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A localisation of a category is obtained by formally inverting a specific class of
morphisms. Forming localisations is one of the standard techniques in algebra;
it is used throughout this book. The calculus of fractions helps to describe the
morphisms of a localised category.

1.1 Localisation

We introduce the concept of localisation for categories. A localisation is ob-
tained by formally inverting a specific class of morphisms.

Localisation of Categories

Let C be a category and let S € Mor € be a class of morphisms in C. The
localisation of @ with respect to S is a category C[S~!] together with a functor
Q: C — C[S7!] satistying the following.
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4 Localisation

(L1) For every o € §, the morphism Qo is invertible.
(L2) For every functor F: € — D such that Fo is invertible for all o € S,
there exists a unique functor F: C[S~!] — D such that F = F o Q.

The localisation solves a universal problem and is therefore unique, up to a
unique isomorphism. We sketch the construction of Q: € — C[S™!]. At this
stage, we ignore set-theoretic issues, that is, the morphisms between two objects
of @[S~!] need not form a set. However, later on we pay attention and formulate
criteria such that €[ S~!] is locally small. We put Ob C[S~!] = Ob C. To define
the morphisms of C[S~'], consider the quiver with class of vertices Ob € and
class of arrows the disjoint union (Mor C) U S~, where

S T={0c7:Y>X|S20: X>7Y}

Let P be the category of paths in this quiver, that is, finite sequences of com-
posable arrows, together with the obvious composition given by concatenation
and denoted by op. We define Mor C[S~!] as the quotient of P modulo the
following relations:

(1) Bop a =B o« for all composable morphisms @, 8 € Mor C,
(2) idp X =ide X forall X € Ob C,
(3) coopo=idpXandoop o~ =idpY forallo: X - Y inS.

The composition of morphisms in P induces the composition in C[S~!]. The
functor Q is the identity on objects and on Mor C the composite

Mor € dne, (Mor@) u S~ Joe, P Mor C[S7'].

The following is a more precise formulation of the properties of the canonical
functor Q: € — C[S~!].

Lemma 1.1.1. For any category D, the functor
Hom(C[S™'], D) — Hom(C,D), Fs FoQ,

is fully faithful and identifies Hom(C[S™'], D) with the full subcategory of
Sfunctors in Hom(C, D) that make all morphisms in S invertible. O

Local Objects

Let € be a category and S € Mor C. An object Y in € is called S-local (or
S-closed, or S-orthogonal) if the map Home (o, Y) is bijective for all o € S.
We denote by S* the full subcategory of S-local objects in C.

https://doi.org/10.1017/9781108979108.006 Published online by Cambridge University Press


https://doi.org/10.1017/9781108979108.006

1.1 Localisation 5
Lemma 1.1.2. An object Y in C is S-local if and only if the canonical map
px.y: Home(X,Y) — Homeg-17(X,Y)
is bijective for all X € C.

Proof 1f Y is S-local, then Home(—,Y): CP — Set induces a functor
Home(—,Y): C[S7']° — Set. Yoneda’s lemma yields a morphism

Homgg-17(~=,Y) — Home(-,Y)

corresponding to idy, and it is straightforward to check that this is an inverse
for the canonical morphism Home (—,Y) — Homeg-17(=,Y).

Now assume that pxy is bijective for all X € €. Then Home(o,Y) is
bijective for all o € § since Home[g-17(0, Y) is bijective. |

Adjoint Functors

Let F: € —» D and G: D — C be a pair of functors and assume that F is left
adjoint to G. We set

S =S(F) ={o € MorC | Fo is invertible}
and obtain the following diagram

¢

ClS™] Fl|G with F=FoQ.

Proposition 1.1.3. The following statements are equivalent.

(1) The functor G is fully faithful.
(2) The counit FG(X) — X is invertible for every object X € D.
(3) The functor F induces an equivalence F: C[S™'] = D.

Moreover, in that case G induces an equivalence D = S* with quasi-inverse

steselo

Proof We denote by : ide — GF the unit and by £: FG — idp the counit
. . . F cF .

of the adjunction. Note that the composite F S FGF S F equals idr, and

G
G L GFG ce, G equals idg; this characterises the fact that (F, G) is an
adjoint pair.
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6 Localisation
(1) © (2): The counit ex: FG(X) — X induces for all Y € D a natural map
Homqp (X,Y) — Home(GX,GY) = Homp (FG(X),Y),
which is a bijection if and only if £x is an isomorphism, by Yoneda’s lemma.
(2) = (3): We claim that QG is a quasi-inverse of F. Clearly, F(QG) =

FG = idp. On the other hand, Fn is invertible, since €F is invertible. Thus
0n: Q — QGF is invertible, and therefore

(QG)FQ = QGF = Q = id@[s—l] Q

Then the defining property of Q implies (QG)F = ides-17-

(3) = (2): If F is an equivalence, then composition with F induces a
fully faithful functor Hom(D,X) — Hom(C,X) for any category X, by
Lemma 1.1.1. For X = D, this implies that there is ’: idp — FG such
that Fnp = n’F. We claim that (idp, FG) is an adjoint pair with unit n” and
counit . Clearly, then FG is an equivalence and ¢ is an isomorphism.

From the fact that F Lk FGF F equals id it follows that (e op’)F =
eF on’F = idF, and therefore £n’ = idiq,,. On the other hand, the fact that
G ﬁ GFG Lo, G equals idg implies by applying F that FGe on'FG =
FGe o FnG =1idpg. Thus (idp, FG) is an adjoint pair.

Now suppose that the equivalent conditions hold. In order to show that G
induces an equivalence D = S+, we need to show that the essential image of
G equals S*. The inclusion Im G C S* is clear. If X € S, then Home (17x, X)
is bijective since 7x € S. This gives an inverse of 77x, so X = GF(X). O

Example 1.1.4. Let C be an additive category and consider the category mod C
of functors F': C°? — Ab that fit into an exact sequence

Home (-, X) — Home(-,Y) — F — 0.
Then the Yoneda functor
€ — modC, X hyx:=Home(—,X)

admits a left adjoint if and only if every morphism in C admits a cokernel. The
left adjoint sends F = Coker 44 in mod C (given by a morphism ¢ in €) to
Coker ¢.

Proof Suppose that € has cokernels. For C € € we have

Hom(Coker hy, he) = KerHom(hg, hc)
=~ Ker Home (¢, C)
= Home (Coker ¢, C).
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1.1 Localisation 7

This follows from Yoneda’s lemma and yields the adjointness. The converse
follows from the fact that a left adjoint preserves cokernels. O

We introduce the following terminology. A diagram of additive functors
E F

¢ C c”
E, F,

is called a localisation sequence if

(LS1) (E,E,) and (F, F,) are adjoint pairs,
(LS2) E and F, are fully faithful,
(LS3) ImE = Ker F (equivalently, EE,(X) = X if and only if F(X) = 0).

The dual notion is called a colocalisation sequence and is given by a diagram
of additive functors
E) F)
¢ C c”
E F

satisfying the dual properties.
The above Example 1.1.4 gives rise to a localisation sequence
F
¢ e

<
F,

KerF ’ ’

mod

provided that C is abelian. In that case the functor F' is exact and the right
adjoint of the inclusion Ker F — mod € sends an object X to the kernel of the
unit X — F,F(X).

Localisation Functors

Suppose that the canonical functor @ — C[S~™'] corresponding to a class of
morphisms S € Mor € admits a right adjoint. Then the above Proposition 1.1.3
suggests we think of localisation as an endofunctor € — €. The following
definition makes this idea precise. Moreover, we see that both ways of thinking
about localisation are equivalent.

Afunctor L: € — Ciscalled alocalisation functor if there exists a morphism
n: ide — L such that Ly: L — L? is an isomorphism and Ly = nL. Note
that we only require the existence of 7; the actual morphism is not part of the
definition of L. However, we will see that 7 is determined by L, up to a unique
isomorphism L — L.

Proposition 1.1.5. Let L: C — C be a functor and n: ide — L a morphism.
Then the following are equivalent.
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8 Localisation

(1) Ly: L — L? is an isomorphism and Ly = L.
(2) There exists afunctor F : C — D and a fully faithful right adjoint G: D —
Csuchthat L =G o F andn: ide — G o F is the unit of the adjunction.

Proof (1) = (2): Let D denote the essential image of L, that is, the full
subcategory of € consisting of objects isomorphic to LX for some X € C. Note
that X € D if and only if 5y is invertible. In this case let fx: LX — X denote
the inverse of nx. Define F: € - Dby FX = LX and let G: D — C be the
inclusion. We claim that F and G form an adjoint pair. To this end, one checks
that the maps

Homqp (FX,Y) — Home(X,GY), a+— Gaony,
and
Home (X, GY) — Homqp (FX,Y), B+ 0yoFp,

are mutually inverse bijections. Consider a pair of morphisms a: FX — Y and
B: X — GY. This yields a pair of commutative squares

B

FX —2 vy X —— GY
lnFX l']y l']x l’]Gy
GF(a) GF(B)
GF(FX) —— GF(Y) GF(X) — GF(GY)

giving the desired identities
a=60yonyoa=0yoGF(a)onpx =0y o FG(a) o Fnx
and
B =0y ongy o =06y oGF(B)onx =GOy o GF()onx.

2) = (1): Let e: FG — idp denote the counit. Then it is well known that
the composites

F G
F rGF 5 F and 6 2% 6FG S5 6

are identity morphisms. We know from Proposition 1.1.3 that & is invertible
because G is fully faithful. Therefore Ly = G Fn is invertible. Moreover, we
have

Lyp=GFn=(GeF)™' =nGF =1L. ]
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1.1 Localisation 9

Localisation of Adjoints

Localising a pair of adjoint functors yields an adjoint pair of functors between
the localised categories.

Lemma 1.1.6. Let (F, G) be an adjoint pair of functors © 2 D. If S € Mor C
and T C Mor D are classes of morphisms such that F(S) C T and G(T) C S,
then (F, G) induces an adjoint pair of functors (F, G) such that the following
diagram commutes.

ers] D[T']

—
Proof The functors F and G induce a pair of functors F: C[S~!] — D[T™']
and G: D[T~'] — C[S~']. We have by definition a natural isomorphism
a: Homp (F—,-) = Home(—, G-)

of functors C°? x D — Set. These functors invert morphisms in S and 7. Thus
a induces a natural isomorphism

HOl’nfD[T—I](F—, —) — HOl’n@[S—l] (—, G_—)

of functors CP[S~'] x D[T~'] — Set. It follows that (F,G) is an adjoint
pair. O

There is a useful consequence which is obtained by setting 7 = @.

Lemma 1.1.7. Consider a composite © - C[S™'] — D of functors and
suppose there exists a right adjoint. Then C[S™'] — D admits a right adjoint.
O

Localisation and Coproducts

Let C be a category and S € Mor C. We provide a criterion for the canonical
functor @ — C[S~'] to preserve coproducts.

Lemma 1.1.8. Let C be a category which admits coproducts and let S C Mor C
be a class of morphisms. If | |; o; belongs to S for every family (07;);ey in S, then
the category C[S™'] admits coproducts and the canonical functor C — C[S7!]
preserves coproducts.
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10 Localisation

Proof Let (X;);e; be a family of objects in €[S™']. Then the coproduct is
obtained by applying the left adjoint of the diagonal functor A: C — [, C.
The assumption on S means that we can apply Lemma 1.1.6. Thus the diagonal
functor A: C[S™!'] — [1;c; C[S™'] admits a left adjoint which provides the
coproduct [ [;¢; X; in C[S7']. O

1.2 Calculus of Fractions

We introduce the calculus of fractions; this helps to describe explicitly the
morphisms of a localised category.

Calculus of Fractions

Let € be a category and S € Mor C. There is an explicit description of the
localisation C[S~!] provided that the class S admits a calculus of left fractions,
that is, the following conditions are satisfied.

(LF1) The identity morphism of each object is in S. The composite of two
morphisms in § is again in S.

(LF2) Each pair of morphisms X’ & X - Y with o € S can be completed to
a commutative diagram

such that 7 € §.

(LF3) Leta,B: X — Y be morphisms in C. If there is c: X’ — X in § such
that wo = Bo, then there is 7: ¥ — Y’ in § such that Ta = 7.

The class S admits a calculus of right fractions if it admits a calculus of left
fractions in the opposite category C°P.

Now assume that S admits a calculus of left fractions. Then one obtains a
new category S™!C as follows. The objects are those of €. Given objects X and
Y, we call a pair (@, o) of morphisms

X 25y << vy

in @ with o~ in S a left fraction. The morphisms X — Y in S~! € are equivalence
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1.2 Calculus of Fractions 11

classes [, o] of such left fractions, where (a1, o) and (a@y, 0») are equivalent
if there exists a commutative diagram

Y
1N
3 o3

with o3 in S. The composite of [@, o] and [B, 7] is by definition [B’a, o'7]
where o’ and B’ are obtained from condition (LF2) as in the following com-
mutative diagram.

ZI/
27N
Y’ 7’
A N
X Y 7z

The canonical functor P: @ — S~'C is the identity on objects and sends a
morphism a: X — Y to [a,idy].

Lemma 1.2.1. Let S admit a calculus of left fractions. The functor F: S7'1€ —
C[S~'] which is the identity on objects and takes a morphism [a, o] to (Qo) ' o
Qua is an isomorphism.

Proof The functor P inverts all morphisms in S and factors therefore through
Q: € — C[S™'] via a functor G: C[S™'] — S~'C. It is straightforward to
check that F o G =idand G o F =id. |

From now on, we identify S~'C with G[S~!] whenever S admits a calculus
of left fractions.

A category J is called filtered if it is non-empty, for each pair of objects i, i’
there is an object j with morphismsi — j « i’, and for each pair of morphisms
a,a’: i — j there is a morphism S: j — k such that Sa = Ba’.

Lemma 1.2.2. Let S admit a calculus of left fractions and fix objects X,Y in
C. The morphisms o: Y — Y’ in S form a filtered category, and taking o to
Home (X,Y’) gives a bijection
colim Home(X,Y’) = Homegs-17(X,Y).
oYY’

This map sends a morphism « in Home (X,Y’) to [a, o).
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12 Localisation
Proof Straightforward. O

Examples for classes of morphisms with a calculus of fractions arise from
pairs of adjoint functors (F, G) by taking left fractions of the form

X —% GF(Y) <2 y.

Example 1.2.3. Let F': C — D be a functor with a fully faithful right adjoint.
Then S = {o- € Mor C | Fo is invertible} admits a calculus of left fractions.

Another class of examples arises from localising a ring. A ring may be
viewed as a category with one object, by viewing the elements as morphisms.

Example 1.2.4. Let A be a ring. Then a subset S C A admits a calculus of
right fractions if the following holds.

(1) If s, € S, then st € S. Also 14 € S.
(2) Fora € Aand s € Sthere are b € A and t € S such that at = sb.
(3) If sa =0fora € A and s € S, then there is ¢ € S such that ar = 0.

In this case AS™' = A[S™'] is a ring and A — A[S™'] is the universal
homomorphism that makes all elements in S invertible.

Calculus of Fractions for Subcategories

Let € be a category and S C Mor C. A full subcategory D of C is left cofinal
with respect to S if for every morphism : X — Y in S with X in D there is a
morphism7: Y — ZwithtooinSND.

Lemma 1.2.5. Let S admit a calculus of left fractions and D C C be left cofinal
with respect to S. Then SN'D admits a calculus of left fractions and the induced
functor D[(S N D)1 — C[S™'] is fully faithful.

Proof 1t is straightforward to check (LF1)—(LF3) for S N D. Now let X,Y be
objects in D. We need to show that the induced map

f: HomD[(SnD)—l](X, Y) e Home[S—I](X, Y)

is bijective. The map sends the equivalence class of a fraction to the equivalence
class of the same fraction. If [a, o] belongs to Home-11(X, Y) and 7 is a mor-
phism with 7o in SND, then [T oa, T o o] belongs to Homp [ (gnp)-17(X, Y)
and f sends itto [a, o ]. Thus f is surjective. A similar argument shows that f
is injective.

For an alternative proof using filtered colimits, combine Lemma 1.2.2 and
Lemma 11.1.5. m|

https://doi.org/10.1017/9781108979108.006 Published online by Cambridge University Press


https://doi.org/10.1017/9781108979108.006
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Notes

The standard reference for localisation and the calculus of fractions is the book
of Gabriel and Zisman [85]. The localisation of a category generalises the
concept for rings. For instance, rings of functions are localised in order to study
the local properties of a geometric object. The localisation of non-commutative
rings was pioneered by Ore in 1931, who introduced the ‘Ore condition’ [151].
For a survey about localisation in algebra and topology, see [166].
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