Appendix D

Vector Fields and Their Lie Bracket

D.1 Construction

In this appendix we recall the construction of the Lie algebra of vector fields.

- **D.1 Example** The tangent bundle $\pi_M : TM \to M$ is a vector bundle (bundle trivialisations are given by the canonical charts $T\varphi$). A smooth section of the tangent bundle is called (smooth) *vector field* and we write shorter $\mathcal{V}(M) := \Gamma(TM)$ for the vector space of all vector fields.
- **D.2 Example** If $U \subseteq E$ in a locally convex space, we have $TU = U \times E$ and $\pi_U : U \times E \to U$, $(u,e) \mapsto u$. Thus a vector field of U can be written as $X = (X_U, X_E) : U \to U \times E$ and we must have $X_U = \mathrm{id}_U$. Hence a vector field on U is uniquely determined by the smooth map $X_E \in C^\infty(U, E)$.
- **D.3** If M is a manifold and (ϕ, U_{ϕ}) a manifold chart, then we have an analogue of X_E on U_{ϕ} for $X \in \mathcal{V}(M)$: Clearly $T\phi \circ X \circ \phi^{-1} = (\mathrm{id}_{V_{\phi}}, X_{\phi})$ for the smooth map $X_{\phi} := d\phi \circ X \circ \phi^{-1} : V_{\phi} \to E$. We call X_{ϕ} the local representative of X or the principal part of X with respect to the chart ϕ .

For later use, consider a vector field $X \in \mathcal{V}(M)$ and a smooth function $f: M \to F$, where F is a locally convex space. Then we define a function $X.f \in C^{\infty}(M,F)$ via

$$X.f(m) := df \circ X(m) = \operatorname{pr}_2 \circ Tf \circ X(m). \tag{D.1}$$

D.4 Similar to C.7 we topologise $\mathcal{V}(M)$: Pick an atlas \mathcal{A} of M whose charts we denote by $\varphi: U_{\varphi} \to V_{\varphi} \subseteq E_{\varphi}$. Then we declare the topology to be the initial topology with respect to the map

$$\kappa \colon \mathcal{V}(M) \to \prod_{\varphi \in \mathcal{A}} C^{\infty}(V_{\varphi}, E_{\varphi}), \quad X \mapsto (X_{\varphi})_{\varphi \in X},$$

where the factors on the right-hand side carry the compact open C^{∞} -topology. In particular, this topology turns the vector fields into a locally convex space.

We will use the notion of integral curves and flows for vector fields, whence we recall the definition of these objects.

D.5 Let $X \in \mathcal{V}(M)$. We say a C^1 -curve $c : [a,b] \to M$ is an *integral curve* for X if for every $t \in [a,b]$ the curve satisfies $\dot{c}(t) = X(c(t))$.

If M is a Banach manifold, it follows from the theory of ordinary differential equations, Lang (1999, IV), that for every $m \in M$ there exists an integral curve c_m of X on some open interval $J_m :=] - \varepsilon, \varepsilon[$ such that $c_m(0) = m$. Moreover, the *flow*

$$\mathrm{Fl}^X : \bigcup_{m \in M} \{m\} \times J_m \to M, \quad (m,t) \mapsto c_m(t)$$

defines a continuous map on some open subset of $M \times \mathbb{R}$. If M is modelled on a locally convex space, the existence of integral curves and flows is not automatic; see Appendix A.6.

D.6 Definition Let $f: M \to N$ be smooth. We call the vector fields $X \in \mathcal{V}(M), Y \in \mathcal{V}(N)$ *f-related* if $Y \circ f = Tf \circ X$.

D.7 Lemma Let M be a manifold modelled on a locally convex space E with atlas \mathcal{A} . Let $(X_{\phi})_{\phi \in \mathcal{A}}$ be a family of smooth maps $X_{\phi} \colon V_{\phi} \to E$ such that every pair X_{ϕ}, X_{ψ} is $\psi \circ \phi^{-1}$ related on $\phi(U_{\psi} \cap U_{\phi})$. Then there is a unique vector field $X \in \mathcal{V}(M)$ whose local representatives coincide with the X_{ϕ} .

Proof Define $X: M \to TM$, $p \mapsto T\phi^{-1}(\phi(p), X_{\phi}(\phi(p)))$ for $p \in U_{\phi}$. Since the maps X_{ϕ}, X_{ψ} are related by the change of charts on the overlap $U_{\phi} \cap U_{\psi}$, the mapping is well defined. By construction it is smooth and a vector field. \square

D.8 For principal parts of vector fields X,Y on $U \subseteq E$ write $X_E,Y_E(z) := dY_E \circ X(z) := dY_E(z;X_E(z))$. Define

$$[X,Y] := X.Y - Y.X.$$
 $X,Y \in C^{\infty}(U,E).$

We will see in the following that the bracket of principal parts of vector fields gives rise to a Lie bracket of vector fields.

D.9 Lemma Let $U \subseteq E$, $V \subseteq F$ be open in locally convex spaces and $f \in C^{\infty}(U,V)$, $X_1,X_2 \in C^{\infty}(U,E)$ and $Y_1,Y_2 \in C^{\infty}(V,F)$. Assume that X_i is f-related to Y_i for i = 1,2. Then $[X_1,X_2]$ is f-related to $[Y_1,Y_2]$.

Proof Using the chain rule, (1.7) and relatedness we obtain $i=1,2(x,v)\in U\times E$.

$$df(x, dX_i(x; v)) = dY_i(f(x), df(x; v)) - d^2f(x; X_i(x), v),$$
 (D.2)

We use this relation together with relatedness to obtain

$$\begin{split} df(x;[X_1,X_2](x)) &= df(x;dX_2(x,X_1(x))) - df(x;dX_1(x;X_2(x))) \\ &= dY_2(f(x);df(x;X_1(x))) - d^2f(x;X_2(x),X_1(x)) \\ &- dY_1(f(x);df(x;X_2(x))) + d^2f(x;X_1(x),X_2(x)) \\ &= dY_2(f(x);Y_1(f(x))) - dY_1(f(x);Y_2(f(x))) \\ &= [Y_1,Y_2](f(x)), \end{split}$$

where the second-order terms cancel by Schwarz' theorem.

Before we now establish the Lie algebra properties, let us recall a general definition useful for our purpose.

D.10 Definition Let (A, \cdot) be an associative algebra. Then the linear mappings L(A, A) form a Lie algebra under the commutator bracket $[\phi, \psi] := \phi \circ \psi - \psi \circ \phi$, Example 3.16 (where \circ is the usual composition of linear maps). A mapping $\phi \in L(A, A)$ is called *derivation* of the algebra A if it satisfies the Leibniz rule

$$\phi(a \cdot b) = \phi(a) \cdot b + a \cdot \phi(b)$$
 for all $a, b \in A$.

We denote by der(A) the *set of all derivations* of A and note that it forms a Lie subalgebra of $(L(A, A), [\cdot, \cdot])$. (As no topology is involved, this will, in general, not be a locally convex Lie algebra.)

For E a locally convex space, $U \subseteq E$ and $X \in \mathcal{V}(U)$ define the *Lie derivative*

$$\mathcal{L}_X(f) := df \circ X = df(\mathrm{id}_U, X_E) \text{ for } f \in C^{\infty}(U, \mathbb{R}). \tag{D.3}$$

By definition $\mathcal{L}_X(f) = X.f$ in the special case that f is real valued. The reason for the new notation and name will become apparent from the following observations (see also Definition E.9): The pointwise multiplication turns $C^{\infty}(U,\mathbb{R})$ into an associative algebra. Then \mathcal{L}_X is linear in f. Thus

$$\mathcal{L}_X(f \cdot g) = \mathcal{L}_X(f) \cdot g + f \cdot \mathcal{L}_X(g). \tag{D.4}$$

In other words, \mathcal{L}_X is a derivation of the algebra $C^{\infty}(U,\mathbb{R})$.

D.11 Lemma Let $U \subseteq E$ in a locally convex space.

- (a) $\mathcal{L}_{[X,Y]} = \mathcal{L}_X \circ \mathcal{L}_Y \mathcal{L}_Y \circ \mathcal{L}_X$.
- (b) The map $\mathcal{L}: C^{\infty}(U, E) \to \operatorname{der}(C^{\infty}(U, R)), X \mapsto \mathcal{L}_X$ is linear and injective.

(c) The map $[\cdot,\cdot]$: $C^{\infty}(U,E) \times C^{\infty}(U,E) \to C^{\infty}(U,E)$, $(X,Y) \mapsto [X,Y] = X \cdot Y - Y \cdot X$ turns the space $C^{\infty}(U,E)$ into a Lie algebra.

Proof (a) From (1.7) we deduce

$$\mathcal{L}_X(\mathcal{L}_Y(f)) = d^2 f(x; Y(x), X(x)) + df(x; dY(x; X(x))).$$

Also using the formula for *X* and *Y* interchanged, we see that the second-order terms cancel by Schwarz' theorem and thus

$$[\mathcal{L}_X,\mathcal{L}_Y](f)(x) = \mathcal{L}_{[X,Y]}(f)(x).$$

- (b) \mathcal{L}_X is linear in X as $df(x;\cdot)$ is. Thus it suffices to prove that the kernel of \mathcal{L} is trivial. Let $X \in C^\infty(U, E)$ be a map with $X(x) \neq 0$ for some $x \in U$. By the Hahn–Banach theorem, 1.7, we find $\lambda \in E'$ with $\lambda(X(x)) \neq 0$. Then $\mathcal{L}_X(\lambda)(x) = d\lambda(x, X(x)) = \lambda(X(x)) \neq 0$ and thus $\mathcal{L}_X \neq 0$.
- (c) Clearly $[\cdot,\cdot]$ is bilinear, whence $(C^{\infty}(U,E),[\cdot,\cdot])$ is an algebra. Now [X,X]=X.X-X.X=0. Recall that in the Jacobi identity, the entries of the iterated Lie bracket are cyclically permuted. We write shorter $\sum_{\text{cycl}} [X,[Y,Z]]$ for this and thus have to check that this expression vanishes for all $X,Y,Z \in C^{\infty}(U,E)$. However,

$$\mathcal{L}\left(\sum_{\text{cycl}}[X,[Y,Z]]\right) = \sum_{\text{cycl}}[\mathcal{L}_X,[\mathcal{L}_Y,\mathcal{L}_Z]] = 0,$$

where we have used linearity of \mathcal{L} , (a), (b) and the fact that the derivations form a Lie algebra. Since \mathcal{L} is injective by (b), we see that the Jacobi identity holds.

Finally, we show that the Lie bracket of vector fields is continuous if the space *E* is finite dimensional.

D.12 Lemma Let E be a finite-dimensional space and $U \subseteq E$. Then the Lie bracket

$$[\cdot,\cdot]:C^{\infty}(U,E)\times C^{\infty}(U,E)\to C^{\infty}(U,E)$$

is continuous. Hence $(C^{\infty}(U,E),[\cdot,\cdot])$ is a locally convex Lie algebra.

Proof Note that $C^{\infty}(U, E)$ is a locally convex space with respect to the compact open C^{∞} -topology, Proposition 2.4. To establish continuity of the Lie bracket, we deduce from Lemma 2.10 that it suffices to establish continuity of the adjoint map

$$p: C^{\infty}(U, E) \times C^{\infty}(U, E) \times U \to E, \quad (X, Y, u) \mapsto dY(u; X(u)).$$

Recall that the compact-open C^{∞} -topology is initial with respect to the mappings $d^k: C^{\infty}(U,E) \to C(U \times E^k, E)_{\text{c.o.}}, f \mapsto d^k f$. Hence the map $d: C^{\infty}(U,E) \to C(U \times E,E)$ is continuous. We can thus write the adjoint map as a composition of continuous mappings (see Lemma B.10, which uses the that U is locally compact, i.e. E finite dimensional) p(f,g) = ev(d(f),u,ev(g,u)), whence the Lie bracket is continuous.

D.13 Corollary *Let M be a finite-dimensional manifold. Then* $(V(M), [\cdot, \cdot])$ *is a locally convex Lie algebra.*

Proof That the vector fields form a Lie algebra is checked in Exercise 3.2.3. Recall from D.4 that the vector fields were topologised as a subspace of a product of spaces of the form $C^{\infty}(U, E)$, where $U \subseteq M$. By construction of the Lie bracket of two vector fields, the bracket is given by a local formula on chart domains U. Hence it suffices to establish continuity of the local formula on the spaces $C^{\infty}(U, E)$. This was exactly the content of Lemma D.12. \square

D.14 Remark In general, the Lie algebra of vector fields $\mathcal{V}(M)$ will not be a locally convex Lie algebra if M is an infinite-dimensional manifold. Indeed, it can be shown that Lemma D.12 becomes false beyond the realm of Banach spaces. To see this, let $U \subseteq E$ be an open subset of a non-normable space. We consider the subalgebra

$$\mathcal{A} = \{ X_{A,b} \in C^{\infty}(U, E) \mid \text{ for all } v \in E, X_{A,b}(v)$$

= $Av + b$, for $A \in L(E, E), b \in E \}$

of affine vector fields. By construction we can identify $\mathcal{A} \cong L(E,E) \times E$. Here the subspace topology induced by the compact-open C^{∞} -topology of $C^{\infty}(U,E)$ on \mathcal{A} is the product topology, where E carries its natural locally convex topology and the space of continuous linear mappings L(E,E) is endowed with the compact-open topology (i.e. the topology induced by the embedding $L(E,E) \subseteq C_{\text{c.o.}}(E,E)$). Indeed the latter fact is irrelevant for us; we are only interested in the fact that this topology turns L(E,E) into a topological vector space. Now, the Lie bracket of $C^{\infty}(U,E)$ induces the Lie bracket

$$[X_{A,b},X_{C,d}](v)=(A\circ C-C\circ A)(v)+(A(d)-C(b))$$

on the affine vector fields (these facts are left as Exercise D.1.3). To see that this Lie bracket is, in general, not continuous, it suffices to note that the evaluation map $L(E, E) \times E \rightarrow E$, $(A, v) \mapsto A(v)$ is discontinuous. For this we pick $0 \neq v \in E$ and consider the mapping

$$i: E' = L(E, \mathbb{R}) \to L(E, E), \quad \lambda \mapsto (x \mapsto \lambda(x) \cdot v).$$
 (D.5)

If we endow the dual space E' with the compact-open topology (again the subspace topology of $E' \subseteq C_{\text{c.o.}}(E,\mathbb{R})$) then E' becomes a topological vector space and j continuous. However, Proposition A.19 shows that the evaluation map $E' \times E \to \mathbb{R}$ is discontinuous for every topological vector space E which is not normable. As j and scalar multiplication in E are continuous, this implies that the evaluation of L(E,E) must be discontinuous if E is not normable. We deduce that the Lie bracket on $C^{\infty}(U,E)$ must be discontinuous if E is not normable. E

Exercises

- D.1.1 Show that the construction of the topology for V(M) in D.4 is just a special case of C.7.
- D.1.2 Let *A* be an associative algebra. Show that the set of derivations der(A) (see Definition D.10) forms a Lie subalgebra of $(L(A, A), [\cdot, \cdot])$, where the bracket is given by the commutator bracket $[f, g] = f \circ g g \circ f$ of linear maps.
- D.1.3 We provide the missing details in Remark D.14. To this end let $U \subseteq E$ in a locally convex space and endow $C^{\infty}(U,E)$ with the compact-open topology (i.e. the topology induced by the embedding $L(E,E) \subseteq C_{c.o.}(E,E)$). We consider the affine vector fields

$$\mathcal{A} = \{ X_{A,b} \in C^{\infty}(U, E) \mid \text{for all } v \in E, \ X_{A,b}(v) = Av + b,$$

$$\text{for } A \in L(E, E), \ b \in E \}$$

and identify $\mathcal{A} = L(E,E) \times E$ (where L(E,E) denote continuous linear maps). Show that:

- (a) The subspace topology on \mathcal{A} is the product topology of the compact-open topology on L(E,E) and the locally convex topology of E.
- (b) The Lie bracket on $C^{\infty}(U, E)$ induces the Lie bracket

$$[X_{A,b}, X_{C,d}] = (A \circ C - C \circ A) + (A(d) - C(b)) \text{ on } \mathcal{A}.$$

(c) If we endow the dual space E' with the compact-open topology (i.e. the subspace topology of $E' \subseteq C_{\text{c.o.}}(E,\mathbb{R})$), then E' is a topological vector space and the map j from (D.5) becomes continuous.

¹ Even stronger, one can show that the evaluation must be discontinuous on L(E, E) with the compact-open topology for all infinite-dimensional spaces E; see Neeb (2006, Remark I.5.3) for an exposition.