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A localisation of a category is obtained by formally inverting a specific class of
morphisms. Forming localisations is one of the standard techniques in algebra;
it is used throughout this book. The calculus of fractions helps to describe the
morphisms of a localised category.

1.1 Localisation

We introduce the concept of localisation for categories. A localisation is ob-
tained by formally inverting a specific class of morphisms.

Localisation of Categories
Let C be a category and let 𝑆 ⊆ MorC be a class of morphisms in C. The
localisation of C with respect to 𝑆 is a category C[𝑆−1] together with a functor
𝑄 : C→ C[𝑆−1] satisfying the following.
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4 Localisation

(L1) For every 𝜎 ∈ 𝑆, the morphism 𝑄𝜎 is invertible.
(L2) For every functor 𝐹 : C → D such that 𝐹𝜎 is invertible for all 𝜎 ∈ 𝑆,

there exists a unique functor �̄� : C[𝑆−1] → D such that 𝐹 = �̄� ◦𝑄.

The localisation solves a universal problem and is therefore unique, up to a
unique isomorphism. We sketch the construction of 𝑄 : C → C[𝑆−1]. At this
stage, we ignore set-theoretic issues, that is, the morphisms between two objects
of C[𝑆−1] need not form a set. However, later on we pay attention and formulate
criteria such that C[𝑆−1] is locally small. We put ObC[𝑆−1] = ObC. To define
the morphisms of C[𝑆−1], consider the quiver with class of vertices ObC and
class of arrows the disjoint union (MorC) � 𝑆−, where

𝑆− = {𝜎− : 𝑌 → 𝑋 | 𝑆 � 𝜎 : 𝑋 → 𝑌 }.

Let P be the category of paths in this quiver, that is, finite sequences of com-
posable arrows, together with the obvious composition given by concatenation
and denoted by ◦P. We define MorC[𝑆−1] as the quotient of P modulo the
following relations:

(1) 𝛽 ◦P 𝛼 = 𝛽 ◦ 𝛼 for all composable morphisms 𝛼, 𝛽 ∈ MorC,
(2) idP 𝑋 = idC 𝑋 for all 𝑋 ∈ ObC,
(3) 𝜎− ◦P 𝜎 = idP 𝑋 and 𝜎 ◦P 𝜎− = idP𝑌 for all 𝜎 : 𝑋 → 𝑌 in 𝑆.

The composition of morphisms in P induces the composition in C[𝑆−1]. The
functor 𝑄 is the identity on objects and on MorC the composite

MorC inc
−−→ (MorC) � 𝑆− inc

−−→ P
can
−−→ MorC[𝑆−1] .

The following is a more precise formulation of the properties of the canonical
functor 𝑄 : C→ C[𝑆−1].

Lemma 1.1.1. For any category D, the functor

Hom(C[𝑆−1],D) −→ Hom(C,D), 𝐹 ↦→ 𝐹 ◦𝑄,

is fully faithful and identifies Hom(C[𝑆−1],D) with the full subcategory of
functors in Hom(C,D) that make all morphisms in 𝑆 invertible. �

Local Objects
Let C be a category and 𝑆 ⊆ MorC. An object 𝑌 in C is called 𝑆-local (or
𝑆-closed, or 𝑆-orthogonal) if the map HomC (𝜎,𝑌 ) is bijective for all 𝜎 ∈ 𝑆.
We denote by 𝑆⊥ the full subcategory of 𝑆-local objects in C.
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1.1 Localisation 5

Lemma 1.1.2. An object 𝑌 in C is 𝑆-local if and only if the canonical map

𝑝𝑋,𝑌 : HomC(𝑋,𝑌 ) −→ HomC[𝑆−1 ] (𝑋,𝑌 )

is bijective for all 𝑋 ∈ C.

Proof If 𝑌 is 𝑆-local, then HomC (−, 𝑌 ) : Cop → Set induces a functor
HomC(−, 𝑌 ) : C[𝑆−1]op → Set. Yoneda’s lemma yields a morphism

HomC[𝑆−1 ] (−, 𝑌 ) −→ HomC (−, 𝑌 )

corresponding to id𝑌 , and it is straightforward to check that this is an inverse
for the canonical morphism HomC (−, 𝑌 ) → HomC[𝑆−1 ] (−, 𝑌 ).

Now assume that 𝑝𝑋,𝑌 is bijective for all 𝑋 ∈ C. Then HomC (𝜎,𝑌 ) is
bijective for all 𝜎 ∈ 𝑆 since HomC[𝑆−1 ] (𝜎,𝑌 ) is bijective. �

Adjoint Functors
Let 𝐹 : C → D and 𝐺 : D → C be a pair of functors and assume that 𝐹 is left
adjoint to 𝐺. We set

𝑆 = 𝑆(𝐹) = {𝜎 ∈ MorC | 𝐹𝜎 is invertible}

and obtain the following diagram

C

C[𝑆−1] with 𝐹 = �̄� ◦𝑄.

D

𝑄

𝐹

�̄�

𝐺

Proposition 1.1.3. The following statements are equivalent.

(1) The functor 𝐺 is fully faithful.
(2) The counit 𝐹𝐺 (𝑋) → 𝑋 is invertible for every object 𝑋 ∈ D.
(3) The functor 𝐹 induces an equivalence �̄� : C[𝑆−1] ∼−→ D.

Moreover, in that case 𝐺 induces an equivalence D ∼−→ 𝑆⊥ with quasi-inverse
𝑆⊥ ↩→ C

𝐹
−→ D.

Proof We denote by 𝜂 : idC → 𝐺𝐹 the unit and by 𝜀 : 𝐹𝐺 → idD the counit
of the adjunction. Note that the composite 𝐹

𝐹𝜂
−−→ 𝐹𝐺𝐹

𝜀𝐹
−−→ 𝐹 equals id𝐹 , and

𝐺
𝜂𝐺
−−−→ 𝐺𝐹𝐺

𝐺𝜀
−−−→ 𝐺 equals id𝐺; this characterises the fact that (𝐹, 𝐺) is an

adjoint pair.
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6 Localisation

(1)⇔ (2): The counit 𝜀𝑋 : 𝐹𝐺 (𝑋) → 𝑋 induces for all𝑌 ∈ D a natural map

HomD (𝑋,𝑌 ) → HomC(𝐺𝑋,𝐺𝑌 )
∼−→ HomD (𝐹𝐺 (𝑋), 𝑌 ),

which is a bijection if and only if 𝜀𝑋 is an isomorphism, by Yoneda’s lemma.
(2) ⇒ (3): We claim that 𝑄𝐺 is a quasi-inverse of �̄�. Clearly, �̄� (𝑄𝐺) =

𝐹𝐺 � idD. On the other hand, 𝐹𝜂 is invertible, since 𝜀𝐹 is invertible. Thus
𝑄𝜂 : 𝑄 → 𝑄𝐺𝐹 is invertible, and therefore

(𝑄𝐺)�̄�𝑄 = 𝑄𝐺𝐹 � 𝑄 � idC[𝑆−1 ] 𝑄.

Then the defining property of 𝑄 implies (𝑄𝐺)�̄� � idC[𝑆−1 ] .
(3) ⇒ (2): If �̄� is an equivalence, then composition with 𝐹 induces a

fully faithful functor Hom(D,X) → Hom(C,X) for any category X, by
Lemma 1.1.1. For X = D, this implies that there is 𝜂′ : idD → 𝐹𝐺 such
that 𝐹𝜂 = 𝜂′𝐹. We claim that (idD, 𝐹𝐺) is an adjoint pair with unit 𝜂′ and
counit 𝜀. Clearly, then 𝐹𝐺 is an equivalence and 𝜀 is an isomorphism.

From the fact that 𝐹
𝐹𝜂
−−→ 𝐹𝐺𝐹

𝜀𝐹
−−→ 𝐹 equals id𝐹 it follows that (𝜀 ◦ 𝜂′)𝐹 =

𝜀𝐹 ◦ 𝜂′𝐹 = id𝐹 , and therefore 𝜀𝜂′ = ididD . On the other hand, the fact that

𝐺
𝜂𝐺
−−−→ 𝐺𝐹𝐺

𝐺𝜀
−−−→ 𝐺 equals id𝐺 implies by applying 𝐹 that 𝐹𝐺𝜀 ◦ 𝜂′𝐹𝐺 =

𝐹𝐺𝜀 ◦ 𝐹𝜂𝐺 = id𝐹𝐺 . Thus (idD, 𝐹𝐺) is an adjoint pair.
Now suppose that the equivalent conditions hold. In order to show that 𝐺

induces an equivalence D ∼−→ 𝑆⊥, we need to show that the essential image of
𝐺 equals 𝑆⊥. The inclusion Im𝐺 ⊆ 𝑆⊥ is clear. If 𝑋 ∈ 𝑆⊥, then HomC (𝜂𝑋, 𝑋)

is bijective since 𝜂𝑋 ∈ 𝑆. This gives an inverse of 𝜂𝑋, so 𝑋 � 𝐺𝐹 (𝑋). �

Example 1.1.4. Let C be an additive category and consider the category modC
of functors 𝐹 : Cop → Ab that fit into an exact sequence

HomC (−, 𝑋) −→ HomC (−, 𝑌 ) −→ 𝐹 −→ 0.

Then the Yoneda functor

C −→ modC, 𝑋 ↦→ ℎ𝑋 := HomC (−, 𝑋)

admits a left adjoint if and only if every morphism in C admits a cokernel. The
left adjoint sends 𝐹 = Coker ℎ𝜙 in modC (given by a morphism 𝜙 in C) to
Coker 𝜙.

Proof Suppose that C has cokernels. For 𝐶 ∈ C we have

Hom(Coker ℎ𝜙 , ℎ𝐶 ) � Ker Hom(ℎ𝜙 , ℎ𝐶 )
� Ker HomC (𝜙, 𝐶)

� HomC (Coker 𝜙, 𝐶).
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1.1 Localisation 7

This follows from Yoneda’s lemma and yields the adjointness. The converse
follows from the fact that a left adjoint preserves cokernels. �

We introduce the following terminology. A diagram of additive functors

C′ C C′′
𝐸

𝐸𝜌

𝐹

𝐹𝜌

is called a localisation sequence if

(LS1) (𝐸, 𝐸𝜌) and (𝐹, 𝐹𝜌) are adjoint pairs,
(LS2) 𝐸 and 𝐹𝜌 are fully faithful,
(LS3) Im 𝐸 = Ker 𝐹 (equivalently, 𝐸𝐸𝜌 (𝑋)

∼−→ 𝑋 if and only if 𝐹 (𝑋) = 0).

The dual notion is called a colocalisation sequence and is given by a diagram
of additive functors

C′ C C′′

𝐸

𝐸𝜆

𝐹

𝐹𝜆

satisfying the dual properties.
The above Example 1.1.4 gives rise to a localisation sequence

Ker 𝐹 modC C
𝐹

𝐹𝜌

provided that C is abelian. In that case the functor 𝐹 is exact and the right
adjoint of the inclusion Ker 𝐹 → modC sends an object 𝑋 to the kernel of the
unit 𝑋 → 𝐹𝜌𝐹 (𝑋).

Localisation Functors
Suppose that the canonical functor C → C[𝑆−1] corresponding to a class of
morphisms 𝑆 ⊆ MorC admits a right adjoint. Then the above Proposition 1.1.3
suggests we think of localisation as an endofunctor C → C. The following
definition makes this idea precise. Moreover, we see that both ways of thinking
about localisation are equivalent.

A functor 𝐿 : C→ C is called a localisation functor if there exists a morphism
𝜂 : idC → 𝐿 such that 𝐿𝜂 : 𝐿 → 𝐿2 is an isomorphism and 𝐿𝜂 = 𝜂𝐿. Note
that we only require the existence of 𝜂; the actual morphism is not part of the
definition of 𝐿. However, we will see that 𝜂 is determined by 𝐿, up to a unique
isomorphism 𝐿 → 𝐿.

Proposition 1.1.5. Let 𝐿 : C → C be a functor and 𝜂 : idC → 𝐿 a morphism.
Then the following are equivalent.
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8 Localisation

(1) 𝐿𝜂 : 𝐿 → 𝐿2 is an isomorphism and 𝐿𝜂 = 𝜂𝐿.
(2) There exists a functor 𝐹 : C→ D and a fully faithful right adjoint𝐺 : D→

C such that 𝐿 = 𝐺 ◦ 𝐹 and 𝜂 : idC → 𝐺 ◦ 𝐹 is the unit of the adjunction.

Proof (1) ⇒ (2): Let D denote the essential image of 𝐿, that is, the full
subcategory of C consisting of objects isomorphic to 𝐿𝑋 for some 𝑋 ∈ C. Note
that 𝑋 ∈ D if and only if 𝜂𝑋 is invertible. In this case let 𝜃𝑋 : 𝐿𝑋 → 𝑋 denote
the inverse of 𝜂𝑋. Define 𝐹 : C → D by 𝐹𝑋 = 𝐿𝑋 and let 𝐺 : D → C be the
inclusion. We claim that 𝐹 and 𝐺 form an adjoint pair. To this end, one checks
that the maps

HomD (𝐹𝑋,𝑌 ) −→ HomC(𝑋, 𝐺𝑌 ), 𝛼 ↦→ 𝐺𝛼 ◦ 𝜂𝑋,

and

HomC(𝑋, 𝐺𝑌 ) −→ HomD (𝐹𝑋,𝑌 ), 𝛽 ↦→ 𝜃𝑌 ◦ 𝐹𝛽,

are mutually inverse bijections. Consider a pair of morphisms 𝛼 : 𝐹𝑋 → 𝑌 and
𝛽 : 𝑋 → 𝐺𝑌 . This yields a pair of commutative squares

𝐹𝑋 𝑌 𝑋 𝐺𝑌

𝐺𝐹 (𝐹𝑋) 𝐺𝐹 (𝑌 ) 𝐺𝐹 (𝑋) 𝐺𝐹 (𝐺𝑌 )

𝛼

𝜂𝐹𝑋 𝜂𝑌

𝛽

𝜂𝑋 𝜂𝐺𝑌

𝐺𝐹 (𝛼) 𝐺𝐹 (𝛽)

giving the desired identities

𝛼 = 𝜃𝑌 ◦ 𝜂𝑌 ◦ 𝛼 = 𝜃𝑌 ◦ 𝐺𝐹 (𝛼) ◦ 𝜂𝐹𝑋 = 𝜃𝑌 ◦ 𝐹𝐺 (𝛼) ◦ 𝐹𝜂𝑋

and

𝛽 = 𝜃𝐺𝑌 ◦ 𝜂𝐺𝑌 ◦ 𝛽 = 𝜃𝐺𝑌 ◦ 𝐺𝐹 (𝛽) ◦ 𝜂𝑋 = 𝐺𝜃𝑌 ◦ 𝐺𝐹 (𝛽) ◦ 𝜂𝑋 .

(2) ⇒ (1): Let 𝜀 : 𝐹𝐺 → idD denote the counit. Then it is well known that
the composites

𝐹
𝐹𝜂
−−−−→ 𝐹𝐺𝐹

𝜀𝐹
−−−−→ 𝐹 and 𝐺

𝜂𝐺
−−−−→ 𝐺𝐹𝐺

𝐺𝜀
−−−−→ 𝐺

are identity morphisms. We know from Proposition 1.1.3 that 𝜀 is invertible
because 𝐺 is fully faithful. Therefore 𝐿𝜂 = 𝐺𝐹𝜂 is invertible. Moreover, we
have

𝐿𝜂 = 𝐺𝐹𝜂 = (𝐺𝜀𝐹)−1 = 𝜂𝐺𝐹 = 𝜂𝐿. �
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1.1 Localisation 9

Localisation of Adjoints
Localising a pair of adjoint functors yields an adjoint pair of functors between
the localised categories.

Lemma 1.1.6. Let (𝐹, 𝐺) be an adjoint pair of functors C� D. If 𝑆 ⊆ MorC
and 𝑇 ⊆ MorD are classes of morphisms such that 𝐹 (𝑆) ⊆ 𝑇 and 𝐺 (𝑇) ⊆ 𝑆,
then (𝐹, 𝐺) induces an adjoint pair of functors (�̄�, �̄�) such that the following
diagram commutes.

C D

C[𝑆−1] D[𝑇−1]

𝐹

𝐺

�̄�

�̄�

Proof The functors 𝐹 and 𝐺 induce a pair of functors �̄� : C[𝑆−1] → D[𝑇−1]

and �̄� : D[𝑇−1] → C[𝑆−1]. We have by definition a natural isomorphism

𝛼 : HomD (𝐹−,−)
∼−−→ HomC (−, 𝐺−)

of functors Cop ×D→ Set. These functors invert morphisms in 𝑆 and 𝑇 . Thus
𝛼 induces a natural isomorphism

HomD[𝑇−1 ] (�̄�−,−)
∼−−→ HomC[𝑆−1 ] (−, �̄�−)

of functors Cop [𝑆−1] × D[𝑇−1] → Set. It follows that (�̄�, �̄�) is an adjoint
pair. �

There is a useful consequence which is obtained by setting 𝑇 = ∅.

Lemma 1.1.7. Consider a composite C � C[𝑆−1] → D of functors and
suppose there exists a right adjoint. Then C[𝑆−1] → D admits a right adjoint.

�

Localisation and Coproducts
Let C be a category and 𝑆 ⊆ MorC. We provide a criterion for the canonical
functor C→ C[𝑆−1] to preserve coproducts.

Lemma 1.1.8. Let C be a category which admits coproducts and let 𝑆 ⊆ MorC
be a class of morphisms. If

∐
𝑖 𝜎𝑖 belongs to 𝑆 for every family (𝜎𝑖)𝑖∈𝐼 in 𝑆, then

the category C[𝑆−1] admits coproducts and the canonical functor C→ C[𝑆−1]

preserves coproducts.
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10 Localisation

Proof Let (𝑋𝑖)𝑖∈𝐼 be a family of objects in C[𝑆−1]. Then the coproduct is
obtained by applying the left adjoint of the diagonal functor Δ : C →

∏
𝑖∈𝐼 C.

The assumption on 𝑆 means that we can apply Lemma 1.1.6. Thus the diagonal
functor Δ : C[𝑆−1] →

∏
𝑖∈𝐼 C[𝑆

−1] admits a left adjoint which provides the
coproduct

∐
𝑖∈𝐼 𝑋𝑖 in C[𝑆−1]. �

1.2 Calculus of Fractions

We introduce the calculus of fractions; this helps to describe explicitly the
morphisms of a localised category.

Calculus of Fractions
Let C be a category and 𝑆 ⊆ MorC. There is an explicit description of the
localisation C[𝑆−1] provided that the class 𝑆 admits a calculus of left fractions,
that is, the following conditions are satisfied.

(LF1) The identity morphism of each object is in 𝑆. The composite of two
morphisms in 𝑆 is again in 𝑆.

(LF2) Each pair of morphisms 𝑋 ′ 𝜎
←− 𝑋 → 𝑌 with 𝜎 ∈ 𝑆 can be completed to

a commutative diagram

𝑋 𝑌

𝑋 ′ 𝑌 ′

𝜎 𝜏

such that 𝜏 ∈ 𝑆.
(LF3) Let 𝛼, 𝛽 : 𝑋 → 𝑌 be morphisms in C. If there is 𝜎 : 𝑋 ′ → 𝑋 in 𝑆 such

that 𝛼𝜎 = 𝛽𝜎, then there is 𝜏 : 𝑌 → 𝑌 ′ in 𝑆 such that 𝜏𝛼 = 𝜏𝛽.

The class 𝑆 admits a calculus of right fractions if it admits a calculus of left
fractions in the opposite category Cop.

Now assume that 𝑆 admits a calculus of left fractions. Then one obtains a
new category 𝑆−1C as follows. The objects are those of C. Given objects 𝑋 and
𝑌 , we call a pair (𝛼, 𝜎) of morphisms

𝑋 𝑌 ′ 𝑌
𝛼 𝜎

in C with 𝜎 in 𝑆 a left fraction. The morphisms 𝑋 → 𝑌 in 𝑆−1C are equivalence
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1.2 Calculus of Fractions 11

classes [𝛼, 𝜎] of such left fractions, where (𝛼1, 𝜎1) and (𝛼2, 𝜎2) are equivalent
if there exists a commutative diagram

𝑌1

𝑋 𝑌3 𝑌

𝑌2

𝛼3

𝛼1

𝛼2

𝜎1

𝜎2

𝜎3

with 𝜎3 in 𝑆. The composite of [𝛼, 𝜎] and [𝛽, 𝜏] is by definition [𝛽′𝛼, 𝜎′𝜏]

where 𝜎′ and 𝛽′ are obtained from condition (LF2) as in the following com-
mutative diagram.

𝑍 ′′

𝑌 ′ 𝑍 ′

𝑋 𝑌 𝑍

𝛽′ 𝜎′

𝛼 𝜎 𝛽 𝜏

The canonical functor 𝑃 : C → 𝑆−1C is the identity on objects and sends a
morphism 𝛼 : 𝑋 → 𝑌 to [𝛼, id𝑌 ].

Lemma 1.2.1. Let 𝑆 admit a calculus of left fractions. The functor 𝐹 : 𝑆−1C→

C[𝑆−1] which is the identity on objects and takes a morphism [𝛼, 𝜎] to (𝑄𝜎)−1◦

𝑄𝛼 is an isomorphism.

Proof The functor 𝑃 inverts all morphisms in 𝑆 and factors therefore through
𝑄 : C → C[𝑆−1] via a functor 𝐺 : C[𝑆−1] → 𝑆−1C. It is straightforward to
check that 𝐹 ◦ 𝐺 = id and 𝐺 ◦ 𝐹 = id. �

From now on, we identify 𝑆−1C with C[𝑆−1] whenever 𝑆 admits a calculus
of left fractions.

A category I is called filtered if it is non-empty, for each pair of objects 𝑖, 𝑖′
there is an object 𝑗 with morphisms 𝑖 → 𝑗 ← 𝑖′, and for each pair of morphisms
𝛼, 𝛼′ : 𝑖 → 𝑗 there is a morphism 𝛽 : 𝑗 → 𝑘 such that 𝛽𝛼 = 𝛽𝛼′.

Lemma 1.2.2. Let 𝑆 admit a calculus of left fractions and fix objects 𝑋,𝑌 in
C. The morphisms 𝜎 : 𝑌 → 𝑌 ′ in 𝑆 form a filtered category, and taking 𝜎 to
HomC(𝑋,𝑌

′) gives a bijection

colim
𝜎 : 𝑌→𝑌 ′

HomC (𝑋,𝑌
′) ∼−−→ HomC[𝑆−1 ] (𝑋,𝑌 ).

This map sends a morphism 𝛼 in HomC (𝑋,𝑌
′) to [𝛼, 𝜎].
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12 Localisation

Proof Straightforward. �

Examples for classes of morphisms with a calculus of fractions arise from
pairs of adjoint functors (𝐹, 𝐺) by taking left fractions of the form

𝑋 𝐺𝐹 (𝑌 ) 𝑌 .
𝛼 𝜂𝑌

Example 1.2.3. Let 𝐹 : C→ D be a functor with a fully faithful right adjoint.
Then 𝑆 = {𝜎 ∈ MorC | 𝐹𝜎 is invertible} admits a calculus of left fractions.

Another class of examples arises from localising a ring. A ring may be
viewed as a category with one object, by viewing the elements as morphisms.

Example 1.2.4. Let 𝐴 be a ring. Then a subset 𝑆 ⊆ 𝐴 admits a calculus of
right fractions if the following holds.

(1) If 𝑠, 𝑡 ∈ 𝑆, then 𝑠𝑡 ∈ 𝑆. Also 1𝐴 ∈ 𝑆.
(2) For 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝑆 there are 𝑏 ∈ 𝐴 and 𝑡 ∈ 𝑆 such that 𝑎𝑡 = 𝑠𝑏.
(3) If 𝑠𝑎 = 0 for 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝑆, then there is 𝑡 ∈ 𝑆 such that 𝑎𝑡 = 0.

In this case 𝐴𝑆−1 = 𝐴[𝑆−1] is a ring and 𝐴 → 𝐴[𝑆−1] is the universal
homomorphism that makes all elements in 𝑆 invertible.

Calculus of Fractions for Subcategories
Let C be a category and 𝑆 ⊆ MorC. A full subcategory D of C is left cofinal
with respect to 𝑆 if for every morphism 𝜎 : 𝑋 → 𝑌 in 𝑆 with 𝑋 in D there is a
morphism 𝜏 : 𝑌 → 𝑍 with 𝜏 ◦ 𝜎 in 𝑆 ∩D.

Lemma 1.2.5. Let 𝑆 admit a calculus of left fractions and D ⊆ C be left cofinal
with respect to 𝑆. Then 𝑆∩D admits a calculus of left fractions and the induced
functor D[(𝑆 ∩D)−1] → C[𝑆−1] is fully faithful.

Proof It is straightforward to check (LF1)–(LF3) for 𝑆 ∩D. Now let 𝑋,𝑌 be
objects in D. We need to show that the induced map

𝑓 : HomD[ (𝑆∩D)−1 ] (𝑋,𝑌 ) −→ HomC[𝑆−1 ] (𝑋,𝑌 )

is bijective. The map sends the equivalence class of a fraction to the equivalence
class of the same fraction. If [𝛼, 𝜎] belongs to HomC[𝑆−1 ] (𝑋,𝑌 ) and 𝜏 is a mor-
phism with 𝜏 ◦𝜎 in 𝑆∩D, then [𝜏 ◦𝛼, 𝜏 ◦𝜎] belongs to HomD[ (𝑆∩D)−1 ] (𝑋,𝑌 )

and 𝑓 sends it to [𝛼, 𝜎]. Thus 𝑓 is surjective. A similar argument shows that 𝑓
is injective.

For an alternative proof using filtered colimits, combine Lemma 1.2.2 and
Lemma 11.1.5. �
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Notes

The standard reference for localisation and the calculus of fractions is the book
of Gabriel and Zisman [85]. The localisation of a category generalises the
concept for rings. For instance, rings of functions are localised in order to study
the local properties of a geometric object. The localisation of non-commutative
rings was pioneered by Ore in 1931, who introduced the ‘Ore condition’ [151].
For a survey about localisation in algebra and topology, see [166].
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