Contents

1.1	Localisation	3
	Localisation of Categories	3
	Local Objects	4
	Adjoint Functors	5
	Localisation Functors	7
	Localisation of Adjoints	9
	Localisation and Coproducts	9
1.2	Calculus of Fractions	10
	Calculus of Fractions	10
	Calculus of Fractions for Subcategories	12
Notes		12

A localisation of a category is obtained by formally inverting a specific class of morphisms. Forming localisations is one of the standard techniques in algebra; it is used throughout this book. The calculus of fractions helps to describe the morphisms of a localised category.

1.1 Localisation

We introduce the concept of localisation for categories. A localisation is obtained by formally inverting a specific class of morphisms.

Localisation of Categories

Let \mathcal{C} be a category and let $S \subseteq \text{Mor } \mathcal{C}$ be a class of morphisms in \mathcal{C} . The *localisation* of \mathcal{C} with respect to S is a category $\mathcal{C}[S^{-1}]$ together with a functor $Q: \mathcal{C} \to \mathcal{C}[S^{-1}]$ satisfying the following.

- (L1) For every $\sigma \in S$, the morphism $Q\sigma$ is invertible.
- (L2) For every functor $F : \mathcal{C} \to \mathcal{D}$ such that $F\sigma$ is invertible for all $\sigma \in S$, there exists a unique functor $\bar{F} : \mathcal{C}[S^{-1}] \to \mathcal{D}$ such that $F = \bar{F} \circ Q$.

The localisation solves a universal problem and is therefore unique, up to a unique isomorphism. We sketch the construction of $Q: \mathcal{C} \to \mathcal{C}[S^{-1}]$. At this stage, we ignore set-theoretic issues, that is, the morphisms between two objects of $\mathcal{C}[S^{-1}]$ need not form a set. However, later on we pay attention and formulate criteria such that $\mathcal{C}[S^{-1}]$ is locally small. We put Ob $\mathcal{C}[S^{-1}] = \text{Ob } \mathcal{C}$. To define the morphisms of $\mathcal{C}[S^{-1}]$, consider the quiver with class of vertices Ob \mathcal{C} and class of arrows the disjoint union (Mor \mathcal{C}) $\sqcup S^-$, where

$$S^- = \{ \sigma^- \colon Y \to X \mid S \ni \sigma \colon X \to Y \}.$$

Let \mathcal{P} be the category of paths in this quiver, that is, finite sequences of composable arrows, together with the obvious composition given by concatenation and denoted by $\circ_{\mathcal{P}}$. We define Mor $\mathcal{C}[S^{-1}]$ as the quotient of \mathcal{P} modulo the following relations:

- (1) $\beta \circ_{\mathcal{P}} \alpha = \beta \circ \alpha$ for all composable morphisms $\alpha, \beta \in \text{Mor } \mathcal{C}$,
- (2) $id_{\mathcal{P}} X = id_{\mathcal{C}} X$ for all $X \in Ob \mathcal{C}$,
- (3) $\sigma^- \circ_{\mathcal{P}} \sigma = \mathrm{id}_{\mathcal{P}} X$ and $\sigma \circ_{\mathcal{P}} \sigma^- = \mathrm{id}_{\mathcal{P}} Y$ for all $\sigma \colon X \to Y$ in S.

The composition of morphisms in \mathcal{P} induces the composition in $\mathcal{C}[S^{-1}]$. The functor Q is the identity on objects and on Mor \mathcal{C} the composite

$$\operatorname{Mor} {\mathcal C} \xrightarrow{\operatorname{inc}} (\operatorname{Mor} {\mathcal C}) \sqcup S^{-} \xrightarrow{\operatorname{inc}} {\mathcal P} \xrightarrow{\operatorname{can}} \operatorname{Mor} {\mathcal C}[S^{-1}].$$

The following is a more precise formulation of the properties of the canonical functor $Q: \mathcal{C} \to \mathcal{C}[S^{-1}]$.

Lemma 1.1.1. For any category \mathfrak{D} , the functor

$$\mathcal{H}om(\mathbb{C}[S^{-1}],\mathbb{D})\longrightarrow\mathcal{H}om(\mathbb{C},\mathbb{D}),\quad F\mapsto F\circ Q,$$

is fully faithful and identifies $\mathcal{H}om(\mathbb{C}[S^{-1}], \mathbb{D})$ with the full subcategory of functors in $\mathcal{H}om(\mathbb{C}, \mathbb{D})$ that make all morphisms in S invertible. \square

Local Objects

Let \mathcal{C} be a category and $S \subseteq \operatorname{Mor} \mathcal{C}$. An object Y in \mathcal{C} is called S-local (or S-closed, or S-orthogonal) if the map $\operatorname{Hom}_{\mathcal{C}}(\sigma, Y)$ is bijective for all $\sigma \in S$. We denote by S^{\perp} the full subcategory of S-local objects in \mathcal{C} .

Lemma 1.1.2. An object Y in \mathbb{C} is S-local if and only if the canonical map

$$p_{X,Y} \colon \operatorname{Hom}_{\mathcal{C}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathcal{C}[S^{-1}]}(X,Y)$$

is bijective for all $X \in \mathcal{C}$.

Proof If Y is S-local, then $\operatorname{Hom}_{\mathbb{C}}(-,Y) \colon \mathbb{C}^{\operatorname{op}} \to \operatorname{Set}$ induces a functor $\operatorname{Hom}_{\mathbb{C}}(-,Y) \colon \mathbb{C}[S^{-1}]^{\operatorname{op}} \to \operatorname{Set}$. Yoneda's lemma yields a morphism

$$\operatorname{Hom}_{\mathfrak{C}[S^{-1}]}(-,Y) \longrightarrow \operatorname{Hom}_{\mathfrak{C}}(-,Y)$$

corresponding to id_Y , and it is straightforward to check that this is an inverse for the canonical morphism $\operatorname{Hom}_{\mathfrak{C}}(-,Y) \to \operatorname{Hom}_{\mathfrak{C}[S^{-1}]}(-,Y)$.

Now assume that $p_{X,Y}$ is bijective for all $X \in \mathcal{C}$. Then $\operatorname{Hom}_{\mathcal{C}}(\sigma,Y)$ is bijective for all $\sigma \in S$ since $\operatorname{Hom}_{\mathcal{C}[S^{-1}]}(\sigma,Y)$ is bijective.

Adjoint Functors

Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be a pair of functors and assume that F is left adjoint to G. We set

$$S = S(F) = \{ \sigma \in Mor \mathcal{C} \mid F\sigma \text{ is invertible} \}$$

and obtain the following diagram

Proposition 1.1.3. *The following statements are equivalent.*

- (1) The functor G is fully faithful.
- (2) The counit $FG(X) \to X$ is invertible for every object $X \in \mathcal{D}$.
- (3) The functor F induces an equivalence $\bar{F}: \mathbb{C}[S^{-1}] \xrightarrow{\sim} \mathbb{D}$.

Moreover, in that case G induces an equivalence $\mathbb{D} \xrightarrow{\sim} S^{\perp}$ with quasi-inverse $S^{\perp} \hookrightarrow \mathbb{C} \xrightarrow{F} \mathbb{D}$.

Proof We denote by $\eta\colon \operatorname{id}_{\mathbb C}\to GF$ the unit and by $\varepsilon\colon FG\to\operatorname{id}_{\mathbb D}$ the counit of the adjunction. Note that the composite $F\xrightarrow{F\eta}FGF\xrightarrow{\varepsilon F}F$ equals id_F , and $G\xrightarrow{\eta G}GFG\xrightarrow{G\varepsilon}G$ equals id_G ; this characterises the fact that (F,G) is an adjoint pair.

6

(1) \Leftrightarrow (2): The counit $\varepsilon_X \colon FG(X) \to X$ induces for all $Y \in \mathcal{D}$ a natural map $\operatorname{Hom}_{\mathcal{D}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(GX,GY) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{D}}(FG(X),Y),$

which is a bijection if and only if ε_X is an isomorphism, by Yoneda's lemma.

 $(2) \Rightarrow (3)$: We claim that QG is a quasi-inverse of \bar{F} . Clearly, $\bar{F}(QG) = FG \cong \mathrm{id}_{\mathcal{D}}$. On the other hand, $F\eta$ is invertible, since εF is invertible. Thus $Q\eta: Q \to QGF$ is invertible, and therefore

$$(QG)\bar{F}Q = QGF \cong Q \cong \mathrm{id}_{\mathcal{C}[S^{-1}]}Q.$$

Then the defining property of Q implies $(QG)\bar{F} \cong id_{C[S^{-1}]}$.

 $(3)\Rightarrow (2)$: If \bar{F} is an equivalence, then composition with F induces a fully faithful functor $\mathcal{H}om(\mathcal{D},\mathcal{X})\to\mathcal{H}om(\mathcal{C},\mathcal{X})$ for any category \mathcal{X} , by Lemma 1.1.1. For $\mathcal{X}=\mathcal{D}$, this implies that there is $\eta'\colon \mathrm{id}_{\mathcal{D}}\to FG$ such that $F\eta=\eta'F$. We claim that $(\mathrm{id}_{\mathcal{D}},FG)$ is an adjoint pair with unit η' and counit ε . Clearly, then FG is an equivalence and ε is an isomorphism.

From the fact that $F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon F} F$ equals id_F it follows that $(\varepsilon \circ \eta')F = \varepsilon F \circ \eta' F = \mathrm{id}_F$, and therefore $\varepsilon \eta' = \mathrm{id}_{\mathrm{id}_\mathcal{D}}$. On the other hand, the fact that $G \xrightarrow{\eta G} GFG \xrightarrow{G\varepsilon} G$ equals id_G implies by applying F that $FG\varepsilon \circ \eta' FG = FG\varepsilon \circ F\eta G = \mathrm{id}_{FG}$. Thus $(\mathrm{id}_\mathcal{D}, FG)$ is an adjoint pair.

Now suppose that the equivalent conditions hold. In order to show that G induces an equivalence $\mathcal{D} \xrightarrow{\sim} S^{\perp}$, we need to show that the essential image of G equals S^{\perp} . The inclusion Im $G \subseteq S^{\perp}$ is clear. If $X \in S^{\perp}$, then $\operatorname{Hom}_{\mathbb{C}}(\eta_X, X)$ is bijective since $\eta_X \in S$. This gives an inverse of η_X , so $X \cong GF(X)$.

Example 1.1.4. Let \mathcal{C} be an additive category and consider the category mod \mathcal{C} of functors $F \colon \mathcal{C}^{\text{op}} \to \text{Ab}$ that fit into an exact sequence

$$\operatorname{Hom}_{\mathfrak{C}}(-, X) \longrightarrow \operatorname{Hom}_{\mathfrak{C}}(-, Y) \longrightarrow F \longrightarrow 0.$$

Then the Yoneda functor

$$\mathcal{C} \longrightarrow \operatorname{mod} \mathcal{C}, \quad X \mapsto h_X := \operatorname{Hom}_{\mathcal{C}}(-, X)$$

admits a left adjoint if and only if every morphism in $\mathcal C$ admits a cokernel. The left adjoint sends $F = \operatorname{Coker} h_{\phi}$ in $\operatorname{mod} \mathcal C$ (given by a morphism ϕ in $\mathcal C$) to $\operatorname{Coker} \phi$.

Proof Suppose that \mathcal{C} has cokernels. For $C \in \mathcal{C}$ we have

$$\operatorname{Hom}(\operatorname{Coker} h_{\phi}, h_{C}) \cong \operatorname{Ker} \operatorname{Hom}(h_{\phi}, h_{C})$$

 $\cong \operatorname{Ker} \operatorname{Hom}_{\mathcal{C}}(\phi, C)$
 $\cong \operatorname{Hom}_{\mathcal{C}}(\operatorname{Coker} \phi, C).$

This follows from Yoneda's lemma and yields the adjointness. The converse follows from the fact that a left adjoint preserves cokernels.

We introduce the following terminology. A diagram of additive functors

$$\mathbb{C}' \xrightarrow{E} \mathbb{C} \xrightarrow{F} \mathbb{C} \xrightarrow{F} \mathbb{C}''$$

is called a localisation sequence if

- (LS1) (E, E_{ρ}) and (F, F_{ρ}) are adjoint pairs,
- (LS2) E and F_{ρ} are fully faithful,
- (LS3) Im E = Ker F (equivalently, $EE_{\rho}(X) \xrightarrow{\sim} X$ if and only if F(X) = 0).

The dual notion is called a *colocalisation sequence* and is given by a diagram of additive functors

$$\mathbb{C}' \xrightarrow{E_{\lambda}} \mathbb{C} \xrightarrow{F_{\lambda}} \mathbb{C}''$$

satisfying the dual properties.

The above Example 1.1.4 gives rise to a localisation sequence

$$\operatorname{Ker} F \xrightarrow{\longleftarrow} \operatorname{mod} \mathfrak{C} \xrightarrow{F}_{\rho} \mathfrak{C}$$

provided that $\mathcal C$ is abelian. In that case the functor F is exact and the right adjoint of the inclusion $\operatorname{Ker} F \to \operatorname{mod} \mathcal C$ sends an object X to the kernel of the unit $X \to F_\rho F(X)$.

Localisation Functors

Suppose that the canonical functor $\mathcal{C} \to \mathcal{C}[S^{-1}]$ corresponding to a class of morphisms $S \subseteq \operatorname{Mor} \mathcal{C}$ admits a right adjoint. Then the above Proposition 1.1.3 suggests we think of localisation as an endofunctor $\mathcal{C} \to \mathcal{C}$. The following definition makes this idea precise. Moreover, we see that both ways of thinking about localisation are equivalent.

A functor $L\colon \mathcal{C}\to \mathcal{C}$ is called a *localisation functor* if there exists a morphism $\eta\colon \mathrm{id}_{\mathcal{C}}\to L$ such that $L\eta\colon L\to L^2$ is an isomorphism and $L\eta=\eta L$. Note that we only require the existence of η ; the actual morphism is not part of the definition of L. However, we will see that η is determined by L, up to a unique isomorphism $L\to L$.

Proposition 1.1.5. *Let* $L: \mathcal{C} \to \mathcal{C}$ *be a functor and* $\eta: id_{\mathcal{C}} \to L$ *a morphism. Then the following are equivalent.*

- (1) $L\eta: L \to L^2$ is an isomorphism and $L\eta = \eta L$.
- (2) There exists a functor $F: \mathcal{C} \to \mathcal{D}$ and a fully faithful right adjoint $G: \mathcal{D} \to \mathcal{C}$ such that $L = G \circ F$ and $\eta: \mathrm{id}_{\mathcal{C}} \to G \circ F$ is the unit of the adjunction.

Proof (1) \Rightarrow (2): Let \mathcal{D} denote the essential image of L, that is, the full subcategory of \mathcal{C} consisting of objects isomorphic to LX for some $X \in \mathcal{C}$. Note that $X \in \mathcal{D}$ if and only if η_X is invertible. In this case let $\theta_X \colon LX \to X$ denote the inverse of η_X . Define $F \colon \mathcal{C} \to \mathcal{D}$ by FX = LX and let $G \colon \mathcal{D} \to \mathcal{C}$ be the inclusion. We claim that F and G form an adjoint pair. To this end, one checks that the maps

$$\operatorname{Hom}_{\mathcal{D}}(FX,Y) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X,GY), \quad \alpha \mapsto G\alpha \circ \eta_X,$$

and

$$\operatorname{Hom}_{\mathcal{C}}(X,GY) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(FX,Y), \quad \beta \mapsto \theta_Y \circ F\beta,$$

are mutually inverse bijections. Consider a pair of morphisms $\alpha \colon FX \to Y$ and $\beta \colon X \to GY$. This yields a pair of commutative squares

giving the desired identities

$$\alpha = \theta_Y \circ \eta_Y \circ \alpha = \theta_Y \circ GF(\alpha) \circ \eta_{FX} = \theta_Y \circ FG(\alpha) \circ F\eta_X$$

and

$$\beta = \theta_{GY} \circ \eta_{GY} \circ \beta = \theta_{GY} \circ GF(\beta) \circ \eta_X = G\theta_Y \circ GF(\beta) \circ \eta_X.$$

 $(2)\Rightarrow (1)$: Let $\varepsilon\colon FG\to \mathrm{id}_{\mathbb{D}}$ denote the counit. Then it is well known that the composites

$$F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon F} F$$
 and $G \xrightarrow{\eta G} GFG \xrightarrow{G\varepsilon} G$

are identity morphisms. We know from Proposition 1.1.3 that ε is invertible because G is fully faithful. Therefore $L\eta=GF\eta$ is invertible. Moreover, we have

$$L\eta = GF\eta = (G\varepsilon F)^{-1} = \eta GF = \eta L.$$

9

Localisation of Adjoints

Localising a pair of adjoint functors yields an adjoint pair of functors between the localised categories.

Lemma 1.1.6. Let (F,G) be an adjoint pair of functors $\mathbb{C} \rightleftharpoons \mathbb{D}$. If $S \subseteq \operatorname{Mor} \mathbb{C}$ and $T \subseteq \operatorname{Mor} \mathbb{D}$ are classes of morphisms such that $F(S) \subseteq T$ and $G(T) \subseteq S$, then (F,G) induces an adjoint pair of functors (\bar{F},\bar{G}) such that the following diagram commutes.

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{F} & \mathbb{D} \\
\downarrow & & \stackrel{\bar{F}}{\downarrow} & & \downarrow \\
\mathbb{C}[S^{-1}] & \xrightarrow{\bar{G}} & \mathbb{D}[T^{-1}]
\end{array}$$

Proof The functors F and G induce a pair of functors $\bar{F}: \mathbb{C}[S^{-1}] \to \mathbb{D}[T^{-1}]$ and $\bar{G}: \mathbb{D}[T^{-1}] \to \mathbb{C}[S^{-1}]$. We have by definition a natural isomorphism

$$\alpha: \operatorname{Hom}_{\mathfrak{D}}(F-,-) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{C}}(-,G-)$$

of functors $\mathbb{C}^{op} \times \mathbb{D} \to \text{Set}$. These functors invert morphisms in S and T. Thus α induces a natural isomorphism

$$\operatorname{Hom}_{\mathcal{D}\lceil T^{-1}\rceil}(\bar{F}-,-) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{C}\lceil S^{-1}\rceil}(-,\bar{G}-)$$

of functors $\mathbb{C}^{\text{op}}[S^{-1}] \times \mathbb{D}[T^{-1}] \to \text{Set.}$ It follows that (\bar{F}, \bar{G}) is an adjoint pair.

There is a useful consequence which is obtained by setting $T = \emptyset$.

Lemma 1.1.7. Consider a composite $\mathbb{C} \twoheadrightarrow \mathbb{C}[S^{-1}] \to \mathbb{D}$ of functors and suppose there exists a right adjoint. Then $\mathbb{C}[S^{-1}] \to \mathbb{D}$ admits a right adjoint.

Localisation and Coproducts

Let \mathcal{C} be a category and $S \subseteq \text{Mor } \mathcal{C}$. We provide a criterion for the canonical functor $\mathcal{C} \to \mathcal{C}[S^{-1}]$ to preserve coproducts.

Lemma 1.1.8. Let \mathbb{C} be a category which admits coproducts and let $S \subseteq \operatorname{Mor} \mathbb{C}$ be a class of morphisms. If $\coprod_i \sigma_i$ belongs to S for every family $(\sigma_i)_{i \in I}$ in S, then the category $\mathbb{C}[S^{-1}]$ admits coproducts and the canonical functor $\mathbb{C} \to \mathbb{C}[S^{-1}]$ preserves coproducts.

Proof Let $(X_i)_{i \in I}$ be a family of objects in $\mathbb{C}[S^{-1}]$. Then the coproduct is obtained by applying the left adjoint of the diagonal functor $\Delta \colon \mathbb{C} \to \prod_{i \in I} \mathbb{C}$. The assumption on S means that we can apply Lemma 1.1.6. Thus the diagonal functor $\Delta \colon \mathbb{C}[S^{-1}] \to \prod_{i \in I} \mathbb{C}[S^{-1}]$ admits a left adjoint which provides the coproduct $\coprod_{i \in I} X_i$ in $\mathbb{C}[S^{-1}]$.

1.2 Calculus of Fractions

We introduce the calculus of fractions; this helps to describe explicitly the morphisms of a localised category.

Calculus of Fractions

Let \mathcal{C} be a category and $S \subseteq \text{Mor } \mathcal{C}$. There is an explicit description of the localisation $\mathcal{C}[S^{-1}]$ provided that the class S admits a *calculus of left fractions*, that is, the following conditions are satisfied.

- (LF1) The identity morphism of each object is in *S*. The composite of two morphisms in *S* is again in *S*.
- (LF2) Each pair of morphisms $X' \xleftarrow{\sigma} X \to Y$ with $\sigma \in S$ can be completed to a commutative diagram

$$X \longrightarrow Y$$

$$\sigma \downarrow \qquad \qquad \downarrow \tau$$

$$X' \longrightarrow Y'$$

such that $\tau \in S$.

(LF3) Let $\alpha, \beta \colon X \to Y$ be morphisms in \mathcal{C} . If there is $\sigma \colon X' \to X$ in S such that $\alpha \sigma = \beta \sigma$, then there is $\tau \colon Y \to Y'$ in S such that $\tau \alpha = \tau \beta$.

The class S admits a *calculus of right fractions* if it admits a calculus of left fractions in the opposite category C^{op} .

Now assume that S admits a calculus of left fractions. Then one obtains a new category $S^{-1}\mathfrak{C}$ as follows. The objects are those of \mathfrak{C} . Given objects X and Y, we call a pair (α, σ) of morphisms

$$X \xrightarrow{\alpha} Y' \xleftarrow{\sigma} Y$$

in $\mathcal C$ with σ in S a left fraction. The morphisms $X\to Y$ in $S^{-1}\mathcal C$ are equivalence

classes $[\alpha, \sigma]$ of such left fractions, where (α_1, σ_1) and (α_2, σ_2) are *equivalent* if there exists a commutative diagram

with σ_3 in S. The composite of $[\alpha, \sigma]$ and $[\beta, \tau]$ is by definition $[\beta'\alpha, \sigma'\tau]$ where σ' and β' are obtained from condition (LF2) as in the following commutative diagram.

The canonical functor $P: \mathcal{C} \to S^{-1}\mathcal{C}$ is the identity on objects and sends a morphism $\alpha: X \to Y$ to $[\alpha, \mathrm{id}_Y]$.

Lemma 1.2.1. Let S admit a calculus of left fractions. The functor $F: S^{-1}\mathbb{C} \to \mathbb{C}[S^{-1}]$ which is the identity on objects and takes a morphism $[\alpha, \sigma]$ to $(Q\sigma)^{-1} \circ Q\alpha$ is an isomorphism.

Proof The functor P inverts all morphisms in S and factors therefore through $Q: \mathcal{C} \to \mathcal{C}[S^{-1}]$ via a functor $G: \mathcal{C}[S^{-1}] \to S^{-1}\mathcal{C}$. It is straightforward to check that $F \circ G = \operatorname{id}$ and $G \circ F = \operatorname{id}$.

From now on, we identify $S^{-1}\mathcal{C}$ with $\mathcal{C}[S^{-1}]$ whenever S admits a calculus of left fractions.

A category \Im is called *filtered* if it is non-empty, for each pair of objects i,i' there is an object j with morphisms $i \to j \leftarrow i'$, and for each pair of morphisms $\alpha, \alpha' \colon i \to j$ there is a morphism $\beta \colon j \to k$ such that $\beta \alpha = \beta \alpha'$.

Lemma 1.2.2. Let S admit a calculus of left fractions and fix objects X, Y in \mathcal{C} . The morphisms $\sigma: Y \to Y'$ in S form a filtered category, and taking σ to $\operatorname{Hom}_{\mathcal{C}}(X,Y')$ gives a bijection

$$\operatorname*{colim}_{\sigma\colon Y\to Y'}\operatorname{Hom}_{\operatorname{\mathbb{C}}}(X,Y')\stackrel{\sim}{\longrightarrow}\operatorname{Hom}_{\operatorname{\mathbb{C}}[S^{-1}]}(X,Y).$$

This map sends a morphism α in $\text{Hom}_{\mathbb{C}}(X,Y')$ to $[\alpha,\sigma]$.

Proof Straightforward.

Examples for classes of morphisms with a calculus of fractions arise from pairs of adjoint functors (F, G) by taking left fractions of the form

$$X \xrightarrow{\alpha} GF(Y) \xleftarrow{\eta_Y} Y.$$

Example 1.2.3. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor with a fully faithful right adjoint. Then $S = \{\sigma \in \text{Mor } \mathcal{C} \mid F\sigma \text{ is invertible}\}$ admits a calculus of left fractions.

Another class of examples arises from localising a ring. A ring may be viewed as a category with one object, by viewing the elements as morphisms.

Example 1.2.4. Let A be a ring. Then a subset $S \subseteq A$ admits a calculus of right fractions if the following holds.

- (1) If $s, t \in S$, then $st \in S$. Also $1_A \in S$.
- (2) For $a \in A$ and $s \in S$ there are $b \in A$ and $t \in S$ such that at = sb.
- (3) If sa = 0 for $a \in A$ and $s \in S$, then there is $t \in S$ such that at = 0.

In this case $AS^{-1} = A[S^{-1}]$ is a ring and $A \to A[S^{-1}]$ is the universal homomorphism that makes all elements in S invertible.

Calculus of Fractions for Subcategories

Let \mathcal{C} be a category and $S \subseteq \operatorname{Mor} \mathcal{C}$. A full subcategory \mathcal{D} of \mathcal{C} is *left cofinal* with respect to S if for every morphism $\sigma \colon X \to Y$ in S with X in \mathcal{D} there is a morphism $\tau \colon Y \to Z$ with $\tau \circ \sigma$ in $S \cap \mathcal{D}$.

Lemma 1.2.5. Let S admit a calculus of left fractions and $\mathcal{D} \subseteq \mathcal{C}$ be left cofinal with respect to S. Then $S \cap \mathcal{D}$ admits a calculus of left fractions and the induced functor $\mathcal{D}[(S \cap \mathcal{D})^{-1}] \to \mathcal{C}[S^{-1}]$ is fully faithful.

Proof It is straightforward to check (LF1)–(LF3) for $S \cap \mathcal{D}$. Now let X, Y be objects in \mathcal{D} . We need to show that the induced map

$$f \colon \operatorname{Hom}_{\mathbb{D}[(S \cap \mathbb{D})^{-1}]}(X, Y) \longrightarrow \operatorname{Hom}_{\mathfrak{C}[S^{-1}]}(X, Y)$$

is bijective. The map sends the equivalence class of a fraction to the equivalence class of the same fraction. If $[\alpha, \sigma]$ belongs to $\operatorname{Hom}_{\mathbb{C}[S^{-1}]}(X, Y)$ and τ is a morphism with $\tau \circ \sigma$ in $S \cap \mathcal{D}$, then $[\tau \circ \alpha, \tau \circ \sigma]$ belongs to $\operatorname{Hom}_{\mathcal{D}[(S \cap \mathcal{D})^{-1}]}(X, Y)$ and f sends it to $[\alpha, \sigma]$. Thus f is surjective. A similar argument shows that f is injective.

For an alternative proof using filtered colimits, combine Lemma 1.2.2 and Lemma 11.1.5.

Notes

The standard reference for localisation and the calculus of fractions is the book of Gabriel and Zisman [85]. The localisation of a category generalises the concept for rings. For instance, rings of functions are localised in order to study the local properties of a geometric object. The localisation of non-commutative rings was pioneered by Ore in 1931, who introduced the 'Ore condition' [151]. For a survey about localisation in algebra and topology, see [166].