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Abstract

We identify the perverse filtration of a Lagrangian fibration with the monodromy weight filtration of a maximally

unipotent degeneration of compact hyper-Kähler manifolds.

1. Throughout, we work over the complex numbersC. Let" be an irreducible holomorphic symplectic

variety or, equivalently, a projective hyper-Kähler manifold. Assume that it admits a (holomorphic)

Lagrangian fibration c : " → �. The perverse C-structure on the constructible derived category

�1
2 (�,Q) induces a perverse filtration on the cohomology of " ,

%•�
∗(",Q).

We refer to [1, 9] for the conventions of the perverse filtration.

2. Let 5 : M → Δ be a projective degenerating family of hyper-Kähler manifolds over the unit

disk. For C ∈ Δ∗, let # denote the logarithmic monodromy operator on �2(MC ,Q). The degeneration

5 : M → Δ is called of type III if

#2 ≠ 0, #3 = 0.

By [5, Proposition 7.14], this is equivalent to having maximally unipotent monodromy. See the rest of

[5] and also [3, 8] for more discussions on degenerations of hyper-Kähler manifolds.

Let (
�∗

lim(Q),,•�
∗
lim(Q), �•�

∗
lim(C)

)

denote the limiting mixed Hodge structure1 associated with 5 : M → Δ . In this short note, we prove

the following result relating the perverse and the monodromy weight filtrations.

1Similar to the perverse filtration, we consider the Hodge filtration as an increasing filtration.
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3. Theorem. For any Lagrangian fibration c : " → �, there exists a type III projective degeneration
of hyper-Kähler manifolds 5 : M → Δ with MC deformation equivalent to " for all C ∈ Δ∗, such that

%:�
∗(",Q) = ,2:�

∗
lim(Q) = ,2:+1�

∗
lim(Q) (1)

through an identification of the cohomology algebras �∗(",Q) = �∗
lim

(Q).

Because " and MC are deformation equivalent, and hence diffeomorphic, they share the same

cohomology. The limiting mixed Hodge structure can be viewed as supported on the cohomology of

MC , which provides the required identification �∗(",Q) = �∗
lim

(Q). This identification will be built

into the construction of the degeneration 5 : M → Δ .

4. Theorem 3 was previously conjectured by the first author in [4, Conjecture 1.4] and proven in the

case of  3 surfaces.

The interaction between the perverse and the weight filtrations for certain (noncompact) hyper-Kähler

manifolds was first discovered by de Cataldo, Hausel, and Migliorini [1], which is now referred to as the

% = , conjecture. More precisely, the % = , conjecture identifies the perverse filtration of a Hitchin

fibration with the weight filtration of the mixed Hodge structure of the corresponding character variety

through Simpson’s nonabelian Hodge theory [11]. Theorem 3 can be viewed as a direct analogue of this

conjecture.

5. Theorem 3 also offers conceptual explanations to the main results in [9]. As is remarked in [4,

Introduction], a recent result of Soldatenkov [12, Theorem 3.8] shows that limiting mixed Hodge

structure for type III degenerations is of Hodge-Tate type.2 In particular, we have

dimQGr,28 �
8+ 9
lim

(Q) = dimC Gr�8 �
8+ 9
lim

(C).

Coupled with the equalities (by (1) and the definition of the limiting Hodge filtration)

dimQGr%8 �
8+ 9 (",Q) = dimQGr,28 �

8+ 9
lim

(Q),
dimC Gr�8 �

8+ 9
lim

(C) = dimC Gr�8 �
8+ 9 (MC ,C) = dimC Gr�8 �

8+ 9 (",C),

this yields the ‘Perverse = Hodge’ equality in [9, Theorem 0.2],

dimQGr%8 �
8+ 9 (",Q) = dimC Gr�8 �

8+ 9 (",C).

See [9, Section 0.4] for various applications of this equality.

Moreover, the % = , identity (1) implies the multiplicativity of the perverse filtration

∪ : %:�
3 (",Q) × %:′�

3′ (",Q) → %:+:′�
3+3′ (",Q)

through the general fact that the monodromy weight filtration is multiplicative. The latter may follow

from a combination of results of Fujisawa and Steenbrink. Fujisawa [2, Lemma 6.16] proved that the

wedge product on the relative logarithmic de Rham complex of a projective semistable degeneration

induces a cup product on the hypercohomology groups that respects a particular weight filtration. In a

much earlier work [13, Section 4], Steenbrink identified the hypercohomology of the relative logarithmic

de Rham complex with the cohomology of the nearby fibre, in such a way that the cup product matches

the topological cup product and the weight filtration corresponds to the monodromy weight filtration.

Alternatively, as the referee pointed out,3 monodromy acts on cohomology by algebra automorphisms.

The logarithmic monodromy operator then acts on the cohomology algebra as a derivation, which yields

the multiplicativity of the monodromy weight filtration. This recovers [9, Theorem A.1].

2This parallels the fact that the mixed Hodge structure of character varieties is of Hodge-Tate type; see [10].
3We thank the referee for suggesting this simpler argument.
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Because the proof of Theorem 3 uses the same ingredients as in [9], our new way of deriving these

results is not logically independent.

6. We now prove Theorem 3 and we make free use of the statements in [9]. To fix some notation,

let c : " → � be a Lagrangian fibration with dim" = 2 dim � = 2=. The second cohomology group

�2 (",Z) (respectively �2 (",Q)) is equipped with the Beauville-Bogomolov-Fujiki quadratic form

@" (−) of signature (3, 12 (") − 3), where 12 (") is the second Betti number of " .

Let [ ∈ �2(",Q) be a c-relative ample class, and let V ∈ �2 (",Q) be the pullback of an ample

class on �. We have @" (V) = 0 and, by taking Q-linear combinations of [ and V, we may assume

@" ([) = 0. Note that in this case, we have 12 (") ≥ 4.

7. Consider the following operators on the cohomology �∗(",Q):

![ (−) = [ ∪ −, !V (−) = V ∪ −.

In [9, Section 3.1], it was shown that ![ and !V form sl2-triples (![ , �[ ,Λ[) and (!V , �V ,ΛV), which

generate an sl2 × sl2-action on �∗(",Q). The action induces a weight decomposition

�∗(",Q) =
⊕

8, 9

%8, 9 (2)

with

�[ |%8, 9 = (8 − =) id, �V |%8, 9 = ( 9 − =) id.

A key observation in [9, Proposition 1.1] is that (2) provides a canonical splitting of the perverse

filtration %•�∗(",Q). More precisely, we have

%:�
3 (",Q) =

⊕

8+ 9=3
8≤:

%8, 9 . (3)

8. The sl2 × sl2-action above is part of a larger Lie algebra action on �∗(",Q) introduced by

Looijenga-Lunts [7, Section 4] and Verbitsky [14, 15]. The Looijenga-Lunts-Verbitsky algebra

g ⊂ End
(
�∗(",Q)

)

is defined to be the Lie subalgebra generated by all sl2-triples (!l , �,Λl) with l ∈ �2(",Q) such

that !l (−) = l ∪ − satisfies hard Lefschetz.

Given a Q-vector space + equipped with a quadratic form @, we define the Mukai extension

+̃ = + ⊕ Q2, @̃ = @ ⊕
(

0 −1
−1 0

)
.

Looijenga–Lunts [7, Proposition 4.5] and Verbitsky [15, Theorem 1.4] showed independently that

g ≃ so(�̃2 (",Q), @̃" ), gR ≃ so(4, 12(") − 2).

Here the statement with Q-coefficients is taken from [3, Theorem 2.7]. Moreover, there is a weight

decomposition g = g−2 ⊕ g0 ⊕ g2 with natural isomorphisms

g−2 ≃ �2 (",Q), g0 ≃ so(�2 (",Q), @" ) ⊕ 〈�〉, g2 ≃ �2(",Q). (4)

Another relevant Lie algebra is generated by the sl2-triples associated with [, V and a third element

d ∈ �2(",Q) satisfying

@" (d) > 0, @" ([, d) = @" (V, d) = 0.
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Such a d exists by the signature (3, 12 (") − 3) of @" . Let gd ⊂ g denote this Lie subalgebra and let

+d = 〈[, V, d〉 ⊂ �2(",Q).

By [9, Corollary 2.6] complemented with the argument in [3, Theorem 2.7], we have

gd ≃ so(+̃d, @̃" |
+̃d
). (5)

The gd-action on �∗(",Q) induces the same weight decomposition as (2); see [9, Section 3.1].

9. Recall the natural isomorphism
∧2 �2(",Q) ≃ so(�2 (",Q), @" ) defined by

0 ∧ 1 ↦→ 1

2
@" (0,−) 1 − 1

2
@" (1,−) 0.

As in [12, Lemma 4.1], we obtain a nilpotent operator #V,d = V∧ d ∈ so(�2(",Q), @" ) whose action

on �2 (",Q) satisfies

Im(#V,d) = 〈V, d〉, Im(#2
V,d) = 〈V〉, #3

V,d = 0.

By [6, Lemma 3.9] and the assumption @" (V, d) = 0, we can further identify #V,d with the commutator

[!V ,Λd] ∈ g0 through the isomorphisms (4). Note that #V,d = [!V ,Λd] ∈ gd.

In the two remaining sections, we show that the nilpotent operator #V,d induces an sl2-triple whose

weight decomposition splits both the perverse filtration %•�∗(",Q) and the monodromy weight filtra-

tion of a degeneration 5 : M → Δ . This completes the proof of Theorem 3.

10. The construction of a degeneration 5 : M → Δ with logarithmic monodromy #V,d is precisely

[12, Theorem 4.6]. Whereas the original statement requires 12(") ≥ 5 to ensure the existence of

an element V ∈ �2(",Q) with @" (V) = 0, in our situation V is readily given by the Lagrangian

fibration c : " → �. From the proof of [12, Theorem 4.6], it suffices to find an element ℎ ∈ �2(",Z)
satisfying

@" (ℎ) > 0, @" (V, ℎ) = @" (d, ℎ) = 0

in order to obtain nilpotent orbits (#V,d, G) with G ∈ D̂ℎ as in [12, Definition 4.3].4 These nilpotent orbits

eventually provide the required degeneration 5 : M → Δ through global Torelli. Now because @" is of

signature (3, 12 (") − 3) and @" |+d
is only of signature (2, 1) (recall that 12 (") ≥ 4), such an ℎ exists.

By Jacobson-Morozov, the nilpotent operator #V,d ∈ gd is part of an sl2-triple that we denote (!# =

#V,d, �# ,Λ# ). Consider the action of this sl2 on �∗(",Q) and the associated weight decomposition

�∗(",Q) =
⊕

3,<

,3
< (6)

with �# |, 3
<
= < id. By the definition of the monodromy weight filtration, we have

,:�
3
lim(Q) =

⊕

3−<≤:
,3

<. (7)

11. Finally, we match the perverse decomposition (2) with the weight decomposition (6). Because

both decompositions are defined over Q, it suffices to work with C-coefficients.

We recall some basic facts about so(5,C)-representations. Let+ be a C-vector space admitting three

sl2-actions (!1, �,Λ1), (!2, �,Λ2) and (!3, �,Λ3) that generate an so(5,C)-action. More concretely,

the operators

!B , ΛB ,  BC = [!B ,ΛC ], �, for B, C ∈ {1, 2, 3}

4Here D̂ℎ is the extended polarised period domain with respect to ℎ ∈ � 2 (", Z) .
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satisfy the relations (2.1) in [14]. We consider the Cartan subalgebra

h = 〈�,−
√
−1 23〉 ⊂ so(5,C)

and the associated weight decomposition

+ =
⊕

8, 9

+ 8, 9

with

� |+ 8, 9 = (8 + 9 − 2=) id, (−
√
−1 23) |+ 8, 9 = (8 − 9) id.

We define a nilpotent operator

!# =

[
1

2
!2 −

√
−1

2
!3, Λ1

]
= −1

2
 12 +

√
−1

2
 13 ∈ so(5,C),

which induces an sl2-triple (!# , �# ,Λ# ) with

Λ# =

[
−1

2
!2 −

√
−1

2
!3, Λ1

]
=

1

2
 12 +

√
−1

2
 13, �# =

√
−1 23.

In particular, we have �# |+ 8, 9 = ( 9 − 8) id. The weight decomposition with respect to this sl2-action

then takes the form

+ =
⊕

<

+3
<, +3

< =
⊕

8+ 9=3
9−8=<

+ 8, 9

with �# |+ 3
<
= < id.

In our geometric situation, let + be the total cohomology �∗(",C). We consider the three operators

!1, !2, !3 determined by

!1 = !d,
1

2
!2 +

√
−1

2
!3 = ![ ,

1

2
!2 −

√
−1

2
!3 = !V ,

which induce a representation of so(5,C) by (5). In particular, we have + 8, 9 = %
8, 9

C
. Moreover, the

nilpotent operator !# is exactly #V,d = [!V ,Λd]. We conclude from (3) and (7) that

%:�
3 (",C) =

⊕

8+ 9=3
8≤:

%
8, 9

C
=

⊕

8+ 9=3
9−8=<

3−<≤2:

+ 8, 9 =
⊕

3−<≤2:

+3
< =

⊕

3−<≤2:

,3
<,C

= ,2:�
3
lim(C).
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