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Abstract

Let S be a finitely generated pro-p group. Let Ep′ (S ) be the class of profinite groups G that have S as a
Sylow subgroup, and such that S intersects nontrivially with every nontrivial normal subgroup of G. In
this paper, we investigate whether or not there is a bound on |G : S | for G ∈ Ep′ (S ). For instance, we give
an example where Ep′ (S ) contains an infinite ascending chain of soluble groups, and on the other hand
show that |G : S | is bounded in the case where S is just infinite.
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1. Introduction

Groups of prime power order are a pervasive feature of finite group theory. This is
clearest in Sylow’s theorem and more generally in the theory of fusion (also known
as local analysis). The immediate goal is to understand the manner in which a
p-group can be embedded in a finite group, especially with regard to the normalizers
of its subgroups, as a tool for understanding finite groups by means of the p-groups
contained in them. The theory of fusion in finite groups is well developed, and in
particular played a large role in the classification of finite simple groups. It has also
developed into a more general theory of fusion systems of finite p-groups, which do
not necessarily arise from fusion within a finite group. (See [2] for an account of this
theory.)

Sylow’s theorem generalizes directly to profinite groups: in a profinite group G,
every pro-p subgroup is contained in a maximal pro-p subgroup, which we call a p-
Sylow subgroup, all p-Sylow subgroups are conjugate, and if S is a p-Sylow subgroup
of G then S N/N is a p-Sylow subgroup of G/N for every (finite or profinite) quotient
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of G. In principle, the theory of fusion can be developed for profinite groups in
much the same way as for finite groups. Indeed, the fact that pro-p groups are
generally better understood than profinite groups would suggest this as an approach
for extending results from the former class to the latter. However, fusion theory is
much less developed for profinite groups than for finite groups. As far as the author is
aware, the first significant foray into this area was a paper by Gilotti et al. [5]; since
then, fusion and fusion systems in a profinite context have also been developed by
Stancu and Symonds (see [12]; see also [10]).

A basic problem in this area is to understand the profinite groups that have a given
p-Sylow subgroup S . Write p′ for the set of primes other than p. Any profinite group G
has a unique largest normal pro-p′ subgroup Op′(G), the p′-core of G. From the point
of view of the associated fusion system on S (that is, the category of homomorphisms
between closed subgroups of S that are induced by conjugation in G), the p′-core
plays no role, in that fusion in a p-Sylow subgroup of G is equivalent to fusion in a
p-Sylow subgroup of G/Op′(G). In any case, the p-Sylow subgroups of G impose
no meaningful restriction on the structure of Op′(G); for instance, we could have
G = S × H where H is any pro-p′ group. So we are left with the following problem.

Problem 1.1. Let S be a pro-p group. Let Ep′(S) be the class of profinite groups
that have S as a p-Sylow subgroup and have no nontrivial normal pro-p′ subgroups.
Describe Ep′(S) in terms of internal properties of S .

Describing the groups in Ep′(S) up to isomorphism is a difficult problem, even if S
is a finite group. A natural question to ask in this context is the following.

Question 1.2. For which pro-p groups S is there a bound on |G : S | for G ∈ Ep′(S)?

This question, and variants of it, will be the focus of this paper. From now on, we
will say that Ep′(S) (or a subclass of Ep′(S)) is bounded if there is a natural number
n such that |G : S | ≤ n for all G ∈ Ep′(S). Note that the index |G : S | is bounded if
and only if |G : Op(G)| is bounded, since if G has a p-Sylow subgroup of index n,
then it has a normal pro-p subgroup of index dividing n!. For the purposes of this
paper, all subgroups are required to be closed and all homomorphisms are required
to be continuous. We will concentrate on the case where S is (topologically) finitely
generated, which appears to be more tractable. The following can be deduced from a
theorem of Tate.

Lemma 1.3. Let S be a finitely generated pro-p group. Then every group in Ep′(S) is
virtually pro-p.

Thus, in this case, |G : S | is finite for all G ∈ Ep′(S). However, it does not follow
that Ep′(S) is bounded. For instance, if S is the cyclic group of order p for some
p ≥ 3, then Ep′(S) contains infinitely many finite simple groups of the form PSL(2, q)
for q a prime, using Dirichlet’s theorem on arithmetic progressions in the primes. We
can avoid examples of this form by considering two more restricted classes of p′-
embeddings.
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Definition 1.4. Let G be a profinite group. A component of G is a subnormal subgroup
Q such that Q is perfect and Q/Z(Q) is simple. (Note that these conditions ensure that
Q is finite.) Define the layer E(G) of G to be the closed subgroup of G generated by
the components of G. Given a pro-p group S , define ELF

p′ (S) to be the class of groups
G ∈ Ep′(S) such that E(G) = 1. Define Esep

p′ (S) to be the class of groups in Ep′(S) that are
p-separable, that is, which have no nonabelian composition factors of order divisible
by p.

The pro-Fitting subgroup F(G) of G is the unique largest normal pronilpotent
subgroup of G. The generalized pro-Fitting subgroup F∗(G) of G is given by F∗(G) =

F(G)E(G).

In a virtually pronilpotent group, the generalized pro-Fitting subgroup contains its
own centralizer (see [8]), so if G ∈ ELF

p′ (S) for a finitely generated pro-p group S ,
then Op(G) contains its own centralizer in G, and indeed G/Op(G) acts faithfully on
Op(G)/Φ(Op(G)). So if S is finite, or more generally if S has finite subgroup rank,
then we obtain a bound on |G : Op(G)|, so ELF

p′ (S) is bounded. However, there do
exist finitely generated pro-p groups S such that ELF

p′ (S) and Esep
p′ (S) are unbounded.

Consider for instance the following proposition.

Proposition 1.5. Let p and q be distinct primes. Then there exist a (q + 1)-generator
metabelian pro-p group S and an infinite ascending chain

S < G0 < G1 < G2 < · · ·

of profinite groups, each open in the next, with the following properties:

– The union G =
⋃

i≥0 Gi is a soluble group of derived length 3, and G = S Q where
Q is a countably infinite discrete elementary abelian q-group.

– For all i ≥ 0, Op′(Gi) = 1, so Gi ∈ E
sep
p′ (S).

– The fusion systems FGi (S) are pairwise nonisomorphic; indeed, the fusion of
conjugacy classes of S in Gi and G j is inequivalent for all i , j.

There are significant restrictions on the structure of p′-embeddings of 2-generator
pro-p groups (see Theorem 6.2 below). The reason for this is the role played normal
subgroups P of a pro-p group S that are not contained in Φ(S), and in the 2-generator
case, P 6≤ Φ(S) implies S/P is cyclic (in particular, P ≥ S ′). In a similar manner, we
obtain the following theorem.

Theorem 1.6. Let S be an infinite finitely generated pro-p group. Suppose that every
normal subgroup of S of infinite index is contained in Φ(S). Then Ep′(S) = ELF

p′ (S) and
E

sep
p′ (S) is bounded. If in addition |S : S (n)| is finite for all n, then Ep′(S) is bounded.

The hypotheses of Theorem 1.6 are immediately satisfied if S is generated by two
elements and |S : S (n)| is finite for all n, because the order of a cyclic quotient is at
most |S : S ′|. The hypotheses of Theorem 1.6 are also satisfied by all just infinite
pro-p groups of infinite subgroup rank. As a result we obtain the following theorem.
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Theorem 1.7. Let S be a just infinite pro-p group. Then Ep′(S) is bounded.

In general, for a given finitely generated pro-p group S , the question of whether
Ep′(S), ELF

p′ (S) or Esep
p′ (S) is bounded reduces to considering p′-embeddings of more

restricted types (see Theorem 4.2). We also obtain several restrictions (Theorem 8.3)
on the structure of groups in Ep′(S) in the case where S is weakly regular, that is, S
does not have a quotient isomorphic to Cp o Cp. This class of pro-p groups includes,
for instance, all nilpotent pro-p groups of class less than p and all powerful pro-p
groups. It is not known if there are any finitely generated weakly regular pro-p groups
S for which ELF

p′ (S) is unbounded.

2. Preliminaries

We gather here some basic facts and definitions we will need about finite and
profinite groups.

Definition 2.1. Let G be a profinite group. Define d(G) to be the size of the smallest
subset X of G such that G = 〈X〉. Say that G is n-generated if d(G) ≤ n.

Define G′ to be the closed commutator subgroup [G,G], and define G(n) inductively
by G(0) = G and G(n+1) = (G(n))′. Write Gn for the smallest closed subgroup of G
containing all nth powers in G.

Given a prime (or set of primes) p, the p-core Op(G) is the largest normal pro-p
subgroup of G, and the p-residual Op(G) is the smallest normal subgroup of G such
that G/Op(G) is a pro-p group.

Lemma 2.2. Let G be a profinite group and let Q be a set of components of G. Then
K = 〈Q〉 is a central product of Q and no proper subset of Q suffices to generate K
topologically. Every component of G is contained in a finite normal subgroup of G.

Proof. See [8, Proposition 2.8]. �

Lemma 2.3. Let P be a finitely generated pro-p group and let G = P o H be a profinite
group such that CH(P) = 1.

(i) Suppose that there is an H-invariant series

P = P1 ≥ P2 ≥ · · ·

of normal subgroups of P, such that
⋂

Pi = 1, and such that [Pi,H] ≤ Pi+1 for
each i. Then H is a pro-p group.

(ii) Define the characteristic series Pi by P1 = P, and thereafter Pi+1 = [P, Pi]P
p
i .

Suppose that H acts trivially on P/Φ(P). Then H acts trivially on Pi/Pi+1 for all
i. In particular, H is a pro-p group.

(iii) Suppose that P is finite and abelian, and H is a p′-group. Then P = [P,H] ×
CP(H).

Proof. For parts (i) and (ii) see [6, Exercise 2.1 (2)]; the generalization to profinite
groups is immediate. For part (iii) see [1, Proposition 24.6]. �
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Lemma 2.4. Let G be a profinite group that is virtually pronilpotent. Then

CG(F∗(G)) = Z(F(G)).

Proof. This is a special case of [8, Theorem 1.7]. �

Corollary 2.5. Let S be a finitely generated pro-p group, let G ∈ ELF
p′ (S) and let

P = Op(G). Then G/P acts faithfully on P/Φ(P). Hence H ∈ ELF
p′ (S) for all closed

subgroups H of G containing S .

Proof. By Lemma 2.4, we have CG(P) ≤ P. By Lemma 2.3, the section

CG(P/Φ(P))
CG(P)

is a pro-p group, so CG(P/Φ(P)) is a pro-p group. It follows that P ≤ CG(P/Φ(P)),
since Φ(P) ≥ P′. But P is the largest normal pro-p subgroup of G, so in fact
P = CG(P/Φ(P)).

Now let H be a subgroup of G containing S . Then CH(Op(H)) ≤ CH(P) ≤ P, since
P is a normal pro-p subgroup of H. This ensures that E(H) and Op′(H) are both trivial.
Clearly S is a p-Sylow subgroup of H, so H ∈ ELF

p′ (S). �

Definition 2.6. Let P be a finite p-group. A characteristic subgroup K of P is critical
if [P,K]Φ(K) ≤ Z(K) and CP(K) = Z(K).

Theorem 2.7 (Thompson, [3, Ch. II, Lemma 8.2]). Let P be a finite p-group. Then P
has a critical subgroup. If K is a critical subgroup of P, then the kernel of the induced
homomorphism Aut(P)→ Aut(K) is a p-group.

3. Control of p-transfer in profinite groups

An important notion in finite group theory is the transfer map, which is a
homomorphism that is defined from a finite group to any of its abelian sections. We
will not be using the transfer map directly, but we will be using the closely related
notion of control of transfer, and more precisely control of p-transfer. Control of
transfer is a concept that behaves well in the class of profinite groups; see, for instance,
[5]. (Note, however, that our definition of which subgroup controls transfer is slightly
different from that used in [5].)

Definition 3.1. Let G be a profinite group, let H be a subgroup, and let H ≤ K ≤ G.
Say that K controls transfer from G to H if G′ ∩ H = K′ ∩ H. In the special case
where H is a p-Sylow subgroup of G, say that K controls p-transfer in G. There is
a potential ambiguity in saying that K controls p-transfer in G without specifying the
Sylow subgroup, but since all Sylow subgroups of G contained in K are conjugate in
K, the choice of Sylow subgroup is immaterial in practice.

The theorem below is an interpretation essentially due to Gagola and Isaacs [4] of
a theorem of Tate [13]. Both [13] and [4] state the result for finite groups, but the
generalization to profinite groups is immediate.
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Theorem 3.2 (Tate, Gagola and Isaacs). Let G be a (pro-)finite group, let S be a p-
Sylow subgroup of G, and let S ≤ K ≤ G. The following are equivalent:

(i) G′ ∩ S = K′ ∩ S;
(ii) (G′Gp) ∩ S = (K′K p) ∩ S;
(iii) (G′Op(G)) ∩ S = (K′Op(K)) ∩ S;
(iv) Op(G) ∩ S = Op(K) ∩ S.

From now on, the statement ‘K controls p-transfer in G’ will be taken to mean any
of the four equations above interchangeably.

In a profinite group G, a normal p-complement is a (necessarily unique) normal
subgroup N such that G = S N and S ∩ N = 1, where S is a p-Sylow subgroup of G.
Theorem 3.2 has some immediate consequences for normal p-complements in normal
subgroups of (pro-)finite groups (indeed, this was the original motivation of Tate’s
result in the finite context).

Corollary 3.3. Let G be a profinite group, and let S ∈ Sylp(G).

(i) Let M be a normal subgroup of G such that S ∩ M ≤ Φ(S). Then S M has a
normal p-complement, and Op′(G/M) = Op′(G)M/M.

(ii) Let M and N be normal subgroups of G such that S ∩ M ≤ Φ(S)N. Then MN/N
has a normal p-complement.

Proof. (i) For any normal subgroup M of G, we have (S M)′(S M)p = Φ(S)M. The
condition S ∩ M ≤ Φ(S) then implies that

((S M)′(S M)p) ∩ S = Φ(S)M ∩ S = Φ(S) = S ′S p.

Hence Op(S M) ∩ S = Op(S) ∩ S = 1 by Theorem 3.2; in other words, Op(S M) is the
normal p-complement of S M. Note that Op(S M) is also a normal p-complement in
M.

For the final assertion, let O be the lift of Op′(G/M) to G. It is clear that
O ≥ Op′(G)M. On the other hand, S ∩ O = S ∩ M ≤ Φ(S), so O has a normal p-
complement K, by the same argument as for M. Now M contains a p-Sylow subgroup
of O, so O = KM, and K is a normal pro-p′ subgroup of G, so K ≤ Op′(G), and hence
O = Op′(G)M.

(ii) MN/N is a normal subgroup of G/N, and Φ(S/N) = Φ(S)N/N contains
(M ∩ S )N/N. The result follows by part (i) applied to G/N. �

Proof of Lemma 1.3. Since Φ(S) is open in S , there is some open normal subgroup N
of G such that S ∩ N ≤ Φ(S). By Corollary 3.3, N has a normal p-complement, that
is, N/Op′(N) is a pro-p group. Now Op′(N) ≤ Op′(G) = 1, so in fact N is pro-p; since
N is open in G, it follows that G is virtually pro-p. �

It is worth noting in particular a sufficient condition under which every p′-
embedding is layer-free.
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Corollary 3.4. Let S be a finitely generated pro-p group and let G ∈ Ep′(S). Suppose
that Φ(S) contains every finite normal subgroup of S . Then E(G) = 1.

Proof. Certainly E(G) is finite, since G is virtually pro-p by Lemma 1.3, so E(G) ∩ S
is a finite normal subgroup of S . Additionally, p divides the order of every component
of G, since Op′(G) = 1. But E(G) ∩ S ≤ Φ(S), so E(G) has a normal p-complement.
Hence E(G) = 1. �

Definition 3.5. Let S be a finitely generated pro-p group and let G be a p′-embedding
of S . Say that G is Frattini if Op(G) ≤ Φ(S), or more generally, say that G is quasi-
Frattini if Op(G) ∩ Φ(S) is normal in G.

Given a profinite group G, define the p-layer Ep(G) to be the set of components of
G of order divisible by p. (Note that if a quasisimple group Q is of order divisible by
p, then the simple quotient Q/Z(Q) is also of order divisible by p.)

Lemma 3.6. Let G be a (topological) group and let α be an automorphism of G (as
a topological group) that acts trivially on G/Z(G). Then α acts trivially on G′. In
particular, if G is (topologically) perfect then Aut(G) acts faithfully on G/Z(G).

Proof. Let α be an automorphism of G and write [α, x] for xα(x−1). Suppose that
[α, x] ∈ Z(G) for all x ∈ G. Then for all x, y ∈ G, there exist s and t in Z(G) such that

α([x, y]) = [α(x), α(y)] = [xs, yt] = [x, y],

so α fixes every commutator in G. Since G′ is generated topologically by the
commutators in G, it follows that the action of α on G′ is trivial. �

Lemma 3.7. Let S be a nontrivial finitely generated pro-p group and let G ∈ Ep′(S)
be quasi-Frattini. Then S/Op(G) acts faithfully on Ep(G/Op(G)). In particular, G is
p-separable if and only if S EG. If G ∈ Ep′(S) is Frattini, then G/Op(G) acts faithfully
on Ep(G/Op(G)).

Proof. Let K = Op(G) ∩ Φ(S) and let E = Ep(G/Op(G)). By Corollary 3.3(i),
Op′(G/K) = 1. Thus F∗(G/K) is generated by Op(G)/K together with the components
of G/K, and all components of G/K have order divisible by p. The centralizer
of F∗(G/K) inside G/K is Z(F∗(G/K)), which is a subgroup of Op(G/K) since
Op′(G/K) = 1. The action of S on Op(G)/K is trivial, since Op(G)/K corresponds
to Op(G)Φ(S)/Φ(S), which is a central factor of S as Φ(S) ≥ [S , S ]. Thus the kernel of
the action of S/K on Ep(G/K) is contained in Op(G). Now E corresponds to a quotient
of the perfect group Ep(G/K) by a central subgroup, so S/Op(G) acts faithfully on E
by Lemma 3.6. If S is not normal in G, then S/Op(G) is nontrivial, so E is also
nontrivial, so G is not p-separable.

If Op(G) ≤ Φ(S), then K = Op(G), so F∗(G/K) = Ep(G/K) = E, and Z(Ep(G/K)) =

1 so the action of G/Op(G) on E is faithful. �
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4. The critical cases

In this section, we establish ‘critical’ subclasses of Ep′(S), ELF
p′ (S) and Esep

p′ (S) with
more restricted structure, such that for a fixed finitely generated pro-p group S , the
class Ep′(S), ELF

p′ (S) or Esep
p′ (S) is bounded if and only if the corresponding critical

subclass is bounded.

Definition 4.1. Let G be a p′-embedding of the finitely generated pro-p group S and
write P = Op(G). Define the subclasses Cab

p′ (S), Ccrit
p′ (S), CLF

p′ (S) and CL
p′(S) of Ep′(S)

respectively as follows.
Let G ∈ Cab

p′ (S) if G = S H such that H is a nontrivial finite elementary abelian q-
group (for q a prime distinct from p), HP/P is a minimal normal subgroup of G/P,
G = Oq(G) and NG(P ∩ Φ(S)) = S .

Let G ∈ Ccrit
p′ (S) if G = S H such that H is a nonabelian finite q-group (for q a prime

distinct from p) that has no proper critical subgroups in the sense of Thompson (in
particular, H is critical in itself, so Φ(H) ≤ Z(H)), HP/Z(H)P is a chief factor of G,
G = Oq(G) and NG(P ∩ Φ(S)) ≤ S Z(H). Define Csep

p′ (S) := Cab
p′ (S) ∪ Ccrit

p′ (S).
Let G ∈ CLF

p′ (S) if E(G) = 1 and G = S Q such that Q ≥ P and Q/P is the normal
closure of a component of G/P of order divisible by p.

Let G ∈ CL
p′(S) if G = S Q such that Q is the normal closure of a component of G.

(Here the component is necessarily of order divisible by p.)

Theorem 4.2. Let S be a finitely generated pro-p group:

(i) if Csep
p′ (S) is bounded then Esep

p′ (S) is bounded;
(ii) if Csep

p′ (S) and CLF
p′ (S) are bounded then ELF

p′ (S) is bounded;
(iii) if Csep

p′ (S), CLF
p′ (S) and CL

p′(S) are bounded then Ep′(S) is bounded.

Definition 4.3. Let S be a finitely generated pro-p group. Define the invariant d f (S)
to be the maximum value of logp |KΦ(S) : Φ(S)| as K ranges over the finite normal
subgroups of S . For instance, d f (S) = d(S) if and only if S is finite, while d f (S) = 0 if
and only if all finite normal subgroups of S are contained in Φ(S).

Lemma 4.4. Let G be a profinite group with a finitely generated p-Sylow subgroup
S . Let X be a set of finite normal subgroups of G and let H = 〈X〉. Then there is a
subset K of X such that |K| ≤ logp |HΦ(S) : Φ(S)| and such that H/〈K〉 has a normal
p-complement.

In particular, if Ω is the set of components of G of order divisible by p, then S has
at most d f (S) orbits on Ω (acting by conjugation).

Proof. Given a normal subgroup N of G, write VS (N) = (N ∩ S )Φ(S)/Φ(S), regarded
as a subspace of S/Φ(S) � (Fp)d(S). Since H is generated byX, there are H1, . . . ,Hk ∈ X

such that
VS (H) = VS (H1) + · · · + VS (Hk),
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and such that k ≤ dim(VS (H)) = logp |HΦ(S) : Φ(S)|. Now set K = {H1, . . . ,Hk} and
let K = 〈K〉; then clearly

Φ(S)(H ∩ S ) = Φ(S)(K ∩ S ),

so H/K has a normal p-complement by Corollary 3.3(ii).
For the final assertion, let H = 〈Ω〉. Without loss of generality, we may assume that

G = S H; as H is a central product of the elements of Ω, the S -orbits on Ω are the same
as G-orbits. Indeed H = 〈X〉, where X consists of the normal subgroups of G formed
by taking the product of the S -conjugates of a single element of Ω. Since no element
of X is redundant in generating H and H has no p-separable images, we conclude that
|X| ≤ d f (S), so there are at most d f (S) orbits of S on Ω. �

Lemma 4.5. Let P be a finite abelian p-group. Write Ωi(P) for the group of elements
of P of order dividing pi. Let α be a nontrivial automorphism of P of order coprime to
p. Then α induces a nontrivial automorphism of Ω1(P).

Proof. Clearly Ω1(P) is characteristic, so α induces an automorphism of Ω1(P). Let
G = P o 〈α〉. Suppose that α fixes Ω1(P) pointwise. Let pi+1 be the exponent of P, and
let x ∈ P. Then xpi

∈ Ω1(P), so α(x)x−1 has order dividing pi, since

(α(x)x−1)pi
= α(xpi

)(xpi
)−1 = 1.

In other words, [〈α〉, P] ≤ Ωi(P) and hence [G,G,G] ≤ Ωi(P) since G′ ≤ P. Repeating
the argument, we see that G is nilpotent. But then G is the direct product of its Sylow
subgroups, so α centralizes P. �

Proof of Theorem 4.2. Let G be a p′-embedding of S . In all cases we will obtain
subgroups L1, . . . , Lk of G, each belonging to one of the classes Csep

p′ (S), CLF
p′ (S) and

CL
p′(S) (depending on whether E(G) = 1 and/or G is p-separable), such that |G : S | is

bounded by a function of max |Li : S | and S .
Let P = Op(G) and let P ≤ F ≤G such that F/P = F∗(G/P). Then the order of G/P,

and thus the index |G : S |, is bounded by a function of |F : P|, since the generalized
Fitting subgroup of G/P contains its own centralizer. In turn |F : P| = |F : Op(F)| is
bounded by a function of the p′-order of F, which is |FS : S |. Thus we may assume
that G = FS .

In this case G is the (permutable) product of the subgroups S , Fp1 , . . . , Fpm ,
E1, . . . , En, with p, p1, . . . , pm distinct primes, such that Fpi/P = Opi (G/P) and E j/P
is the group generated by the S/P-conjugates of a component of G/P. Moreover, n is
at most d(S) by Lemma 4.4.

Let H = S Fpi for some i. Then H is prosoluble. Moreover, CH(P) ≤ P, because
CG(P)/Z(P) acts faithfully on E(G) by Lemma 2.4, whereas H centralizes E(G). Thus
H ∈ Esep

p′ (S).
If G is prosoluble then n = 0. Otherwise let K = S E j for some j. Then Op′(E j) =

Op′(G) = 1, since E j is normal in G, so Op′(K) = 1. Thus K ∈ Ep′(S). Also, any
component of K is a component of E j and hence of G, so if E(G) = 1 then E(K) = 1.
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Thus each of the subgroups S Fpi and S E j are p′-embeddings of S , and to obtain a
bound on |G : S | it suffices to bound the p′-order of each of the subgroups S Fpi and
S E j individually.

Suppose that G = S E1. If E(G) > 1, then some and hence all components of G/P
arise from components of G, that is, G = S E(G). Since the components of G/P form
a single S -orbit, the same is true for the components of G, so G ∈ CL

p′(S). Suppose
instead that E(G) = 1 and |E1/P| is coprime to p. Then by the Frattini argument,
for each prime q dividing |E1/P| there is a q-Sylow subgroup Hq/P of E1/P that is
normalized by S/P, and then to bound the p′-order of G it suffices to bound the p′-
orders of the groups S Hq for all primes q. By Corollary 2.5, S Hq is a p′-embedding
of S . Thus this situation reduces to considering prosoluble p′-embeddings, which in
turn reduces to p′-embeddings of the form G = S Fpi .

The only remaining case of interest if G = S E1 is if E(G) = 1 and p divides |E1/P|,
in which case G ∈ CLF

p′ (S) by construction.
We have now reduced to the case G = S Fq, where q = p1 is some prime distinct

from p.
Let N be the class of p-separable p′-embeddings of S in which S is normal. If

G ∈ N then |G : S | divides |GL(d(S), p)|, soN is a bounded class of p′-embeddings of
S . Let G ∈ Ep′(S) and let R = Op(G) ∩Φ(S). Suppose that G satisfies all the conditions
for membership of the class Cab

p′ (S), except that NG(R) , S . Then NG(R) > S , so in fact
NG(R) = G by the irreducibility of the action of S on HP/P. Similarly, if G satisfies
all the conditions for membership of the class Ccrit

p′ (S) except that NG(R) 6≤ S Z(H),
then R EG by the irreducibility of the action of S on HP/Z(H)P. Thus G ∈ N by
Lemma 3.7. Write Cab

p′ (S)′ = Cab
p′ (S) ∪ N and Ccrit

p′ (S)′ = Ccrit
p′ (S) ∪ N .

Let H be a q-Sylow subgroup of G contained in Fq. Then H is a finite q-group
and PH is normal in G. Our strategy is to bound |S : P|: this will produce a bound
for |G : P|, because G/P acts faithfully on P/Φ(P), and by the Schreier index formula,
d(P) ≤ |S : P|(d(S) − 1) + 1. Hence we may freely replace G with a subgroup L of G
containing S such that Op(L) = P, or in other words L = S H0 where H0 is a subgroup
of H such that S/P acts faithfully on H0P/P. Thus we may assume that G = Oq(G),
since Oq(G) is normal in G and contains S . By Theorem 2.7, we may assume that H is
critical in itself; otherwise we could replace H by a critical subgroup without changing
Op(G). If H is abelian, we may replace H by Ω1(H), by Lemma 4.5, and so assume
that H is elementary abelian.

Let M = HP/P if H is abelian and let M = HP/Z(H)P otherwise. Then M is a
module for S over the field of q elements. By a version of Maschke’s theorem, M is
completely reducible.

Suppose that H is abelian. Then we can express H as H1 × · · · × Hn such that
for each i, HiP/P is a minimal normal subgroup of HiS/P, and thus HiS ∈ Cab

p′ (S)′.
Let Pi = Op(HiS ). Suppose now that Cab

p′ (S) is bounded. Then the index |S : Pi| is
bounded, so there are only finitely many possibilities for Pi as a subgroup of S ; thus
there are only finitely many possibilities for P =

⋂n
i=1 Pi. We see from this that given

a p′-embedding of S of the form S K where K is abelian, there is a bound on |S K : S |.
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Suppose now that H is nonabelian. Then we can express H as the product of
subgroups H1, . . . , Hn such that Hi ∩ H j = Z(H) for i and j distinct, and so that
PHi/PZ(H) is a chief factor of S Hi. Again we set Pi = Op(S Hi) and note that
P =
⋂n

i=1 Pi. If Hi is nonabelian, this implies S Hi ∈ C
crit
p′ (S)′, while if Hi is abelian, the

boundedness of Cab
p′ (S) leaves only finitely many possibilities for Pi. Thus if Csep

p′ (S) is
bounded, there are only finitely many possibilities for P, and hence |G : S | is bounded.

The above argument shows that if Csep
p′ (S), CL

p′(S) and CLF
p′ (S) are all bounded, then

Ep′(S) is bounded. Note, moreover, that if G is in the class Esep
p′ (S), then |G : S | is in

fact bounded using groups in Csep
p′ (S) only, while if G is in the class ELF

p′ (S), the groups
in Csep

p′ (S) ∪ CLF
p′ (S) suffice. This demonstrates all three assertions in the theorem. �

5. Ascending chains of p′-embeddings

We now give a construction to demonstrate Proposition 1.5.
Let p and q be primes. Let F = Fpq and let θ be the Frobenius automorphism of

F. Let K be the set of clopen subsets of Zp. Let F be the (elementary abelian)
group of additive functions from K to F, that is, functions f : K → F such that
f (u ∪ v) = f (u) + f (v) whenever u and v are disjoint. Let Z � Zp act on F by translating
the elements of the domain, giving a semidirect product S = F o Z. We claim that S is
a (q + 1)-generator metabelian pro-p group; indeed it is the inverse limit of the (q + 1)-
generator metabelian p-groups Fn o Zp/pnZp, where Fn is the group of functions from
Zp/pnZp to F. There is a natural surjective map φn : F → Fn formed by restricting the
domain, and then maps F o Zp → Fn o Zp/pnZp are given by extending φn in a way
that is compatible with the action of Z on F.

The group G is formed as F o (Q o Z), equipped with the topology in which F o Z
is an open compact subgroup, where Q is a subgroup of Aut(F) of the form

⋃
i∈N Qi.

As a group of automorphisms of F, the group Qi has the following description: Qi is
a direct product of copies of Cq indexed by the elements of Zp/piZp, and a generator
for the jth copy of Cq in Qi acts on F by replacing f (u) by ( f (u))θ for all f ∈ F and all
u ∈ K such that u ⊆ j, with the consequent alteration of f (u) in the more general case
where u ∩ j , ∅. (Note that j is a coset of piZp, being an element of Zp/piZp.) It is
easily verified that as subgroups of Aut(F), Qi is normalized by Z and Qi < Qi+1 for
all i. Thus the groups

Gi = F o (Qi o Z)

for i ≥ 0 form an ascending chain of subgroups of G, each open in the next, with
union G. Given any finite image R of Gi, and given a conjugacy class C of R, then
|C| = paqb where b is at most pi. Moreover, for a sufficiently large finite image, there
is a conjugacy class contained in the image of F whose size is divisible by qpi

: let α ∈ F
be primitive, let fi ∈ F be given by fi(U) = |U ∩ {0, 1, . . . , pi − 1}|α, and consider the
conjugacy class of the image of fi in a sufficiently large finite quotient of Gi. Thus
the fusion of conjugacy classes of S in Gi and G j is inequivalent for i , j, even up to
automorphisms of S .
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For p and q distinct primes, it is clear that this construction satisfies all assertions
in Proposition 1.5.

In the construction, we notice totally disconnected, locally compact groups with
a further interesting property. Let R = Q o Z � G/F. Let U be an open compact
subgroup of R. We claim that NR(U)/U is finite, and indeed that R acts properly by
conjugation on the metric space of open compact subgroups of R with metric given by

d(U,V) = log(|U : U ∩ V ||V : U ∩ V |).

To prove that the action on the above metric space is proper, it suffices to show
that the set {r ∈ R | |U : U ∩ Ur | ≤ pk} is compact for all k and fixed U, so we are
free to take U = Z. In this case the set Rk = {r ∈ R | |U : U ∩ Ur | ≤ pk} decomposes
as Rk = (Rk ∩ Q)Z. Now Z is compact, and Rk ∩ Q is precisely the finite group
CQ(pkU) = Qk. Thus Rk is compact as required.

Note that the construction is valid even if p = q, in which case we obtain a
metabelian totally disconnected, locally compact group R that is the union of an
ascending chain of open pro-p subgroups, such that every open compact subgroup
of R has finite index in its normalizer.

6. Profinite groups with a cyclic or 2-generator Sylow subgroup

For this section, S is a pro-p group such that d(S) ≤ 2. The significance of this
condition (in light of Lemma 3.7) is that if G is a p′-embedding of S , then either
S/Op(G) is cyclic, or else G is a Frattini p′-embedding and thus has a special structure.

First, consider the case where S is (topologically) cyclic, that is, d(S) = 1. Here the
possibilities are very straightforward.

Proposition 6.1. Let S be a cyclic pro-p group, and let G ∈ Ep′(S). Then exactly one
of the following holds:

(i) S EG and G/S is cyclic of order dividing p − 1;
(ii) S is finite and G has a single component Q, such that S ≤ Q and G/Z(Q) is

almost simple.

Proof. Let P = Op(G). If S = P, then case (i) occurs. Otherwise P ≤ Φ(S), so G/P
acts faithfully on Ep(G/P) by Lemma 3.7. Let R/P be a component of G/P. Then R is
a central extension of P by R/P, since Aut(P) is p-separable, so there is a component
Q of G such that R = PQ. Since Q E G but Q is not p-separable, S ∩ Q 6≤ Φ(S)
by Corollary 3.3, so S ≤ Q. Clearly now Q = Ep(G) = E(G), and G/Z(Q) is almost
simple, since G/P = G/Z(Q) acts faithfully on Q/Z(Q). �

We now obtain a list of possible structures for p′-embeddings of a 2-generator pro-p
group.

Theorem 6.2. Let S be a pro-p group such that d(S) = 2, and let G ∈ Ep′(S). Write
P = Op(G) and H = G/Op(G).
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If G is not a quasi-Frattini p′-embedding, then exactly one of the following holds:

(i) p is odd, S/P is nontrivial cyclic and there is a quasisimple normal subgroup Q
of H such that S/P is a p-Sylow subgroup of Q;

(ii) S/P is nontrivial cyclic, H acts faithfully on P/Φ(P) and |F∗(H)| is coprime to p.

If G is a quasi-Frattini but not Frattini p′-embedding, then either (i) holds or the
following holds:

(iii) S = P and H is isomorphic to a p′-subgroup of GL(2, p).

If instead G is a Frattini p′-embedding, then CH(Ep(H)) = 1 (so, in particular,
E(H) = Ep(H)) and exactly one of the following holds:

(iv) there is a subgroup Q of G containing S such that Q/P is a nonabelian simple
group with a 2-generator p-Sylow subgroup;

(v) p is odd and there is a subgroup Q of G containing S such that Q/P is a
direct product of two nonabelian finite simple groups (possibly isomorphic), each
having a nontrivial cyclic p-Sylow subgroup;

(vi) E(H) is the direct product of pl copies of a single nonabelian finite simple
subgroup Q of H for some l ≥ 0, with E(H) being the S -invariant closure of
Q, and H/E(H) has a nontrivial cyclic p-Sylow subgroup.

Proof. Let k = |S : PΦ(S)|. Then k ∈ {1, p, p2}, since k divides |S : Φ(S)| = p2.
If k = 1, then S = P and we are clearly in case (iii) by Corollary 2.5. A p′-

embedding with S = P is evidently quasi-Frattini but not Frattini.
If k = p, then S/P is nontrivial cyclic. If |F∗(H)| is coprime to p, we see that

E(G) = 1 since every component of G must have order divisible by p, so H acts
faithfully on P/Φ(P) by Corollary 2.5 and we are in case (ii). In case (ii), G is p-
separable; since S is not normal in G, it follows by Lemma 3.7 that G is not a quasi-
Frattini p′-embedding. If instead p divides F∗(H), then there is some quasisimple
subgroup Q of H of order divisible by p; this ensures that |Q/Z(Q)| is also divisible by
p. Let K be the normal closure of Q in H. Then K ≥ S/P, since otherwise we would
have K ∩ S/P ≤ Φ(S/P), which would imply that K has a normal p-complement by
Corollary 3.3. Moreover, K is a central product of copies of Q; since the p-Sylow
subgroup of K is cyclic, there is only room for one copy of Q; in other words, K = Q.
We see that p is odd because there are no nonabelian finite simple groups with cyclic
2-Sylow subgroups (see, for instance, [9, Exercise 262]). Thus we are in case (i).

We may now assume that k = p2; in other words, G is a Frattini p′-embedding. We
have CH(Ep(H)) = 1 by Lemma 3.7. To simplify notation, let us divide out by P; in
other words, assume that P = 1 (so G = H) and S is finite.

Suppose that Ep(G) ≥ S . By Corollary 3.3 applied to Ep(G), every component Q
of Ep(G) satisfies Q ∩ S 6≤ Φ(S)K, where K is the product of the other components.
This leaves only two possibilities: either Ep(G) is a nonabelian simple group Q with a
2-generator p-Sylow subgroup, or Ep(G) = Q1 × Q2, where Q1 and Q2 are nonabelian
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simple groups with cyclic p-Sylow subgroups (here p is necessarily odd). These are
cases (iv) and (v), respectively.

Finally, suppose that Ep(G) 6≥ S . Then Φ(S) < Φ(S)(Ep(G) ∩ S ) < S , so Φ(S) has
index p in Φ(S)(Ep(G) ∩ S ). By Lemma 4.4, we see that Ep(G) is the S -invariant
closure of a single component Q, in other words Ep(G) is the direct product of the S -
conjugates of Q; since S is a pro-p group, the number of S -conjugates of Q is a power
of p. Since |S : Φ(S)(Ep(G) ∩ S )| = p, the p-Sylow subgroup of G/Ep(G) is nontrivial
cyclic. This is case (vi). �

Remark 6.3. (a) Only cases (ii) and (iii) can give rise to p-separable p′-embeddings,
and case (iii) accounts for only finitely many p′-embeddings. In cases (i), (iv) and
(v), the isomorphism type of the simple group Q/Z(Q) involved in E(G/Op(G)) is
restricted (see Lemma 7.3), while in each case a bound on the order of Q would imply
a bound on the index |G : S |. Thus in cases (i), (iv) and (v), the possibility of an
unbounded class of p′-embeddings remains only because of the existence of infinitely
many finite simple groups of Lie type of small rank (obtained by varying the field of
definition).

(b) If S is infinite and not finite-by-Zp, then every finite normal subgroup of S is
contained in Φ(S), so E(G) = 1 for all p′-embeddings G of S by Corollary 3.3.

7. Normal subgroup conditions

Lemma 7.1. Let S be a finitely generated pro-p group and let N be an open normal
subgroup of S . Let K be the set of open normal subgroups of S that are not contained
in N. The following are equivalent:

(i) K is finite;
(ii) N contains every normal subgroup of S of infinite index.

Proof. Suppose that there is a normal subgroup P of S of infinite index that is not
contained in N. Then P is the intersection of a descending chain P1 > P2 > · · · of
open normal subgroups of S , none of which is contained in N. Thus K is infinite.

Conversely, suppose that K is infinite. We construct a directed graph Γ on K by
drawing an edge (K1, K2) if K1 > K2 and K1/K2 is a chief factor of S . Then every
vertex lies on a path from the vertex S ; moreover, K/Φ(K) is finite for every K ∈ K
since S is finitely generated, so Γ is locally finite. Thus Γ contains an infinite path
by Kőnig’s lemma, so there is an infinite descending chain L1 > L2 > · · · in K . By
a standard compactness argument, the intersection of the Li is a normal subgroup L
which is not contained in N, but L has infinite index. �

Definition 7.2. Let G be a finite simple group. Define deg(G) to be the smallest
number d such that G is isomorphic to a subgroup of GL(Fd) for some field F.

Given a profinite group G and a prime p, define dp(G) to be d(S) where S is a
p-Sylow subgroup of G.
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Lemma 7.3. Let p be a prime and let d be an integer. Then there some integer c
depending on d and p such that if G is a finite simple group such that deg(G) ≥ c,
then dp(G) ≥ d.

Proof. See [7, Section 1.7]. �

Proof of Theorem 1.6. Every finite normal subgroup of S is contained in Φ(S), so
Ep′(S) = ELF

p′ (S) by Corollary 3.4.
Let K be the set of open normal subgroups of S that are not contained in Φ(S).

Then K is finite by Lemma 7.1. Let t be an integer such that d(S) − 1 ≤ t, and also
|S : K| ≤ pt for all K ∈ K .

Let G be a p′-embedding of S , let P = Op(G), and let E be such that E/P =

Ep(G/P).
Suppose that G is not a Frattini p′-embedding. Then P ∈ K , so d(P) ≤ tpt + 1 by the

Schreier index formula. Since G/P acts faithfully on P/Φ(P) (by Corollary 2.5), the
index |G : P| is bounded. In particular, this accounts for all prosoluble p′-embeddings,
so Esep

p′ (S) is bounded.
Now suppose that |S : S (n)| is finite for all n. By the previous argument, we may

now assume that G is a Frattini p′-embedding; this ensures that G/P acts faithfully on
E/P by Lemma 3.7. We proceed by a series of claims.

(i) We have dp(Q) ≤ tpt + 1 for every component Q of G/P.
By Corollary 1.3, E ∩ S 6≤ Φ(S), so E ∩ S ∈ K , and hence d(E ∩ S ) ≤ tpt + 1 by

the Schreier index formula; note that E ∩ S is a p-Sylow subgroups of E. In turn, the
direct decomposition of E/P ensures that dp(Q) ≤ d(E ∩ S ).

(ii) Let T be a p-Sylow subgroup of E/P contained in S/P. Then the derived length l
of T is bounded by a function of p and t.

Let Q be a simple direct factor of E/P. It follows from claim (i) and Lemma 7.3
that deg(Q) is bounded by a function of p and t, so in particular Q has a faithful linear
representation of bounded degree. Thus, by a theorem of Zassenhaus [15], the derived
length of any soluble subgroup of Q is bounded by a function of p and t. Since E/P
is the direct product of its simple factors, the same bound applies to the derived length
of T .

(iii) There is a bound on |S : P| in terms of properties of S .
Let R = S/P. We already know that |S : E ∩ S | is at most pt, so T contains R(t). But

then R(t+l) ≤ T (l) = 1, so S/P is soluble of derived length at most t + l. This means that
P contains the open subgroup S (t+l), so |S : P| is bounded by properties of S .

(iv) There is a bound on |G : P| in terms of properties of S .
There is a bound on |S : P|, giving a bound on d(P) in terms of properties of S . But

E(G) = 1, so G/P is isomorphic to a subgroup of GL(d(P), p) by Corollary 2.5.
We conclude from claim (iv) that Ep′(S) is bounded. �
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Proof of Theorem 1.7. Let K be the set of open normal subgroups of S that are not
contained in Φ(S). Then K is finite by Lemma 7.1. If S is insoluble, then Ep′(S) is
bounded by Theorem 1.6. If S is soluble, then the last nontrivial term in its derived
series has finite index, so S is virtually abelian. In this case S has finite subgroup
rank r, say. As a consequence, given any p′-embedding G of S , then G/Op(G) is
isomorphic to a subgroup of GL(r, p) by Corollary 2.5 (since d(P) ≤ r and E(G) = 1),
so |G : S | is bounded by a function of p and r. �

8. Weakly regular pro-p groups

Definition 8.1. Let S be a finitely generated pro-p group. Say that S is weakly regular
if there does not exist a surjective homomorphism S → Cp oCp.

Theorem 8.2 (Yoshida [14] (finite version); Gilotti et al. [5] (profinite version)). Let G
be a profinite group and let S be a p-Sylow subgroup of G. Suppose that S is weakly
regular. Then NG(S) controls p-transfer in G.

As a consequence, we obtain significant restrictions on the structure of p′-
embeddings of a weakly regular pro-p group.

Given distinct primes p and q, write ord×(p, q) for the least positive integer a
such that pa ≡ 1 mod q. Note that the elementary abelian group of order pd has an
automorphism of order q if and only if ord×(p, q) ≤ d (using the formula for the order
of the general linear group).

Theorem 8.3. Let S be a weakly regular pro-p group and let G ∈ Ep′(S).

(i) Suppose that G is of the form G = S H where H is abelian and Op(G)H is normal
in G. Then S EG. Consequently Cab

p′ (S) = ∅.
(ii) Let G ∈ Esep

p′ (S) and let q be a prime divisor of |G : S |. Then S has an
automorphism of order q, so in particular ord×(p, q) ≤ d(S). If q divides
|G : NG(S)|, then the following additional conditions are satisfied:

(a) S has an automorphism of order q that acts reducibly on S/Φ(S), so in
particular ord×(p, q) < d(S);

(b) if p is odd, then ord×(q, p) is even.

(iii) Let K be a normal subgroup of G such that K ≤ S , and let Q/K be a component
of G/K of order divisible by p. Then S normalizes Q. In particular, if
G ∈ CLF

p′ (S) ∪ CL
p′(S), then G has exactly one nonabelian composition factor.

Theorem 8.3 will be proved at the end of this section.

Example 8.4. Given d(S) and p, let π be the set of primes satisfying the conditions
in Theorem 8.3(ii). For some values of d(S) and p, the set π is surprisingly small.
For instance, suppose that p = 3, and d(S) ≤ 11. Then π = {2, 5, 11, 41}. So if S is a
weakly regular pro-3 group generated by at most 11 elements, and G is a 3-separable
3′-embedding of S , then the prime divisors of |G : NG(S)| are a subset of {2, 5, 11, 41}.
Similarly, if p = 7 and d(S) ≤ 8, then π = {2, 3, 5, 19}.
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Lemma 8.5. Let S be a pro-p group and let G ∈ ELF
p′ (S). Let K be a subgroup of G that

properly contains S .

(i) S does not control p-transfer in K.
(ii) Suppose that S is weakly regular. Then NK(S) > S .

Proof. (i) Suppose that S controls p-transfer in K. Then by Theorem 3.2, Op(K) =

Op′(K) is a complement to S in K. But Op′(K) = 1 by Corollary 2.5, so K is a pro-p
group, which is impossible since S is a maximal pro-p subgroup of G.
(ii) This follows immediately from part (i) together with Theorem 8.2. �

Proposition 8.6. Let S be a weakly regular pro-p group, and let G ∈ ELF
p′ (S). Let

H = S [G, S ], and let P = Op(G). Then:

(i) any abelian p′-subgroup of G/P that is normalized by H/P is centralized by
H/P;

(ii) F(H/P) has nilpotency class at most 2.

Proof. (i) It suffices to consider abelian q-subgroups of G/P, where q ∈ p′. Let K ≤ G
such that K′Oq(K) ≤ Op(G) and [K,H] ≤ Op(G)K; it is clear that this accounts for
all abelian q-subgroups of G/P that are normalized by H/P. Then NK/P(S/P) =

CK/P(S/P), and [K/P, S/P] ∩ CK/P(S/P) = 1 by part (iii) of Lemma 2.3. Let M =

S [K, S ]. Since P ≤ S , it follows that NM(S) = S . Hence M = S by Lemma 8.5,
so [K, S ] ≤ K ∩ S ≤ P. The same argument shows that K/P commutes with every
p-Sylow subgroup of G/P. But H/P is generated by these p-Sylow subgroups by
construction, so K/P is centralized by H/P.

(ii) Write T = F(H/P). Since H/P is finite, T is nilpotent. Let c be the nilpotency
class of T , and assume that c > 2. Then γc−1(T ) is abelian, since [γc−1(T ), γc−1(T )] ≤
γ2c−2(T ), and 2c − 2 = c + (c − 2) > c; thus γc−1(T ) is central in T by part (i). But then
γc(T ) = 1, contradicting the definition of c. �

Corollary 8.7. Let S be a weakly regular pro-p group, and let G be a prosoluble p′-
embedding of S . Let H = S [G, S ], and let P = Op(H). Then either S is normal in G
or F(H/P) has nilpotency class exactly 2.

Proof. By Proposition 8.6, F(H/P) has nilpotency class at most 2, and clearly H = P if
S is normal in G; hence we may assume that F(H/P) has nilpotency class less than 2.
This means that F(H/P) is abelian, and so by the proposition F(H/P) = Z(H/P). Now
H/P is a finite soluble group, so F(H/P) ≥ CH/P(F(H/P)) = H/P, so H/P is abelian,
which means that S is normal in H. By Sylow’s theorem, S is the unique p-Sylow
subgroup of H. But H is generated by its p-Sylow subgroups. Hence H = S , which
means that S is normal in G. �

Lemma 8.8. Let p be an odd prime and let q be a prime power coprime to p. Let n
be any positive integer. Let G = Sp(2n, q), considered as a subgroup of GL(V) where
V = F2n

q . Suppose that a p-Sylow subgroup of G acts irreducibly on V. Then ord×(q, p)
is even.
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Proof. See [11, Table 1]. The Sylow subgroups of ‘type B’ in this table are necessarily
reducible. �

Lemma 8.9. Let q be an odd prime, and let U be a q-group of nilpotency class 2.
Let P be a p-group of automorphisms of U, where p , q, such that P centralizes
Z(U). Suppose also that M = U/Z(U) is irreducible as a P-module. Let N be a
maximal subgroup of U′, and identify U′/N with Fq. Then the homomorphism (−,−)N

from M × M to U′/N defined by (xZ(U), yZ(U))N = [x, y]N is a nondegenerate, skew-
symmetric, alternating bilinear form for M as a vector space over Fq, and this form is
preserved by P. Hence P acts on M as a subgroup of Sp(M), the symplectic group on
M associated to the given form. In particular, p · ord×(q, p) is even.

Proof. The equation (xZ(U), yZ(U))1 = [x, y] specifies a function (−,−)1 from M × M
to U′. This is a homomorphism since M is abelian, and hence it is surjective by the
definition of U′; hence (−,−)N is a nontrivial quadratic form. The form is preserved
by P since P centralizes Z(U), which contains U′, and M is irreducible as a P-
module, so (−,−)N is nondegenerate on M. Finally, (−,−)N is also skew-symmetric
and alternating, since [x, y] = [y, x]−1 and [x, x] = 1 are identities in any group.

We conclude that P acts on M as a subgroup of Sp(M). Hence Sp(M) has a
nontrivial irreducible p-subgroup. This implies that at least one of p and ord×(q, p)
is even, by Lemma 8.8. �

Proof of Theorem 8.3. (i) Let P = Op(G). In this case, we see from Proposition 8.6
that HP/P is central in S [G, S ]/P, which implies that S is normal in S [G, S ]. Since
S [G, S ] is normal in G, it follows by Sylow’s theorem that S is normal in G.

(ii) Let q be a prime divisor of |G : S |. Then q divides at least one of |G : NG(S)|
and |NG(S) : S |. If q divides |NG(S) : S |, then there is an automorphism of S of order
q induced by conjugation in NG(S), since CG(S) ≤ S , and hence ord×(p, q) ≤ d(S) by
Lemma 2.3. So from now on we may assume that q divides |G : NG(S)|.

Let G0 = 1 and thereafter let Gi+1 be such that Gi+1/Gi = Op(G/Gi) × Op′(G/Gi).
We obtain a series

G1 < · · · < Gn = G

of open normal subgroups of G, where for all i ≥ 0, the quotient Gi+1/Gi is a pro-p
group if i is even and a p′-group if i is odd. Set Hi = G2i+1. By the Frattini argument,
for each index i there is a q-Sylow subgroup Ti/Hi of Op′(G/Hi) that is normalized
by S . The condition that q divides |G : NG(S)| ensures that there is some j ≥ 0 such
that S does not centralize T j/H j. Now let R = S G2 j/G2 j and consider the group
H = S T j/G2 j. We see that G/G2 j ∈ E

LF
p′ (R), so H ∈ ELF

p′ (R) by Corollary 2.5; indeed
H ∈ Esep

p′ (R) since H is p-separable. Moreover, R is weakly regular and q divides
|R : NH(R)|, since R does not normalize S . Thus we may assume that G = S T , where
T is a finite q-group, and that TOp(G)/Op(G) is normal in G/Op(G). By Theorem 2.7,
there is a characteristic critical subgroup U of T such that S does not centralize U, and
replacing G with S [G, S ] = Oq(G) has no effect on the prime divisors of |G : NG(S)|,
since G = S [G, S ]NG(S) by the Frattini argument. The case G ∈ Cab

p′ (S) was already
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eliminated in part (i). So we may assume that T is nonabelian, with no proper critical
subgroups, so T/Z(T ) is elementary abelian. Furthermore, we may replace T with
a subgroup U > Z(T ) such that UOp(G)/Z(T )Op(G) is a chief factor of G, and then
Z(U) = Z(T ) by Proposition 8.6. Thus we may assume that G ∈ Ccrit

p′ (S).
Let L = NG(S). Then Op(L) ∩ S > 1 by Theorems 8.2 and 3.2, since Op(G) ∩ S > 1.

Applying Theorem 3.2 again, we see that L′Lp ∩ S , Φ(S), which means that L acts
nontrivially on S/Φ(S). At the same time, the action of L on S/Φ(S) is reducible, since
there is a proper nontrivial invariant subspace Op(G)Φ(S)/Φ(S): we have Op(G) < S
since S is not normal in G, so Op(G)Φ(S) < S by the fact that Φ(S) is the intersection
of all maximal closed subgroups of S , and we have Op(G) 6≤ Φ(S) by Corollary 3.3.
This establishes condition (a).

For condition (b), let U = TOp(G)/Op(G) = F(G/Op(G)). Note that Z(U) is central
in G/Op(G) by Proposition 8.6, and U/Z(U) is a chief factor of G/Op(G) since
G ∈ Ccrit

p′ (S). We are now in the situation of Lemma 8.9, and so p · ord×(q, p) is even.
(iii) Let R be the product of all S -conjugates of Q and let C = CS R(R). Then S R/C is

a p′-embedding of S C/C, so we may assume that G = S R and CG(R) = 1. Moreover,
R is of the form Q1 × · · · × Qn where Qi is an S -conjugate of Q. Notice that NR(S)
decomposes as

NQ1 (S 1) × · · · × NQn (S n),

where S i = S ∩ Qi. We have NS R(S) > S by Lemma 8.5, so NQi (S) > S i for some i;
hence NQ(S) > S . Thus there is some element x ∈ NQ(S) of order q, where q is a prime
distinct from p. Suppose that S does not normalize Q; let y ∈ S \ NS (Q). Then x
and yxy−1 lie in distinct factors Qi, so z = xyx−1y−1 has order q. But z is contained in
[S ,NQ(S)] ≤ S , so z is contained in a pro-p group, a contradiction. �
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