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Wall-wake laws for the mean velocity and
the turbulence
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A new wall-wake law is proposed for the streamwise turbulence in the outer region of a
turbulent boundary layer. The formulation pairs the logarithmic part of the profile (with a
slope A1 and additive constant B1) to an outer linear part, and it accurately describes over
95 % of the boundary layer profile at high Reynolds numbers. Once the slope A1 is fixed,
B1 is the only free parameter determining the fit. Most importantly, B1 is shown to follow
the same trend with Reynolds number as the wake factor in the wall-wake law for the mean
velocity, which is tied to changes in scaling of the mean flow and the turbulence that occur
at low Reynolds number.
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1. Introduction

The mean velocity distribution in the outer part of a turbulent boundary layer is often
expressed as a combination of a logarithmic part and a wake component, as in

U
uτ

= 1
κ

ln
yuτ

ν
+ B + 2Π

κ
W

(y
δ

)
, (1.1)

where U is the mean velocity in the streamwise direction, uτ = √
τw/ρ, τw is the shear

stress at the wall where y = 0, ρ is the fluid density, κ is von Kármán’s constant, B is
the additive constant and Π is the Reynolds-number-dependent wake factor. The wake
function W is taken to be a universal function of y/δ, where δ is the outer layer length
scale. This wall-wake model was first formulated by Coles (1956), and it is an essential
part of the widely used composite profile derived by Chauhan, Nagib & Monkewitz (2007).
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Marusic, Uddin & Perry (1997) proposed a similar formulation for the streamwise
turbulence intensity in zero pressure gradient turbulent boundary layers, given by

u2+ = B1 − A1 ln
y
δm

− Vg

(
y+,

y
δm

)
− Wg

(
y
δm

)
, (1.2)

where u2+ = u2/u2
τ . The model incorporates the log-law for u2+

with constants A1 and B1
(Hultmark et al. 2012; Marusic et al. 2013), where Vg is a mixed scale viscous deviation
term, Wg is the wake deviation term and δm is a boundary layer thickness defined in a
way that is similar to the Rotta–Clauser thickness. It is typically 15 % to 20 % larger than
δ99, the 99 % thickness (further details are given in Appendix A). The wake deviation was
given by

Wg = B1η
2(3 − 2η) − A1η

2(1 − η)(1 − 2η), (1.3)

where η = y/δm. A more recent and simpler version of Vg was given by Baars & Marusic
(2020) as

Vg = K1 − K2/
√

y+, (1.4)

with K1 = 4.01, K2 = 10.13.
Pirozzoli & Smits (2023) proposed an alternative model for the mean velocity

distribution in the outer layer, given by a compound logarithmic–parabolic distribution
of the type first suggested by Hama (1954); that is,

Ue − U
uτ

= B′ − 1
k0

ln
y
δ0

, (1.5)

Ue − U
uτ

= C
(

1 − y
δ0

)2

, (1.6)

where C is a constant, and Ue is the free stream velocity. Requiring the two velocity
distributions to smoothly connect up to the first derivative yields the position of the
matching point (η0 = y0/δ0) and the additive constant B′ in (1.5) as a function of k0 and C,

η0 = 1
2

(
1 −

(
1 − 2

Ck0

)1/2 )
, B′ = C(1 − η0)

2 + 1
k0

ln η0. (1.7a,b)

The matching point η0 marks the outer limit of the logarithmic part, (1.5), and the inner
limit of the wake part, (1.6). By comparing (1.1) with this compound model, and adopting
Coles’s wake function which has a maximum at y/δ99 = 1, we find that B′ = 2Π/κ , so
that B′ and Π are synonymous with each other. In what they called the classical case,
Pirozzoli & Smits (2023) found that with δ0 = 1.6δ95 the best fit of the data was obtained
with k0 = κ ≈ 0.38, C ≈ 9.88, so that B′ = 2.15, with the two distributions smoothly
matched at η0 = 0.158. This compound logarithmic–parabolic distribution fits the velocity
distributions well down to y/δ0 ≈ 0.01 (for Reynolds numbers based on displacement
thickness greater than 2000).
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Here, we suggest a similar approach for the streamwise component of the turbulent
stress. That is, we propose a compound representation given by

u2+ = B1 − A1 ln
y
δ1

, (1.8)

u2+ = b1 − a1
y
δ1

, (1.9)

where a1 and b1 are constants, and δ1 is the appropriate length scale for the outer layer.
In this formulation, there is no viscous deviation term. Requiring the two turbulence
distributions to smoothly connect up to the first derivative yields the position of the
matching point (η1 = y1/δ1) and the additive constant B1 in (1.8) as a function of the
other constants,

η1 = A1

a1
, B1 = b1 − A1(1 − ln η1). (1.10a,b)

The matching point η1 marks the outer limit of the logarithmic part, (1.8), and the inner

limit of the wake part, (1.9). According to (1.9), u2+
is zero when y/δ1 = b1/a1, and so we

impose one further constraint and set b1/a1 = 1.05 (which closely corresponds to the point
where y/δ995 = 1). Finally, if we assume A1 is a true constant (= 1.26 for boundary layers
according to Marusic et al. (2013)), the only free parameter in our fit to the turbulence
profile is B1, which we will show to be a Reynolds-number-dependent turbulence wake
factor that behaves similarly to that of the mean velocity wake factor B′ = 2Π/κ .

2. Comparisons with data

We now demonstrate the quality of the model by comparing it with experimental and
direct numerical simulation data over a wide range of Reynolds numbers (see table 1).
Before proceeding, we need to specify the particular length scale δ1 used to describe the
outer layer. We have chosen δ1 = δ99, for reasons made clear in Appendix A. We also
need to relate Reθ = θUe/ν, where θ is the momentum thickness, to the friction Reynolds
number Reτ = δ99uτ /ν, in that not all data sets specify both. This issue is also addressed
in Appendix A.

To begin the analysis, we use the data by Samie et al. (2018) (6250 < Reθ < 47 100).
Figure 1 demonstrates that, as expected from previous work, the logarithmic part with
A1 = 1.26 and B1 = 2.00 is a good fit in the overlap region. In addition, the linear part
of the model describes the profile beyond the matching point very well over this range
of Reynolds numbers, except for the region y/δ99 > 1 where a more gradual decline is
observed. At the highest Reynolds numbers, the compound formulation represents the
data well for 95 % of the profile.

For reference, we also plot (1.2) for the same values of A1 and B1 (using δ99/δm = 0.81).
We neglected the viscous deviation term Vg, which leads to a small positive offset of u2+

in (1.2) with respect to the compound formulation in the logarithmic region. Both fits
work well beyond the logarithmic region, although it could be argued that the linear fit is
a trifle more accurate for 0.2 < y/δ99 < 0.9. In the analysis going forward, we will use
the compound fit, primarily because the viscous deviation term in (1.2) appears to obscure
some of the underlying trends as well as the comparisons between the turbulence and mean
velocity profiles.

We now consider all the high-Reynolds-number data listed in table 1 over the range
6000 ≤ Reθ < 60 000. The results are shown in figure 2 for B1 = 2.00. Although there is
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Reθ Reτ b1 B1 η1 η+
1 Symbol

DeGraaff & Eaton (2000) 1430 541 3.56 1.05 0.372 201
2900 993 3.77 1.19 0.351 349
5200 1692 4.33 1.57 0.306 518

13 000 4336 4.83 1.94 0.274 1188
31 000 10 023 4.67 1.82 0.276 2766

Fernholz et al. (1995) 2573 866 4.10 1.42 0.323 280 •
5023 1692 4.34 1.59 0.305 516 �
7140 2375 4.80 1.92 0.276 656 �

16 080 5068 5.30 2.29 0.250 1267 �
20 920 6824 4.75 1.88 0.279 1904 ◦
41 300 12 633 4.75 1.88 0.279 3524 �
57 720 18 692 4.95 2.03 0.267 4991 �
60 810 18 362 4.95 2.03 0.267 4903 �

Osaka, Kameda & Mochizuki (1998) 6040 1800 4.75 1.88 0.279 502

Vallikivi, Hultmark & Smits (2015) 8402 2622 4.90 1.99 0.270 708
15 121 4635 5.00 2.07 0.265 1228
26 884 8261 4.85 1.95 0.273 2255
46 732 14 717 4.80 1.92 0.276 4061

Samie et al. (2018) 6252 1929 4.92 2.00 0.269 519
12 913 3984 4.96 2.04 0.267 1064
26 034 8032 5.10 2.14 0.259 2080
47 096 14 530 4.88 1.98 0.271 3938

Sillero, Jiménez & Moser (2013) 6000 1848 4.530 1.72 0.292 540 - - - -

Table 1. Data sources and fitting parameters for A1 = 1.26. Here B1 is the only free parameter, and b1 and
the matching point η1 are defined by (1.10a,b).
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Figure 1. Comparison with the experimental data of Samie et al. (2018) for Reθ = 6252–47 096 (y+ > 100,
A1 = 1.26, B1 = 2.00): (a) linear scaling; (b) logarithmic scaling. Here · · · · · · , black, (1.2) (neglecting Vg);
———, red, (1.8); ———, black, (1.9) (matched at η1 = 0.269, vertical dashed line). Symbols as in table 1.
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Figure 2. Comparison with all the experimental data for 6000 ≤ Reθ < 60 000 (y+ > 100): (a) linear scaling;
(b) logarithmic scaling. Here ———, black, (1.9); ———, red, (1.8). B1 = 2.00, distributions matched at
η1 = 0.269 (vertical dashed line). Symbols as in table 1.
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Figure 3. Comparison with the experimental data for Reθ ≤ 6040 (y+ > 100): (a) linear scaling;
(b) logarithmic scaling. Here ———, black, (1.9); ———, red, (1.8). Here b1 = 4.92, distributions matched
at η1 = 0.269 (vertical dashed line). Here - - - - -, black, (1.9); - - - - -, red, (1.8). Here b1 = 3.56, distributions
matched at η1 = 0.372 (vertical dashed-dotted line). Symbols as in table 1

some the scatter in the data, the compound fit works reasonably well using this value. The
agreement can be improved by using values of B1 optimized for each profile, as listed in
table 1.

The low-Reynolds-number data (Reθ ≤ 6040) are shown in figure 3. The compound fit
is plotted for two cases, B1 = 2.00 (the value used for the high-Reynolds-number data
shown in figures 1 and 2), and B1 = 1.05 (chosen to match the lowest-Reynolds-number
profile in the data set). In order to match the in-between Reynolds number cases, B1 was
varied as given in table 1. Again, we see a very satisfactory fit to the data, even in this
low-Reynolds-number range.

The constant B1 appears to act as a wake function for the turbulence profile, similar to
the wake function Π for the mean velocity profile. In figure 4, we compare the Reynolds
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Figure 4. (a) Wake factors versus Reθ . Here �, black, 1.15B1; ———, red, B′ = 2Π/κ (Chauhan et al.
2007). (b) Turbulence wake factor B1 as a function of η+

1 . Red line is 2Vg evaluated at η+
1 (1.4).

number dependence of B1 with that of 2Π/κ (using κ = 0.384, where B1 was scaled by
an arbitrary factor of 1.15 to aid the comparison. We see a clear similarity in the behaviour
of the two wake functions, in that they increase with Reynolds number up to Reθ ≈ 6000,
and then become constant at higher Reynolds numbers.

To investigate this connection further, we first consider the wake factor B′ = 2Π/κ for
the mean velocity. Now, B′ is usually measured as the maximum deviation of the mean
velocity profile from the log-law. For high-Reynolds-number flows (Reθ > 6000, Reτ >

1800), this gives a constant value, as seen in figure 4. However, at low Reynolds numbers
(Reτ � 1300), the log-law ceases to exist and it is replaced by a power law (Zagarola &
Smits 1998a,b), and B′ begins to decrease. It is suggested here that the decrease in B′ at
low Reynolds numbers is a result of incorrectly using a log-law to measure it at Reynolds
numbers where no log-law exists.

As for the turbulence, the wake factor B1 is the offset of the turbulence profile from its
logarithmic variation. At high Reynolds numbers, B1 is a constant, as seen in figure 4, but
for Reτ � 2000 the turbulence log-law (with constant A1 and B1) is usually assumed to
vanish (Hultmark et al. 2012; Marusic et al. 2013). However, when we allow B1 to vary
with Reynolds number, we see that a logarithmic variation in the turbulence appears to be
maintained, even at low Reynolds numbers.

This Reynolds number dependence of B1 suggests that there may be a link to the viscous
deviation term Vg, (1.4), in that they both embody the effects of viscosity. One way to
explore this connection is to see how B1 varies with η+

1 = η1uτ /ν (see table 1). From
figure 1, we see that B1 begins to decrease quite sharply for η+

1 < 500. We also show the
value of Vg (as given by Baars & Marusic (2020)) at the matching point, and the trend in
B1 is noticeably more severe than that of Vg.

We suggest, therefore, that the similarity between the Reynolds number dependence of
B′ and B1 is a direct result of changes in the scaling behaviour of the mean velocity and
turbulence profiles at low Reynolds number. In the first case, the log-law is replaced by
a power law, and in the second case the slope of the logarithmic behaviour A1 appears
to remain constant while its intercept B1 decreases. In that A1 remains constant, it would
indicate that the turbulence continues to obey the attached eddy scaling of y−1, even at
low Reynolds numbers (see Smits (2022) for further details).
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3. Conclusions and discussion

The logarithmic–linear compound fit in y/δ99 proposed here for the streamwise turbulent

stress u2+
in the outer layer of a turbulent boundary layer works well over a wide range of

Reynolds numbers. For the logarithmic part of the fit we assumed that A1, the slope of the
log-law, is fixed at 1.26 (as given by Marusic et al. (2013)), and the linear part of the fit
was constrained to pass through zero at y/δ99 = 1.05. As a consequence, the fit has only
one free parameter, B1, which acts like a wake factor.

For low Reynolds numbers (Reθ ≤ 6040), B1 increases with increasing Reynolds
number, attaining an approximately constant value of approximately 2 for high Reynolds
numbers (6000 ≤ Reθ ≤ 60 000). At low Reynolds numbers (Reθ < 6000), B1 decreases
with decreasing Reynolds number. The behaviour of B1 with Reynolds number closely
follows the variation of the mean flow wake factor B′ = 2Π/κ , and we propose that this
is a direct result of changes in the scaling behaviour of the mean velocity and turbulence
profiles at low Reynolds number: for the mean velocity the log-law is replaced by a power
law, and for the turbulence the log-law intercept is Reynolds number dependent while it
continues to obey the attached eddy wall-normal dependence.

For the logarithmic parts of the mean velocity and the turbulence distributions, we know
that we can connect the behaviour of B′ and B1 through the attached eddy hypothesis (Perry
& Chong 1982; Marusic & Monty 2019). For the parabolic part of the mean velocity,
(1.6), and the linear part of the turbulence, (1.9), the link is still unknown. One possibility
is to consider the behaviour of the ‘detached’ (or Type B) eddies (Perry & Marusic
1995). However, as they note, building this connection ‘would be very complicated and
would depend on the assumed shape of the representative eddies’. Also, as Hu, Yang
& Zheng (2020) point out, ‘unlike the attached eddies, whose statistical behaviours
are well described by the (attached eddy hypothesis), the detached eddies lack a good
phenomenological model’. Building a better understanding of the physics that connects
the mean velocity and the turbulence in the outer layer is clearly in need of further work.

Acknowledgements. The authors would like to thank S. Pirozzoli and J.-P. Dussauge for their comments on
an earlier draft.
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Appendix A. Data analysis

For the length scale used to describe the outer layer, δ1, there are a multitude of choices.
In examining the mean flow, Pirozzoli & Smits (2023) considered δ0 = 1.6δ95, 0.28Δ

and 2δN , where Δ = (Ue/uτ )δ
∗ is the Rotta–Clauser thickness, δ∗ is the displacement

thickness, δN = (H/(H − 1))δ∗ and H = δ∗/θ is the shape parameter. For the data in
table 1, Sillero et al. (2013), DeGraaff & Eaton (2000) and Vallikivi et al. (2015) used δ99,
Osaka et al. (1998) used δ995, and Samie et al. (2018) used δc, where δc is the outer length
scale adopted by Chauhan et al. (2007) for their composite profile. In order to compare
data, we need a common standard, and we will show that δ1 = δ99 serves that purpose
well. To convert δ995 and δc to the matching value of δ99, we used the composite profile.
In figure 5, we show how these various thicknesses compare.
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Figure 5. Boundary layer thickness variations with Reθ , as found using the composite profile (Chauhan et al.
2007).
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Figure 6. Momentum thickness Reynolds number versus friction Reynolds number: dashed line, (A1);
(a) full data set; (b) data for Reθ < 10 000.

We used the results of Klebanoff (1955) on the eddy viscosity. His boundary layer
thickness was approximately 1.15 times larger than δ99 (Smits 2024), and the data were
scaled accordingly.

In addition, we need to relate Reθ and Reτ , in that not all data sets specify both. Here,
we use

Reθ = 3.241Reτ , (A1)

based on a fit to the available data (R2 = 0.9997 for full data set), see figure 6.
Finally, the Reθ = 234 670 profile by Vallikivi et al. (2015) was corrected for an

error in the 99 % thickness, which was smaller by a factor of 0.943 than the value
originally reported. This changed the profile, and the corresponding value of Reτ . Also,
the Fernholz profile at Reθ = 21 410 was not used since it has some obvious problems.
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