either x<y or y<z, say x<y, then either y<z or, for some r and
seX, y<r and s<z. If y<z then x<z and, otherwise, x<r. Either way, x-<z. If neither
x<y nor y<z, then, for some p, q, r and seX, x<r, s<y, y<p and q<z and, so, yeX
which is absurd. Suppose now that at least one of x, y or z is w. If y = w, then, for some
r and seX, x<r and s<z which implies that x«<z. Finally, it remains to consider when
x or z is w, say x = w. Thus, s<y for some s e X Either y<z, or, for some r and teX,
y<r and t<z, or, for some reX, y<r and z = w. If y<z, then s<z and, so, x-<z.
Otherwise, yeX which is impossible.

Let p denote the quotient topology on Q obtained from the map </>: P-*Q where

[w, otherwise.

Certainly, (Q; ̂ ,p) is a compact ordered topological space. Suppose that, for x and
yeQ, x gj: y. If x or y = w, say x = w, then y^r for any reX. Hence, there exists a clopen
order-ideal Bcp such that xeB, y^B, and XgB. Let X = (B\X)u{w}ig . Since
</)~1(/l) = B, /I is a clopen subset of Q. To see that A is an order-ideal, suppose p~>q for
some peA If q^w, then either p>g or q<r for some re AT. Either way, qeB\X. If
neither x nor y = w, then x ̂  y and either x ̂  r for every r e X or y ̂  s for every s 6 X, say
x ^ r for every reX. Then there exists a clopen order-ideal ^ i P such that xeA, y$A,
and Ar\X = ty. Since / igQ and </>"1(/l) = v4, A is a clopen subset of Q. Suppose p>q for
some pe A. Either p>q and qe A or p>r for some reX which is impossible. Hence, (Q;
^,p) is a Priestley space.

To see that (Q; ^,p) is a dp-space, let >!<=(? be a clopen order-ideal. It must be
shown that [A) and (P\A~\ are clopen. Since Q is a Priestley space and w £ Min(Q), there
exists a clopen order-ideal B^Q such that w$B and Mm(B) = Min(y4). Hence, [B) = [A)
and, so, without loss of generality, we may assume that w$A. Then, by hypothesis,
/4 = 0~1(/1) is a clopen subset of P. Suppose, for x and yeP, xeA and x>y. Since
xgtw, x ^ r for any reX and, so, y ^ X Thus, x>y and ye-4. In other words, A is an
order-ideal of P and, so, [A)P is a clopen subset of P. We must show that
<t>~i(lA)o) = [A)p- Suppose xe<p~l([A)Q). Then <p(x)e[A)Q and, so, </»(x)^y for some
yeAnMin(Q). Then x^y or x ^ r and _y^s for some r and s e X Since y£Min(r) =
Min(s), in either case x^y. Hence, xe\_A)P and ( ^ ( [ X ^ g ^ p . Conversely, suppose
xe[/4)P. Then x^y for some yeAnMin(P). Either way, 4>(x)~£iy€A nMin(Q). Thus,
[.A)p^<l)~1(lA)Q) and, as required, (p~l([A)Q) = [A)P. An analogous argument shows
(P\4] is clopen.

To see that <j) is a dp-map, it must be shown that Min{<j>{x)) = <f>(Min{x)) and
Max(<£(x)) = 4>(Afax(x)). Suppose yeMin(«/>(x)). Thus, y^^(x). If x^y, then ^>(x)^w,
x ^ r and y^s for some r and seX, and, since yeAfin(r) = Mm(s), x^y. Either way,
x^y and, so, ye<p(Min(x)). Conversely, if yg(/>(Min(x)), then y g x and, so, y^0(x).
Since y6Min(g), y e Mm(<j(>(x)) and, as required, Min(<t>(x)) = <p(Min(x)). An analogous
argument shows that Max
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w i 3 xs

«-° Xu

To summarize, (Q; ^ ,p ) is a dp-space and </>: P-*Q is an onto dp-map. Thus Q
corresponds to a subalgebra K of L. If <D is the determination congruence on L, then
[l]d) = { l ) i K . Hence, to complete the proof of Theorem 4.1, it is sufficient to show
that K is not a union of <S> congruence classes.

Choose a clopen order-ideal C^Q such that weC and C n Max(Q}=</). For
A = <p~l(C), An Max(P) = ty. Say, without loss of generality, u~£.v. Then there exists a
clopen order-ideal D^P such that ueD, v<$D, and Min(P)£D. Thus B = AnD is a
clopen order-ideal such that B n Ext(P) = A n Ext(P) and, so, a = fe(<l>). However, B#
<j)~1(E) for any clopen order-ideal E^Q and, so, b^K. Since aeK by choice, we
conclude L is not congruence coherent. •

5. An example

This section is devoted to giving an example of a congruence coherent distributive
double p-algebra which is not congruence regular. In fact, the example is not
congruence permutable (and, de facto, not congruence regular).

Let (P;T) be the one point compactification of the set {u,v,w} u {x,:i<«} by the
point xa. Define an order relation ^ on P to be the transitive closure of

{(u,w),(x2>u),(u,v), (v,Xi)}<j{(x2i,x2i+1), (x2(I+1),x2l + 1):0gi<<y}.

Clearly, (P; ^ , T ) (diagrammed in Figure 1) is a dp-space.
If L denotes the associated distributive double p-algebra, then, since (P; ^ ) has a 4-

element chain, L is not congruence permutable. We will show that L is congruence
coherent. Notice that, as required by Theorem 3.4, L has an empty core but does not
have finite range. Note also that, since x2<u<v<xl is a 4-element chain in (P; ^ ) , as
required by Theorem 4.1, Ext{u) # Ext(v).

Let K be a subalgebra of L with dp-space (Q; ^ , p). Further, let <f>:P-*Q be the onto
dp-map associated with the identity mapping from K to L.

Consider when K is one of the two trivial subalgebras of L. Certainly, if K = L, then it
is the union of all the © congruence classes of L for any congruence 0 on L. Suppose
alternatively that K = {0,1}. Then, since L has more than 3 elements, if K contains a 0
congruence class it must be the case that either C0]© = {0} or [1]0 = {1}. However,
[O]0 = {O} if and only if 0 c $ if and only if [1 ]0 = {1}. In other words, in this case
too, if K contains a 0 congruence class, then it is a union of 0 congruence classes.
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Hence, in order to show that L is congruence coherent, it is sufficient to establish the
following:

Lemma 5.1. The only subalgebras of L are trivial.

Proof. Observe that K is trivial if and only if either <j> is an order-isomorphism or
|6 | = L If <i> is one-to-one, then, since P\Ext{P) = {u,v} and u<v, that <f> is an order-
isomorphism is an immediate consequence of the fact that it is a dp-map. Thus, it is
sufficient to show that \Q\ = 1 whenever </> is not one-to-one. With no further ado,
suppose 4> is not one-to-one and consider the various possibilities:

Were 0(x2l) = <£(x2j+1) for any i and j<co, then, since ^ is a dp-map,
<p(x2i)e Exts{P) = Min{P) n Max(P). Thus, <f>(x) = <f>{y) for all x and yeP\{xJ which, as
0 is a continuous map, yields |Q| = 1. Henceforth, we assume that, for any i and

2 0 ( 2 , 1)
Suppose 0(xo) = <A(x2). Since 4> is a dp-map, it follows that |Max(</>(xo))| = 1 and

\Min(cl)(xl))\ = l. Assume that </>(x2i) = (/>(x0) and <p(x2i+1) = (t>{x1) for some i<co. Then,
from (f>(x2i+1) = <t>(x1), it follows that ^>(x2(I + 1)) = 0(xo) and, so, 0(x2 ( i + 1 ) + 1 ) = </>(x1). In
other words, $(x2,) = 0(xo) and <Kx2i+i)-<Kxi) for every i<co. Since </> is continuous,
<Kxa) = <Kxo) = #(*i)> contrary to assumption. Henceforth, suppose <f>(xo)^<t>(x2).

Suppose </)(w) = ^(x1). Since |Min(w)| = l, \Min(<f>(x1))\ = 1 and, so, (p(xo) = 4>{x2) which
contradicts our hypothesis. Henceforth, assume 0(w)^0(x!).

Suppose </>(x3) = ^(x1). We claim that, for i^O, 4>(x3 + 6d = <l>(.xi) and 0(x 4 + 6 i ) = 0(xo).
Since 0(x3) = 0(xj), 0(x4) = 0(xo) and the claim holds for i = O. Suppose that it is valid
for some i<co. Thus, ^(xs + g ^ ^ X ! ) and, so, < (̂x6 + 6i) = 0(x2). Then < (̂x7 +.6l) = ^(w)
and, hence, <^(x8+6l) = 0(x2). It follows that 0(x3 + 6 ( i + 1 ) ) = <£(*,) and, so, </>(x4 + 6(i + 1)) =
0(xo), as required. Since <p is continuous, 0 ( x j = 0(xo) = 0(x1), contrary to hypothesis.
Henceforth, assume 0(x3)#</>(x1).

Suppose 0(x3) = </>(w). We claim that, for i^O, </>(x4+6i) = </)(x2) and 0 (x s + 6 i ) = </)(x1).
Since 0(x3) = </>(w), 0(x4) = <£(x2) and, so, </)(x5) = </>(x1). Suppose then that the claim
holds for some i<co. Since <£(x4+6l) = 0(x2) and (p(x5+6i) = (p(x1), 4>{x6 + 6i) = <f>(xo) and,
hence, 0(x7 + 6l) = 0(x1). It follows that #(x8 + 6 i) = #(x2) and, so, (^>(x9+6l) = (/)(w). Thus, as
required, <A(x4+6(j+1)) = 0(x2) and, so, ^ (x 5 + 6 ( i + 1 ^ = ^(x1). Once more, as <f> is con-
tinuous, <^>(xj = (/>(x1) = (/>(x2), contrary to hypothesis and, henceforth, we may assume

To summarize at this point, for distinct i and j ^ 3, 0(x,), (j>(Xj), and <̂>(vv) are distinct.
We claim that, for i ^ 1, <f> is one-to-one on {w} u {x/. j^2i +1}. Say, (j> is one-to-one

on {w} v {x/. j^2i+l}, but not on {w} u {x/. j^2(i+l)}. Then, since <f> is a dp-map,
0(^2(.+ii) = ^(x2,) and, arguing inductively, 0(x2i+1+_;) = ^(x2i+1__/) for ; g 2 i — 1 . How-
ever, for j=2i—l, 0(x4l) = < (̂x2) which, since |Max(x4l-)| = 2 and |Max((p(x2))| = 3, is
absurd. Thus, $ is one-to-one on £xt(P)\{x(0}. Since <t>{xJ) = <t>(y) for some
ye0(£xt(P)\{xm}) implies |Q| = l, we conclude that <f> is one-to-one on Ext(P).

Three possibilities remain: either <f>(v) = (f>(xl), or <f>(u) = (p(v), or </>(u) = $(x2). Since this
implies that either < (̂xo) = 0(x1), or 0(w) = < )̂(x1), or 0(x3) = 0(x!) or 0(vv), respectively,
each violates the working hypothesis. •
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