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New limit theory is provided for a wide class of sample variance and covariance
functionals involving both nonstationary and stationary time series. Sample func-
tionals of this type commonly appear in regression applications and the asymptotics
are particularly relevant to estimation and inference in nonlinear nonstationary
regressions that involve unit root, local unit root, or fractional processes. The limit
theory is unusually general in that it covers both parametric and nonparametric
regressions. Self-normalized versions of these statistics are considered that are
useful in inference. Numerical evidence reveals interesting strong bimodality in the
finite sample distributions of conventional self-normalized statistics similar to the
bimodality that can arise in t-ratio statistics based on heavy tailed data. Bimodal
behavior in these statistics is due to the presence of long memory innovations and is
shown to persist for very large sample sizes even though the limit theory is Gaussian
when the long memory innovations are stationary. Bimodality is shown to occur even
in the limit theory when the long memory innovations are nonstationary. To address
these complications, new self-normalized versions of the test statistics are introduced
that deliver improved approximations that can be used for inference.

1. INTRODUCTION

Parametric and nonparametric regressions with nonstationary data have attracted
considerable recent attention because of the prevalence of nonstationary time series
in applied work across many different disciplines and the need for asymptotic
theory to support methods of estimation and inference in the presence of non-
stationarity. Much of this work has focused on cointegrating regression where
linkages between nonstationary processes and stationary innovations play an
integral role in the notion of cointegration and its various extensions to fractional
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processes involving long memory time series. The literature in this area is now
voluminous, as discussed in recent papers (e.g., Duffy and Kasparis, 2021; Wang,
Phillips, and Kasparis, 2021). Readers are referred to Park (2014) and Tjøstheim
(2020) for partial overviews of the field of nonlinear cointegration studies that
cover many of the relevant contributions and empirical applications. In almost all
of this literature, a key role in the asymptotic development is played by sample
covariance functionals that involve (possibly nonlinear functions of) nonstationary
processes and stationary time series. Sample covariances of this type take similar
but subtly different forms in parametric and nonparametric regressions. They
typically appear in signal functions and score functions whose asymptotic behavior
is critical in determining the limit theory needed for estimation, inference, and
specification testing in such regressions. Prototypical forms of these functionals
for nonparametric and parametric cases are shown below in (1.3) and (1.4) by R2n

and R2n(θ
0). The goal of the present article is to extend existing results on such

functionals, accommodate these two forms in a general limit theory, and develop
self-normalized statistics that will be useful for inference in regression. We open
the discussion with three illustrative examples.

In the nonparametric case, simple nonlinear nonstationary regressions typically
have the form

yk = g(xk)+uk, k = 1, . . . ,n, (1.1)

with an I(1) regressor generated by the partial sum model xk = xk−1 + ξk with
weakly dependent and possibly correlated innovations {uk,ξk}, thereby allowing
for endogeneity. In the nonparametric case, the nonlinear cointegrating function
g(xk) may be estimated at some point x by local-level kernel regression in the usual
manner via the criterion

Qn,h(g) =
n∑

k=1

Kh(xk − x)(yk −g(xk))
2, (1.2)

giving ĝ(x) = argmingQn,h(g) =
∑n

k−1 ykKh(xk−x)∑n
k−1 Kh(xk−x) , where Kh(s) = 1

h K( s
h ), K(·) is a

nonnegative real kernel function and the bandwidth parameter h = hn → 0 as n →
∞. The limit theory of ĝ(x) then depends on the behavior of suitably normalized
forms of the two sample functionals

R1n =
n∑

k−1

Kh(xk − x) and R2n =
n∑

k−1

Kh(xk − x)uk, (1.3)

where R1n is a sample signal process and R2n is a sample score process, both of
which are nonlinear in the nonstationary regressor xk. Test statistics typically also
require estimation of the innovations using the regression residuals ûk = yt − ĝ(xk)

and a sample functional such as R3n = ∑n
k−1 K2

h(xk − x)û2
k . Full development

of a limit theory for estimation and inference concerning the function g(·) in
(1.1) requires joint convergence results for suitably normalized forms of sample
functionals such as (R1n,R2n,R3n). In applications, allowance is typically made for
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endogeneity of the regressor xk in the regression (1.1). Importantly, as shown in the
nonlinear cointegration study of Wang and Phillips (2009b), such nonparametric
nonstationary regressions do not require the use of instrumental variables and do
not suffer from ill-posedness, in contrast to stationary regressions and there is, in
contrast therefore, no need for regularization.

In the parametric case, the nonlinear cointegrating function has a specific
functional form g(xk) = g(xk;θ) that depends on some unknown parameter vector
θ ∈ � ⊂R

p, where � is a compact subspace of Rp for some finite p. The nonlinear
least squares estimator is then ĝ(x) = g(x;θ̂ ) with θ̂ = argminθ∈�Qn(θ) where
Qn(θ) = ∑n

k−1(yk − g(xk;θ))2. In this case, the limit theory for θ̂ depends on
normalized versions of the sample functionals

R1n(θ
0) =

n∑
k−1

G0
kG0′

k and R2n(θ
0) =

n∑
k−1

G0
kuk, (1.4)

where G0
k = ∂g(xk;θ0)/∂θ and θ0 is the true value of θ . As in the nonparametric

case, test statistics usually depend on regression residuals ûk = yk − g(xk;θ̂ ),
leading to sample functionals such as R3n(θ̂) =∑n

k−1 Gθ̂
k Gθ̂ ′

k û2
k .

The sample variance and covariance functionals in (1.3) and (1.4) are closely
related but differ because of the critical role played by the presence of the
bandwidth sequence h in the functions of (1.3), making a general theory difficult.
Asymptotics for regression estimation and inference in such cases have therefore
been studied in past research separately and often in special cases.1 More complex
models that include spurious nonlinear regression (Phillips, 2009; Tu and Wang,
2022) and functional coefficient (FC) nonstationary regressions involve similar
sample functionals for which asymptotic theory is also needed to facilitate empir-
ical work.

FC regressions are of particular interest in applications because covariate
dependence or time variation in the regression coefficients is often of interest
in applications. Such models with nonstationary regressors were originally con-
sidered by Xiao (2009).2 It was later shown in Phillips and Wang (2023) that
important subtleties arise in such FC regressions that affect the limit theory in
material ways because nonstationarity in the regressors amplifies the impact of
bias in nonparametric FC regression. Models of this type are typically linear in
(possibly multivariate) regressors xk and take the form

yk = θ(zk)
′xk +uk, k = 1, . . . ,n, (1.5)

with coefficients θ(zk) that are smooth functions of a covariate zk that may be
stationary or nonstationary. In FC models of this type, estimation of the coefficient

1See, for instance, Phillips and Park (1998), Park and Phillips (1999, 2000, 2001), Karlsen and Tjostheim (2001),
Wang and Phillips (2009a, 2009b), Gao and Phillips (2013), Li, Tjøstheim, and Gao (2016), Wang and Phillips (2016),
and Wang et al. (2021)
2See also Cai, Li, and Park (2009), Sun and Li (2011), Sun, Cai, and Li (2016), and Liang, Shen, and Wang (2023).

https://doi.org/10.1017/S0266466624000276 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000276


4 QIYING WANG AND PETER C. B. PHILLIPS

functions θ(·) at some point z in the domain of zt necessarily involves the three
sample functionals

R4n =
n∑

k−1

xkx′
kKh(zk − z),

R5n =
n∑

k−1

Kh(zk − z)uk, R6n =
n∑

k−1

xkx′
k[θ(zk)− θ(z)]Kh(zk − z), (1.6)

where R6n is an additional sample covariance bias functional that depends on the
regressors, the kernel function, and bias effects that need further decomposition to
fully resolve the asymptotic theory.3

These examples motivate a general formulation that is relevant in many dif-
ferent applications. To fix ideas, suppose an observable time series xt is a scalar
nonstationary process, either integrated I(1), near I(1), or a similar time series with
fractional process innovations, as detailed in what follows, and wk = (w1k, . . . ,wdk)

is a sequence of stationary random vectors. The article is concerned with sample
quantities Sn of xk and wk defined by sample sums of nonlinear functions of xk and
wk that take the general form

Sn =
n∑

k=1

f (xk/h,wk),

where h ≡ hn > 0 is a sequence of positive constants indexed by the sample size
n and f (x,y) is a real function on R1+d. The partial sum Sn is a scalar nonlinear
functional of multivariate arguments that involve both stationary and nonstationary
processes. Such functionals play a dominant role in the development of the
theory of estimation and inference in nonlinear cointegrating regression, where the
regressor is usually a nonstationary time series, including those with autoregressive
unit roots and local unit root properties. In such regression contexts, a prominent
example of Sn has the form of a sample covariance function that involves both the
nonstationary regressor and the equation innovations. In this case, two covariance
functions are most typical, one of the form S1n = ∑n

k=1 f (xk,w2k, . . . ,wdk)w1k

and the other of the form S2n = ∑n
k=1 f (xk/h)w1k, where an auxiliary sequence

h = hn may be present that depends on the sample size, as in nonparametric kernel
regression discussed above.

As is now well known in the literature (see, for instance, Karlsen and Tjostheim,
2001; Park and Phillips, 2001; Wang and Phillips, 2009a, 2009b; Chan and Wang,
2015; Dong and Linton, 2018; Duffy, 2020; Hu, Phillips, and Wang, 2021 and
the references therein), covariance expressions such as S1n occur in nonlinear
parametric cointegrating regression and expressions such as S2n, with the auxiliary

3As explained in Phillips and Wang (2023), the bias effect R6n has both a “deterministic” component (
∑n

k−1 xkx′
k)Eξβk

and a “random” component (
∑n

k−1 xkx′
k)ηβk where ξβk = [β(zk) − β(z)]Kh(zk − z) and ηβk = ξβk − Eξβk . The

presence of these two components influences the limit theory, rates of convergence, and bandwidth choice in important
ways. Readers are referred to Phillips and Wang (2023) for details.
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sequence h, arise naturally in Nadaraya–Watson estimation where f (x) is a kernel
function and h → 0 is a bandwidth used in the nonparametric regression.

It transpires that the limit behavior of Sn depends on the value of the integral∫∞
−∞ g(s)ds, where g(x) =E f (x,w1). When

∫∞
−∞ g(s)ds �= 0, it was shown in Wang

et al. (2021) that upon suitable normalization Sn satisfies

dn

nh
Sn →D

∫ ∞

−∞
g(x)dxLG(1,0), (1.7)

provided dn/nh → 0 and dn/h → ∞, with d2
n = var(xn) and where LG(t,s) is

the local time of a stochastic process G(t) at the spatial point s, as defined
in the following section. Result (1.7) was established in quite general settings,
generalizing and improving previous related work on convergence to local time
given by Akonom (1993), Borodin and Ibragimov (1995), Phillips and Park (1998),
Jeganathan (2004), Wang and Phillips (2009a, 2016), and Duffy (2016). This
fundamental limit result enabled the investigation of asymptotic theory for latent
variable nonparametric cointegrating regression in which some variables were
observed with measurement error.

The present work is concerned with developing a limit theory for the sample
function Sn in the case where

∫∞
−∞ g(s)ds = 0, which is commonly known as the

zero energy case. Towards this end, in some specialized cases such as f (x,y) = m(x)
or f (x,y) = m(x)y where m(x) is bounded and integrable, the asymptotic behavior
of Sn is known and has been considered in Wang and Phillips (2009b, 2011),
with the attendant requirement that h → 0, and in an unpublished manuscript by
Jeganathan (2008) (with h = 1). This article provides a unified extension of these
existing results that encompasses the two cases where h = 1 and h → 0, together
with the setting of general functionals f (x,y) rather than the specialized forms
f (x,y) = m(x)y or m(x).

In unifying, the two standard limit cases where h = 1 and h → 0, our work
might be compared with Gozalo and Linton (2000) who showed how to non-
parametrically encompass a parametric model by using a local nonlinear least
squares criterion that allows for recentering a nonparametric regression on a
specific parametric model. In the present context, that approach would involve
replacing (1.2) with the criterion Qn,h(x,α) =∑n

k=1 Kh(xk −x)(yk −m(xk,α))2 for
some parametric function m(xk,α), leading to the estimate ĝ(x) = m(x,α̂), where
α̂ = argminαQn,h(x,α). When the parametric form m(x;α) is correct or nearly
correct around the point x, there is an advantage to using a wider bandwidth h
in such a regression; and, if the parametric model m(x;α) were correct almost
everywhere, there would be an advantage in letting h → ∞ rather than h → 0.
The limit theory for this approach in Gozalo and Linton (2000) relies on an
independent and identically distributed (i.i.d.) setup. Extending that approach to
the present setting and exploring possible advantages of parametric information in
local nonparametric nonlinear regression with nonstationary data are interesting
lines of future research.

It should be mentioned that the zero energy case where the functional∫∞
−∞ g(s)ds = 0, in which g(x) = Ef (x,w1), arises naturally in regression
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applications. For instance, in nonparametric cointegrating regression, the
development of a limit theory for normalized versions of functionals such as
the sample covariance S2n is vital for both estimation and inference. Thus, when xk

is an I(1) regressor and w1k is an error process, use of the natural centralizing
condition Ew11 = 0 in turn implies that

∫∞
−∞ g(s)ds = ∫∞

−∞ f (x)dxEw11 = 0.
Such situations arise even in complex settings where endogeneity is present (see
Wang and Phillips, 2009b, 2011, 2016 for details and econometric applications).
Similarly, in regression with nonstationary nonlinear heteroskedasticity when
nonstationary volatility is present in the errors [with ut = f (xt,wt), say], the zero
energy condition

∫∞
−∞ g(s)ds = 0 where again g(x) =Ef (x,w1) is usually required

for the development of an asymptotic theory. In this case, the use of general
functionals such as f (x,y) in the sample covariance limit theory enables a full
representation of nonstationary nonlinear volatility in the regression errors.

The remainder of the article is organized as follows: Section 2 provides the main
limit theory for nonlinear functionals of nonstationary time series and a series
of remarks that analyze the findings and connect to later discussion. Section 3
provides numerical evidence which reveals an intriguing bimodality for self-
normalized statistics that arises in finite samples and that can persist in extremely
large samples even though the limit theory is Gaussian. Section 4 discusses these
findings, explains the slow convergence, and shows how bimodal limit theory
does arise in the presence of nonstationary long memory innovations. Alternative
self-normalized statistics are considered that substantially improve finite sample
performance. Concluding remarks are in Section 5. Proofs of the main results are
given in Section 6 and supporting propositions and lemmas that play key roles in
proving the main results are in Section 7. Proofs of the lemmas are in the Appendix.

Throughout the article, ⇒ denotes weak convergence of probability measures
with respect to the uniform topology (see, for instance, Billingsley, 1968) and →D

is distributional convergence in euclidean space. For a vector A = (A1, . . . ,Ad), we
define ||A|| = |A1|+ · · ·+ |Ad|. Constants are represented by C,C1,C2, . . . , which
may differ in different locations.

2. MAIN RESULTS

2.1. Assumptions and Preliminaries

Let λi = (εi,ei)
′, i ∈ Z be a sequence of iid random vector innovations with

E||λ0||2 < ∞. Let ξk = ∑∞
j=0 φjεk−j be a linear process where the coefficients

φk,k ≥ 0, satisfy φ0 �= 0 and one of the following conditions:

LM: φk ∼ k−μ ρ(k),1/2 < μ < 1 and ρ(x) is a function that is slowly varying
at ∞.4

SM:
∑∞

k=0 |φk| < ∞ and φ ≡∑∞
k=0 φk �= 0.

4That is, ρ(x) is a measurable function from (0,∞) to (0,∞) so that, for all a > 0, ρ(ax)/ρ(x) → 1 as x → ∞, for
example, a positive constant, log(x) or logb(x) for any real b > 0.
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In the following development, observable nonstationary time series xk are gener-
ated by the linear process innovations ξk as detailed in the near unit root process
given in A1(i). The inclusion of additional innovations ei in λi is useful for spec-
ifying (possibly correlated) model disturbances, as in the generating mechanisms
used in simulations later in the article in Sections 3 and 4. For the development
of the asymptotic theory in our main results, the following assumptions are made
about the components of Sn =∑n

k=1 f (xk/h,wk).

A1 (i) xk = ρnxk−1 + ξk, where x0 = 0, ρn = 1−γ n−1 for some constant γ ≥ 0.
(ii) Eε1 = 0 and

∫∞
−∞ |Eeitε1 |dt < ∞ .

A2 (a) wk = (w1k, . . . ,wdk), where wik = �i(λk, . . . ,λk−m0) for some fixed m0 ≥ 0
and �i(.),i = 1,2, . . . ,d, are real measurable functions of their respective
components.

(b) E ||w1||max{2,4β} < ∞, where β is given in A3(I).
A3 (I) A bounded function T(x) exists such that, for some β > 0,

|f (x,y)| ≤ T(x)(1+||y||β) and
∫ ∞

−∞
(1+|x|)T(x)dx < ∞.

(II)
∫∞
−∞ g(x)dx = 0, where g(x) = E f (x,w1).

(III)
∫∞
−∞E |f̂ (x,w1)|dx < ∞, where f̂ (x,y) = ∫∞

−∞ eitxf (t,y)dt.

Assumption A1(i) accommodates near integrated time series xk that are derived
from either short memory (SM) or long memory (LM) innovations, thereby
covering a large class of nonstationary time series. The extra distributional assump-
tion A1(ii) is a smoothness condition requiring integrability of the characteristic
function Eeitε1 that is often useful in establishing convergence to a local time
process. The condition can be relaxed to limsup|t|→∞ |t|aEeitε1 | < ∞ for some
a > 0, but is generally difficult to eliminate completely in the development of
limit theory for nonlinear cointegrating regression. The zero initialization x0 = 0
is assumed for convenience to avoid notational clutter and can be considerably
relaxed, as is well known from earlier research. In particular, all the main results
still hold if instead x0 = oP(dn), where d2

n = var(
∑n

k=1 ξk). It is also well-known
(see, for instance, Wang, Lin, and Gulati, 2003) that

d2
n ∼ Eε2

0

{
cμ n3−2μ ρ2(n), under LM,

φ2 n, under SM,

and xnt�/dn ⇒ Zt on D[0,1], where cμ = 1
(1−μ)(3−2μ)

∫∞
0 x−μ(x+1)−μdx and

Zt = W(t)+γ

∫ t

0
e−γ (t−s)W(s)ds, t ≥ 0,

W(t) =
{

B3/2−μ(t), under LM,

B1/2(t), under SM,

and BH(t) is fractional Brownian motion with Hurst exponent H and B1/2(t) is
standard Brownian motion. In this event, Zt is a fractional Ornstein–Uhlenbeck
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process, having a continuous local time process which we denote by LZ(t,x). As
in Geman and Horowitz (1980), the local time process LZ(t,x) is defined as

LZ(t,x) = lim
ε→0

1

2ε

∫ t

0
I
(|Zr − x| ≤ ε

)
dr. (2.1)

These notations will be used subsequently without further explanation.
Assumption A2 ensures that wk, k ≥ 1, is a sequence of stationary random

vectors. No restriction is imposed on the relationship between εk and ek of λk =
(εk,ek)

′, which enables the results established here to be widely applicable in non-
linear cointegrating regression models with endogeneity, where the components εk

and ek drive regressor time series and regressor errors, respectively. The extension
of A2 to include linear process formulations is possible if the functional f (x,y)
has a certain structure still allowing for endogeneity. We refer to Corollary 2.1 for
further details on this extension.

Finally, Assumption A3 provides conditions on the function f (x,y). These,
together with A2(b), ensure that,∫ ∞

−∞

[
Ef 2(x,w1)+Ef 4(x,w1)

]
dx ≤ CE ||w1||max{2,4β}

∫ ∞

−∞
T(x)dx < ∞, (2.2)

the Fourier transform f̂ (t,y) = ∫∞
−∞ eitxf (x,y)dx is well defined, supx g(x) < ∞,∫ |g(x)|dx ≤ ∫ E |f (x,w1)|dx < ∞, and

∫∞
−∞(1 + |x|)E |f (x,w1)|dx < ∞. Further-

more, it follows from Ef̂ (0,w1) = ∫∞
−∞E f (x,w1)dx = 0 that

|Ef̂ (t,w1)| ≤
∫ ∞

−∞

∣∣(eitx −1
)
Ef (x,w1)

∣∣dx ≤ C min{1,|t|}. (2.3)

On the other hand, using the inverse Fourier transformation, A3(III) ensures the
representation of f (x,wk), almost surely,

f (x,wk) = 1

2π

∫ ∞

−∞
e−itxf̂ (t,wk)dt. (2.4)

These properties will be used in the main results that follow without further
reference.

2.2. Asymptotic Theory

Our main result is as follows.

Theorem 2.1. Suppose A1–A3 hold. For any h ≡ hn → 0 satisfying nh/dn → ∞,
we have( dn

nh

nt�∑
k=1

f 2
(

xk/h,wk
)
,
( dn

nh

)1/2
nt�∑
k=1

f
(

xk/h,wk
))

⇒ (
τ 2 LZ(t,0), τ NL1/2

Z (t,0)
)
, (2.5)
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on DR2 [0,1], where τ 2 = ∫∞
−∞E f 2(s,w1)ds, and N is a standard normal variate

independent of LZ(t,0) for 0 ≤ t ≤ 1.
If in addition γ = 0, where γ is used in A1(i), and

∫∞
−∞E

{|f̂ (t,w0)
(
1 +

||wr||β)
}
dt < ∞ for any r ≥ 0, then

(dn

n

nt�∑
k=1

f 2
(

xk,wk
)
,

(
dn

n

)1/2 nt�∑
k=1

f (xk,wk)
)

⇒ (
τ 2 LZ(t,0), τ1NL1/2

Z (t,0)
)
, (2.6)

on DR2 [0,1] (recall Zt = W(t) when γ = 0), where τ 2
1 = G0 +2

∑∞
r=1 Gr with

Gr = 1

2π

∫ ∞

−∞
E
{
f̂ (s,w0)f̂ (s,wr)e

−isxr
}
ds

=
∫ ∞

−∞
E
{
f (y,w0)f (y+ xr,wr)

}
dy. (2.7)

Remark 2.1. Different constants τ and τ1 appear in the second components of
results (2.5) and (2.6). In fact, as h → 0, we have

dn

nh

n∑
k=1

n∑
j=k+1

E
{
f (xk/h,wk)f (xk+j/h,wk+j)

}= o(1),

(see the proof of (7.2) in Proposition 7.3); but when h = 1 and γ = 0

dn

n

n∑
k=1

f (xk,wk)f (xk+j,wk+j) →D GjLZ(1,0), (2.8)

for any j ≥ 1 (see (7.5) of Proposition 7.4). These facts indicate that the influence
of cross product terms such as f (xk/h,wk)f (xk+j/h,wk+j) on the variance of( dn

nh

)1/2 ∑nt�
k=1 f

(
xk/h,wk

)
is eliminated as h → 0, but this is not the case when

h = 1. In consequence, different constants appear in the two results (2.5) and (2.6).
In addition to (2.6), the following joint convergence holds in which, for any q > 0,

(dn

n

nt�∑
k=1

f 2
(

xk,wk
)
,

dn

n

nt�∑
k=1

f
(

xk,wk
)
f
(

xk+1,wk+1
)
, . . . ,

dn

n

nt�∑
k=1

f
(

xk,wk
)
f
(

xk+q,wk+q
)
,

(
dn

n

)1/2 nt�∑
k=1

f (xk,wk)
)

⇒ (
τ 2 LZ(t,0), G1 LZ(t,0), . . . , Gq LZ(t,0), τ1NL1/2

Z (t,0)
)
, (2.9)

on DRq+1 [0,1]. The proof of (2.9) involves only minor additions to that of (2.6) and
the details are omitted.
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Remark 2.2. In special cases where f (x,y) = K(x)y (with K(x) bounded
and integrable) and f (x,y) = K(x) ( with

∫
K(x)dx = 0 and K(x) bounded and

integrable), a similar result to (2.5) has been considered in Wang and Phillips
(2009b) and Wang and Phillips (2011), respectively, and a similar result to (2.6)
can be found in Jeganathan (2008). Theorem 2.1 provides a unified generalization
of these existing results to functional limit theorems. Our proof makes use of the
methodology developed in Wang and Phillips (2009b), which seems simpler than
that used in Jeganathan (2008).

Remark 2.3. The quantity m0 given in A2 (a) is set to be a fixed constant, but
it can be chosen as large as required in applications. Further, careful examination
the proof reveals that the result continues to hold when m0 = mn → ∞ provided
the expansion rate is slow enough. Moreover, when f (x,y) = K(x)y, the stationary
component wk in Theorem 2.1 can be extended to include linear processes and
endogeneity, as the following corollary shows, thereby covering regression models
with errors ut and regressors xt that allow for endogeneity.

Corollary 2.1. In addition to A1, suppose that:

(a) K(x) is a bounded continuous function satisfying
∫

K(x)dx < ∞ and∫ |K̂(x)|dx < ∞, where K̂(x) = ∫ eixsK(s)ds.
(b) uk =∑∞

j=0 ψj λk−j, where Eλ1 = 0, E ||λ1||4 < ∞ and the coefficient vector
ψk = (ψk1,ψk2) satisfies

∑∞
k=0 k(|ψ1k|+ |ψ2k|) < ∞ and

∑∞
k=0 ψk �= 0.

For any h ≡ hn → 0 satisfying nh/dn → ∞, we have

( dn

nh

n∑
k=1

K2
(
xk/h)u2

k,

(
dn

nh

)1/2 n∑
k=1

K
(
xk/h

)
uk

)
→D

(
τ̃ 2 LZ(1,0), τ̃ NL1/2

Z (1,0)
)
, (2.10)

where τ̃ 2 = ∫∞
−∞ K2(s)dsEu2

1 and N is a standard normal variate independent of
LZ(1,0).

If h = 1 and in addition γ = 0, where γ is used in A1(i), then

(dn

n

n∑
k=1

K2
(
xk
)
u2

k,
dn

n
Jn,

(
dn

n

)1/2 n∑
k=1

K(xk)uk

)
→D

(
τ̃ 2 LZ(1,0), τ̃ 2

1 LZ(1,0), τ̃1NL1/2
Z (1,0)

)
, (2.11)

where, for some M = Mn → ∞,

Jn =
n∑

k=1

K2
(
xk
)
u2

k +2
M∑

j=1

�

(
j

M

) n−j∑
k=1

K
(
xk
)
K
(
xk+j
)

uk uk+j, (2.12)
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takes the form of a heteroskedastic and autocorrelation consistent (HAC) estimator
in which �(

j
M ) is a lag kernel weight function such as the Bartlett triangular kernel

�(
j

M ) = 1− |j|
M , and where τ̃ 2

1 = G̃0 +2
∑∞

r=1 G̃r with

G̃r = 1

2π

∫ ∞

−∞
|K̂(s))|2E{u0 ur e−isxr

}
ds =

∫ ∞

−∞
K(y)E

{
u0 ur K(y+ xr)

}
dy.

2.3. Self-Normalized Statistics and Discussion

Result (2.10) coincides with (7.4) of Proposition 7.1 in Wang and Phillips (2016)
but with less restrictions on h (the requirement h logn → 0 used there is removed
here), indicating the following self-normalized result: as h → 0 and nh/dn → ∞,

Jn(h) :=
∑n

k=1 K
(
xk/h

)
uk√∑n

k=1 K2
(
xk/h)u2

k

→D N (0,1). (2.13)

In view of the standard normal asymptotics, this result is convenient and useful for
purposes of estimation and inference in nonparametric regression models involv-
ing nonstationary time series and kernel estimation with a shrinking bandwidth
parameter h → 0, as explained in Section 1.

Result (2.11) with fixed h = 1 is similar to that of Theorem 5 in Jeganathan
(2008). In this case, a suitable self-normalized version of the sample covariance
statistic can be constructed from the elements of (2.11) and (2.12) as

J∗
n (1) := J −1/2

n

n∑
k=1

K
(
xk
)

uk →D N (0,1), (2.14)

which again has standard normal asymptotics making the formulation convenient
in applications that involve nonlinear parametric regressions with nonstationary
time series. We mention that the result that J 2

n →D τ̃ 2
1 LZ(1,0) holds for any

continuous function �(x) satisfying �(0) = 1, although in the present case, it
is assumed that �(

j
M ) is a lag kernel weight function which ensures the pos-

itivity of Jn in finite samples. Furthermore, we prove (2.11) for some Mn →
∞. The existence of such an Mn is clear from (6.14) and (6.15) in the proof
of Corollary 2.1.

While these naturally constructed self-normalized statistics have elegant Gaus-
sian limit results, numerical work (reported below in Section 3) reveals that neither
(2.13) nor (2.14) perform well in finite sample simulations. In particular, when
xt is generated with long memory innovations in ξt and the memory parameter
is large (μ close to 0.5), bimodality appears in the finite sample densities even
when the sample size is as large as n = 5,000. Such bimodality is known to
arise with self-normalized statistics and t ratios in other contexts, especially in
the presence of heavy tailed data where individual large draws can dominate both
the numerator and the denominator in the ratio (see Logan et al., 1973; Fiorio,
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12 QIYING WANG AND PETER C. B. PHILLIPS

Hajivassiliou, and Phillips, 2010). The explanation of the phenomena in the present
setting is unrelated to heavy tails but is instead related to strong dependence in the
data. Heuristically, strong memory when μ is close to 0.5 ensures that the weight
function K(xk) is generally so small that only a limited number of terms dominate
the numerator and denominator summations

∑n
k=1 K

(
xk)uk and

∑n
k=1 K2

(
xk)u2

k
(see Figure 4 for illustrative trajectories), thereby inducing bimodality in the finite
sample densities of J ∗

n (1) around the modes ±1. To control this behavior, a
modification of (2.14) such as the following:

Ĵ∗
n (1) := Ĵn

−1/2
n∑

k=1

K
(
xk
)

uk →D N (0,1), (2.15)

might be considered where Jn in (2.12) is replaced by

Ĵn = σ̂ 2
n

n∑
k=1

K2(xk
)+2

M∑
j=1

�

(
j

M

) n−j∑
k=1

K
(
xk
)
K
(
xk+j
)

uk uk+j, (2.16)

for some consistent estimator σ̂ 2
n of σ 2 = Eu2

1 and with M = Mn → ∞ as n →
∞. The advantage of Ĵn is that the use of σ̂ 2

n

∑n
k=1 K2

(
xk
)

in the first term,
rather than

∑n
k=1 K2

(
x2

k

)
u2

k , attenuates the bimodality induced by the numerator
and denominator summations

∑n
k=1 K

(
xk)uk and

∑n
k=1 K2

(
xk)u2

k discussed above
and in the heuristic analysis of (3.4). However, the estimate Ĵn in (2.16) is not
necessarily positive. For instance, in 40,000 replications when n = 100 around 15
cases of negative values occur with d = 0.1, rising to 60 cases with d = 0.55. To
address this difficulty, the following adjustment to (2.16) is employed

ĴnM∗ = σ̂ 2
n

n∑
k=1

K2
(
xk
)+2

M∗∑
j=1

�

(
j

M

) n−j∑
k=1

K
(
xk
)
K
(
xk+j
)

uk uk+j, (2.17)

where

M∗ := M × I
(
Ĵn ≥ 0

)+M∗ × I
(
Ĵn < 0

)
I
(
ĴnM∗ > 0

)
, (2.18)

in which the truncation lag number M is reduced by one lag at a time when Ĵn < 0
to the first value M∗ for which ĴnM∗ > 0. In 50,000 replications with n = 100 and
n = 1,000, the modification (2.17), with the simple rule (2.18), was found to work
well. Using ĴnM∗ in place of Ĵn leads to the same standard normal asymptotics as
(2.15) for the statistic

J̃n(1) := Ĵn
−1/2
M∗

n∑
k=1

K
(
xk
)

uk →D N (0,1), (2.19)
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provided M∗ → ∞ as n → ∞. Simulation results for the statistic J̃n(1) are shown
in Figure 3 in the following numerical section and confirm that the statistic
removes bimodality in finite samples and has distributions considerably closer to
the standard normal limit than the statistic J∗

n (1) in (2.14) for various values of the
long memory parameter d and samples as small as n = 100.

Similarly, we may use the following result instead of (2.13): as h → 0 and
nh/dn → ∞,

Ĵn(h) :=
∑n

k=1 K
(
xk/h

)
uk√

σ̂ 2
n

∑n
k=1 K2

(
xk/h)

→D N (0,1). (2.20)

The proofs of (2.15) and (2.20) follow easily from (2.14), (2.13) and the following
fact by using (4.8) of Wang et al. (2021) [see also (7.42) in the proof of Proposition
7.4 with f (x,y) = K(x)y]: for any h > 0,

dn

nh

n∑
k=1

K2
(
xk/h)

(
Eu2

k −u2
k) = oP(1). (2.21)

The details are omitted.

3. NUMERICAL EVIDENCE

We explore the finite sample properties of the self-normalized statistics Jn and
J∗

n (1) defined as in (2.13) and (2.14). Since earlier research has considered models
with shrinking bandwidths h → 0, the model employed here focuses mainly on
the case h = 1 for which the general limit theory is given in (2.9). As indicated
above, the key difference in this case is that the cross product term (2.8) is not
eliminated when h �→ 0. The statistic J∗

n (1) takes this into account by estimating
the appropriate self-normalizing quantity. As is apparent from (2.9) and (2.11),
the limiting form of the denominator of J∗

n (1) has the form of a long run self-
normalization, with the major difference that in the present case, this quantity has
a random limit since Jn → τ̃ 2

1 LZ(1,0) as n → ∞ in place of the usual nonrandom
quantity that arises in standard problems with stationary short memory time
series.

In the simulations here, xt is generated according to A1 with autoregressive
coefficient ρn = 1. The linear process ξt =∑∞

j=0 φjεt−j in LM is generated using the

fractional integration mechanism ξt = (1 − L)−dεt =∑∞
j=0

(d)j
j! εt−j, where (d)j =

�(d+j)
�(1+j) , so that φj ∼ 1

�(d)j1−d , where �(·) is the gamma function and the memory
parameter d = 1 − μ ∈ (0,0.5). Endogeneity in xt is introduced by defining the
innovations in the linear process ξt by εt = (1−ρ2)1/2εxt +ρut where ut is the short
memory autoregressive process ut = θut−1 +eut, |θ | < 1, with eut ∼iid N (0,1) and
independent of εxt ∼iid N (0,1). With this specification of ut, we have
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ξt =
∞∑

j=0

φjεt−j = (1−ρ2)1/2
∞∑

k=0

φkεx t−k +ρ

∞∑
j=0

φj

∞∑
�=0

θ�εut−j−�

= (1−ρ2)1/2
∞∑

k=0

φkεx t−k +ρ

∞∑
k=0

(
k∑

�=0

φk−�θ
�

)
εut−k

=
∞∑

k=0

[
ψ̄1kεx t−k + ψ̄2kεut−k

]
(3.1)

with ψ̄1k = (1−ρ2)1/2φk and ψ̄2k = ρ
∑k

�=0 φk−�. The innovation ξt has long mem-
ory parameter d and endogeneity measured through the correlation coefficient ρ.

The self-normalized statistics Jn(h), Jn(1), and J∗
n(1) defined in (2.13) and

(2.14) are computed for f (xt/h,wt) = K(xt/h)ut with h = 2/n0.2 or h = 1. In the
following computations, we used K(x) = (1/

√
2π)e−x2/2, θ = 0.5, ρ = 5.0, and

d ∈ {0.1,0.25,0.4,0.55}, where d = 0.55 lies in the nonstationary long memory
region and is included for comparison. Kernel estimates of the densities of Jn(h)

were computed using

Jn(h) =
∑n

k=1 K
(
xk/h

)
uk√∑n

k=1 K2
(
xk/h)u2

k

, (3.2)

for h = 2/n0.2 and h = 1 and are shown in Figures 1(a) and 1(b). The self-
normalized statistic J∗

n(1) was computed by the explicit formula

J∗
n (1) =

∑n
k=1 K

(
xk
)

uk[∑n
k=1 K2

(
xk
)
u2

k +2
∑M

j=1 �
(

j
M

)∑n−j
k=1 K

(
xk
)
K
(
xk+j
)

uk uk+j

]1/2 (3.3)

with lag truncation parameter M = 2n1/6� and its densities are shown in Figures
2(b) and 2(c). The number of replications employed was 40,000, with sample size
n = 100 in Figure 1 and n = 1,000 in Figure 2.

The densities in Figure 1 where n = 100 are all non-normal. Bimodality with
modes around ±1 are clearly evident in all cases and all values of d. For Jn(1),

the dual modes are evident but somewhat less pronounced than for Jn(h) with h =
2/n0.2. The bimodality is clearly stronger in the presence of nonstationary long
memory innovations ξt with d = 0.55 (shown by dashed green lines). Bimodality is
most prominent and with greatest concentration for the statistic J∗

n (1). Bimodality
is evidently weaker for the lower memory parameters, particularly cases where
d = 0.10 (shown by black unbroken lines).

In Figure 2, the densities are computed for n = 1,000. In Figure 2(a), bimodality
is clearly evident for Jn(h), applies for all values of d and is again stronger in the
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nonstationary case. The densities of Jn(1) and J∗
n(1) in Figures 2(b) and 2(c), where

n = 1,000, are closer to normal than when n = 100 except for the nonstationary
innovation case (d = 0.55); and bimodality is still more pronounced for J∗

n(1) than
for Jn(1). When d = 0.1, there are no apparent modes in the density of Jn(1) and
only minor modes in the density of J∗

n(1). Nonetheless, convergence to normality
when 0 < d < 0.5 appears slow and shape differences in the densities persist
between the stationary and nonstationary error cases. The tendency to bimodality
continues to be more marked in the nonstationary case.

As discussed in Section 2.3, when the innovations ξk have strong dependence
with memory parameter d close to the nonstationary boundary 0.5, the weight
function K(xt) is negligible except for a very small number of terms in which
xt = ∑t

k=1 ξk ≈ 0. Suppose xt is closest to zero for t = τ, then K(xτ ) ≈ 1 and
so Jn(1) ≈ ±1, thereby inducing a tendency to bimodality in the finite sample
densities of Jn(1) around modes at ±1. When h → 0, this facet of the weight
function is accentuated for K(xt/h) and we may therefore expect greater evidence
of bimodality in finite samples for Jn(h), which is corroborated by the results in
Figures 1(a) and 2(b).

Further, in Figures 1 and 2, it is evident that J∗
n(1) shows more evidence of

bimodality than Jn(1). This may be explained by the following heuristic. Suppose
xt is closest to zero in the sample at t = τ and next closest to zero at t = τ +1, so

that K(xτ ) ≈ K(0) ≈ 1/
√

2π and then K(xτ+1) ≈ K(ξτ+1) = e−ξ2
τ+1/2/

√
2π (Figure

4 shows an illustrative case). With a Bartlett kernel �(·), we then have

J∗
n (1) ≈ K(xτ )uτ +K(xτ+1)uτ+1

[K(xτ )2u2
τ +K(xτ+1)2u2

τ+1 +2
(
1− 1

M

)
K(xτ )K(xτ+1)uτ uτ+1]1/2

= K(xτ )uτ +K(xτ+1)uτ+1

|K(xτ )uτ +K(xτ+1)uτ+1|+Op
(

1
M

) = ±1+Op

(
1

M

)
, (3.4)

showing a clear tendency to bimodality.

Figure 1. Empirical densities of Jn(h) with h = 2
n0.2 , Jn(1), and J∗

n (1) for sample size n = 100 and
d ∈ {0.10,0.25,0.40,0.55}.
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Figure 2. Empirical densities of Jn(h), Jn(1), and J∗
n (1) for sample size n = 1,000 and d ∈

{0.10,0.25,0.40,0.55}.

Figure 3. Empirical densities of J̃n(1) for sample sizes n = 100 and for n = 1,000 and d ∈
{0.10,0.25,0.40,0.55}.

Next, note that ξt = (1−L)−dεt has variance σ 2
ξ = σ 2

ε
�(1−2d)

�(1−d)2 ∼a
σ 2
ε /π

1−2d → ∞ as

d → 0.5. Let ξt = σξ ξ̃t, where ξ̃t has unit variance. Then K(xτ+1) ≈ K(ξτ+1) =
e−σ 2

ξ ξ̃2
τ+1/

√
2π and

Jn(1) ≈ K(xτ )uτ +K(xτ+1)uτ+1

[K(xτ )2u2
τ +K(xτ+1)2u2

τ+1]1/2
≈ uτ + e−σ 2

ξ ξ̃2
τ+1uτ+1

[u2
τ + e−σ 2

ξ ξ̃2
τ+1 ]1/2

≈ uτ

|uτ | +Op

(
e−σ 2

ξ

)
≈ ±1+Op

(
1

1−2d

)
, (3.5)

showing a tendency to bimodality as the memory parameter d → 0.5. The same
tendency to bimodality is also present in the approximation of J∗

n(1) in addition to
that given in (3.4), thereby implying that J∗

n(1) is more likely to manifest bimodal
behavior in finite samples than Jn(1), corroborating the simulation findings.

Figure 3 shows finite sample densities of the statistic J̃n(1) in (2.17) using the
same simulation design with the same set of long memory parameters, endogeneity
correlation ρ = 0.5, and for sample sizes increasing from n = 100 to n = 5,000
based on 40,000 replications. As evident in the graphics, the statistic removes
bimodality in finite samples although there are extended shoulders on either side
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of the origin to around ±1, particularly when n = 100. The distributions are far
closer to the standard normal limit than those of the statistic J∗

n(1) in (2.14) at
every sample size with evident convergence in shape to normal for all values of
the long memory parameter and clearest for d = 0.1, as would be expected. These
findings support the heuristic analysis leading to (3.4) and (3.5). For when the
variance estimate ĴnM∗ is employed, the scaling-out effect that leads to bimodality
is removed, thereby explaining the finite sample distributions being closer to the
standard normal.

4. FURTHER ANALYSIS: FINITE SAMPLE AND ASYMPTOTIC
BIMODALITY

As noted in Section 2.3, natural self-normalization of sample covariance statistics
does not perform well in finite samples relative to the asymptotic theory when
strong effects of long memory are present in the data. This result in nonlinear
nonparametric regression is new to the literature. But the observed finite sample
bimodality has a subtle connection in its origins with earlier findings on bimodal t
ratios where behavior is dominated by a few observations when there is heavy
tailed data. In the present case, behavior is dominated by the few neighboring
observations whose impact is not diminished by the kernel weights under strong
dependence. Figure 4 illustrates with a single shot picture of typical data trajecto-
ries generated for xt and ut with d = 0.1 and n = 1,000.

Some additional analysis and computations are now provided to shed light on the
finite sample properties of self-normalized sample covariance statistics in which
nonstationarity originates in partial sums of long memory processes. The following

Figure 4. Single shot trajectories of xt and ut generated with d = 0.10 and n = 1,000 according to
the simulation design given below.
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simple framework with no endogeneity is used for the following discussion and
data generation.
Simulation design

• Both εk and uk are iid N (0,1) and the εk are independent of the uk.
• xk =∑k

j=1 ξj, where (1−L)dξj = εj, with 0 < d < 1/2 and 1/2 < μ = 1−d < 1,

so that ξj = (1−L)−dεj =∑∞
i=0 φiεj−i with φi ∼ 1

�(d)
i−(1−d).

• K(x) = e−x2/2/
√

2π .

For j = 1 and 2, define

Sjn = Jjn
−1/2

n∑
k=1

K(xk)uk,

where J1n =∑n
k=1 K2(xk) and J2n =∑n

k=1 K2(xk)u2
k . Under these conditions, ξk

is a long memory process with memory parameter 0 < d = 1 − μ < 1/2 and xk

is nonstationary with memory parameter 1 + d. S2n is a natural self-normalized
sample covariance statistic, matching J∗

n(1) in (2.14).5

Recall that d2
n = var(xn) ∼ Ad n1+2d, where Ad is a positive constant depending

only on d. It is readily seen from (2.11) and (2.21) that

1

n1/2−d
J1n,

1

n1/2−d
J2n →D

(Ad

2

)1/2
LB(1+2d)/2(1,0),

J2n −J1n

J1n
→P 0, (4.1)

where BH(t)} is fractional Brownian motion with Hurst exponent H and LBH (t,s)
is the local time process of {BH(t)}t≥0. In view of the independence of xk and uk

and since uk ∼iid N (0,1), we have S1n ∼d N (0,1) for all n ≥ 1 and

S2n =
(J1n

J2n

)1/2
S1n →D N (0,1), (4.2)

so that S2n has a standard normal limit distribution. Now consider the finite sample
performance of the statistics S1n and S2n.

A. Simulation results for S1n: Kernel density estimates of the finite sample
distributions of S1n are shown in Figure 5(a) for sample size n = 100 with
d ∈ {0.1,0.25,0.4,0.55} from 40,000 replications. The graphs confirm the exact
finite sample N (0,1) distribution for all values of the memory parameter d,
including the nonstationary case d = 0.55.

B. Simulation results for S2n : Figure 5(b) shows the finite sample densities of
S2n for n = 100 and same memory parameter values d ∈ {0.1,0.25,0.4,0.55} again
from 40,000 replications. Bimodality in these distributions around the points ±1
is clearly evident for all d > 0.10 and strong in the nonstationary case d = 0.55;

5When εk and xk are independent of uk the term 2
∑M

j=1 �(
j

M )
∑n−j

k=1 K
(
xk
)
K
(
xk+j

)
uk uk+j that is included in Jn is

unnecessary since the terms G̃r appearing in Corollary 2.1 are zero for all r ≥ 1.
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Figure 5. Empirical densities of S1n and S2n for n = 100, d ∈ {0.1,0.25,0.4,0.55}.

Figure 6. Empirical densities of S2n for sample sizes n = 1,000 and n = 5,000 and d ∈
{0.1,0.25,0.4,0.55}.

for d = 0.10 the density has shoulders at the same points ±1. Figures 6(a) and
6(b) show the corresponding densities for n = 1,000 and n = 5,000. The slow
convergence of these distributions to normality in the presence of stationary long
memory is evident, especially for d = 0.4 where shoulders in the density around ±1
are evident even when n = 5,000. In the nonstationary d = 0.55 case, bimodality
remains evident, although it is not as strong as it is for smaller sample sizes.

Although S2n has a normal limit distribution for all memory parameters d ∈
(0,0.5), the finite sample performance of S2n depends on the value of d, in contrast
to S1n. Bimodality is strongest for stationary values of d closest to the boundary d =
0.5 and remains present even for very large sample sizes. This anomalous behavior
can be explained in terms of relative convergence rates as follows. Recalling (4.1),
when d = 0.4, we have(J1n

J2n

)1/2 −1 = J1n −J2n

J 1/2
2n (J 1/2

1n +J 1/2
2n )

= OP(n−0.05),
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Figure 7. Empirical densities of S2n for sample sizes n = 100,1,000 and n = 5,000 and d ∈
{0.75,1.00}.

whence J2n/J1n →P 1 as n → ∞; but the convergence rate is seen to be very slow.
With such a slow convergence rate, even for n = 5,000 (where n−0.05 ≈ 0.65) and
with S1n ∼d N (0,1) for all n ≥ 1, the value of S2n = (J1n

J2n

)1/2
S1n can be substantially

impacted by the factor
(J1n
J2n

)1/2
, leading to departures from the normality of S1n

and the presence of bimodality in the distribution.
When xk =∑k

j=1 ξj with (1 − L)dξj = εj and d > 1/2, the input ξj is a nonsta-
tionary long memory process and the limit distribution S2n is not normal. In fact,
bimodality must appear in this case and we have

J1n →P A :=
∞∑

k=1

K2(xk), J2n →P B :=
∞∑

k=1

K2(xk)u
2
k, (4.3)

where A and B (A �= B) are well-defined positive random variables. Hence, as
n → ∞,

S2n =
(J1n

J2n

)1/2
S1n →D

(A

B

)1/2
N (0,1), (4.4)

since S1n ∼ N(0,1) for all n ≥ 1. The presence of the ratio A/B of the random
variables (A,B) assures bimodality in the limit distribution (4.4).

The proof of (4.3) and (4.4) is straightforward. Let Am,n = ∑n
k=m K2(xk) and

recall that xn ∼d N (0,dn), where d2
n = var(xn) ∼a Ad n1+2d as n → ∞, it is readily

seen that, whenever d > 1/2 and m,n → ∞,

EAm,n =
n∑

k=m

EK2(xk) =
n∑

k=m

∫
K2(dky)e−y2/2dy

≤ C
n∑

k=m

d−1
k = C1

n∑
k=m

k−(1+2d)/2 → 0.

Hence, A := ∑∞
k=1 K2(xk) is a well-defined random variable and J1n →P A.

Similarly, we haveEBm,n → 0 where Bm,n =∑n
k=m K2(xk)η

2
k , and henceJ2n →P B.

https://doi.org/10.1017/S0266466624000276 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000276


A GENERAL LIMIT THEORY FOR NONLINEAR FUNCTIONALS 21

Figure 7 gives simulation results for S2n in the nonstationary innovation cases
d = 0.75 and d = 1 for n = 100,1,000, and 5,000 based on 25,000 replications.
Bimodality appears a prominent feature of the densities of S2n for both d =
0.75 and d = 1, showing little tendency to diminish even in very large sample
sizes, corroborating the non-Gaussian limit theory in the nonstationary case. The
bimodality is stronger when d = 1 than when d = 0.75 for all sample sizes.

5. CONCLUDING REMARKS

Sample covariance functionals of regressors and innovations play a key role in
nonlinear nonstationary regression models and self-normalized versions of these
statistics are a foundation for inference. The limit theory given here covers a
wide class of such functionals and reveals important differences between station-
ary and nonstationary long memory innovations. Methods involving bandwidths
h = hn → 0 in nonparametric models and fixed h = 1 suited for parametric
applications are jointly included in the present findings. Numerical work shows
strong bimodality in the finite sample distributions, slow convergence to the
Gaussian limit theory under stationary long memory innovations and non-Gaussian
limit theory when the innovations have nonstationary long memory. New forms of
self-normalization are shown to provide the same limit theory but improved finite
sample performance suitable for practical work in these difficult cases.

It is of interest to explore the performance of this modified form of self-
normalization in regression test applications. Bimodality, when induced by self-
normalization as in the cases considered here, typically leads to the presence of
modes around ±1 (Logan et al., 1973; Fiorio et al., 2010). The general impact of
such bimodality is to transfer extreme tail probability in the distribution towards
the modes, which in turn, typically makes testing somewhat conservative in
applications and this is inclined to reduce power in testing under local alternatives
when using nominal asymptotic critical values. We might therefore expect some
such impact in the present examples with long memory innovations. The new form
of self-normalization introduced here is designed to attenuate such effects and
an investigation of the size/power implications of this modification in regression
applications is a topic for future research.

The present framework, in conjunction with earlier findings in the nonsta-
tionary nonlinear regression literature, can be extended to cover a wider class
of models than already discussed. One such model is a nonlinear distributed
lag cointegrating regression of the following additive nonparametric type yk =
g(xk) +∑J

j=1 gj(�xk−j) + uk, where the I(1) regressor xk is nonlinearly related
to yk with additive and nonlinear distributed lag effects from the regressors
{�xk−j : j = 1, . . . J}. In such models, the cointegrating function g(xk) is usually
of primary interest. If the additive component

∑J
j=1 gj(�xk−j) were ignored and

instead absorbed into the primary component, the equation yk = μ+g(xk)+ vk =
gμ(xk)+ vk may be consistently estimated by kernel methods. Indeed, with some
modification, the results and limit theory of Wang and Phillips (2009b)) would
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continue to hold in such cases because they cover regressions with an endogenous
regressor xk correlated with a stationary error such as vk. If the gj are measurable,
integrable functions and �xk is stationary, then setting μ =∑J

j=1Egj(�xk−j) and

vk = uk +∑J
j=1

(
gj(�xk−j)−Egj(�xk−j)

)
, estimation and inference concerning

gμ(xk) in the system yk = gμ(xk) + vk can be justified as in Wang and Phillips
(2009b) under some extension of the underlying conditions to accommodate the
properties of the induced error process vk. Full exploration of this and related
extensions is left for future research.

6. PROOFS OF THE MAIN RESULTS

Proof of Theorem 2.1. First note that, for any bounded h > 0 and nh/dn → ∞,

(
dn

nh

)1/2

max
1≤k≤n

| f (xk/h,wk)| = oP(1), (6.1)

by a similar argument as in Proposition 7.4.6 Due to (6.1), without loss of
generality, we assume

f (xk/h,wk) = 0 for k = 1, . . . ,A0, (6.3)

where A0 is a fixed constant that can be chosen large enough. This convention
will reduce notational complexity in the proofs of propositions that are given in
Section 7 and the lemmas in the Appendix.

We adopt the methodology employed in Wang and Phillips (2009b), starting
with an outline of the proof of (2.6), where some useful propositions will be given
in Section 7. Define, for 0 ≤ t ≤ 1,

Sn(t) = (dn

n

)1/2
nt�∑
k=1

f (xk,wk),

Ynq(t) = ψn0(t)+2
q∑

j=1

ψnj(t),

6Indeed, as in (7.4) of Proposition 7.4, it follows from nh/dn → ∞ that, for any A > 0,( dn

nh

)1/2 max
1≤k≤n

| f (xk/h,wk)|

≤
[ dn

nh

n∑
k=1

f 2(xk/h,wk)I(|f (xk/h,wk)| ≥ A)
]1/2 +A

( dn

nh

)1/2

→D

[∫ ∞

−∞
Ef 2(x,w1)I(|f (x,w1)| ≥ A)dxLZ(1,0)

]1/2
, as n → ∞. (6.2)

This implies (6.1) since
∫∞
−∞Ef 2(x,w1)I(|f (x,w1)| ≥ A)dx ≤ A−2

∫∞
−∞Ef 4(x,w1)dx → 0 by (2.2), as A → ∞.
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where for j = 0,1, . . . ,q,

ψnj(t) = dn

n

nt�∑
k=1

f (xk,wk) f (xk+j,wk+j),

and for all αi,βj ∈ R, 0 ≤ s0 < s1 < · · · < sm < ∞ and 0 ≤ t0 < t1 < · · · < tl < ∞,

Zn2 =
l∑

i=1

αi
[
ζn1(ti)− ζn1(ti−1)

]+ m∑
i=1

βi
[
ζn2(si)− ζn2(si−1)

]
,

where ζn1(t) = 1√
n

∑nt�
j=1 εj and ζn2(t) = 1√

n

∑nt�
j=1 ε−j. An application of Proposition

7.4 implies that, for any q ≥ 1,(
ψn0,ψn1, . . . ,ψnq,Ynq(t)

)
⇒
(

G0,G1, . . . ,Gq,�q

)
LZ(t,0), (6.4)

on DRq+2 0,1], where �q = G0 + 2
∑q

r=1 Gr. This, together with the tightness of
{Sn(t)}n≥1 (see Proposition 7.2 with h = 1), yields

{Sn(t), Ynq(t), Zn2}n≥1 is tight on DR3[0,1]. (6.5)

Hence, for each {n′} ⊆ {n}, there exists a subsequence {n′′} ⊆ {n′} such that{
Sn′′(t), Yn′′q(t), Zn′′2

}⇒ {
η(t), �q LZ(t,0), Z2

}
, (6.6)

on DR3 [0,1], where

Z2 =
l∑

i=1

αi
(
B1ti −B1,ti−1

)+ m∑
i=1

βi
(
B2si −B2,si−1

)
,

and η(t) is a process continuous with probability one due to (6.1).
Let Zn3 = ∑v

i=1 γi
[
Sn(ti) − Sn(ti−1)

]
and Z3 = ∑v

i=1 γi
[
η(ti) − η(ti−1)

]
, where

γj ∈ R and 0 ≤ t0 < t1 < · · · < tv ≤ s. Since, for each 0 ≤ t ≤ 1, Sn(t) is uniformly
integrable (see Proposition 7.1 with h = 1), it follows from Proposition 7.3(i) with
h = 1 that, for any s < t,

Eei(Z3+Z2)
[
η(t)−η(s)

]
= lim

n′′→∞
Eei(Zn′′3+Zn′′2)[Sn′′(t)−Sn′′(s)] = 0 (6.7)

(see, e.g., Billingsley, 1968, Thm. 5.4). Similarly, by Propositions 7.1 with h = 1
and 7.3(iii) with h = 1, we have

Eei(Z3+Z2)
{
[η(t)−η(s)]2 − [Y(t)−Y(s)]

}= 0, (6.8)

where Y(t) = τ 2
1 LZ(t,0). Indeed, by letting Yq(t) = �qLZ(t,0) and noting

sup
0≤t≤1

E |Yq(t)−Y(t)| ≤ 2 |�q − τ 2
1 |E sup

0≤t≤1
LZ(t,0) ≤ C

∞∑
r=q+1

|Gr| → 0,
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due to Proposition 7.5, it follows from Propositions 7.1 with h = 1 and 7.3(iii) with
h = 1 that, for any ε > 0,

∣∣Eei(Z3+Z2)
{
[η(t)−η(s)]2 − [Y(t)−Y(s)

]}∣∣
≤ ∣∣Eei(Z3+Z2)

{
[η(t)−η(s)]2 − [Yq(t)−Yq(s)

]}∣∣
+E

∣∣[Yq(t)−Y(t)
]∣∣+E

∣∣[Yq(s)−Y(s)
]∣∣

≤ lim
n′′→∞

∣∣Eei(Zn′′3+Zn′′2)
{
[Sn′′(t)−Sn′′(s)]2 − [Yn′′q(t)−Yn′′q(s)]

}∣∣+2ε

≤ 3ε, (6.9)

by letting q → ∞. This yields (6.8) as the left-hand side of (6.9) does not depend
on ε.

Let Fs = σ {B1t,0 ≤ t ≤ 1;B2t,0 ≤ t < ∞,η(t),0 ≤ t ≤ s}. Results (6.7) and (6.8)
imply that, for any 0 ≤ s < t ≤ 1,

E

([
η(t)−η(s)

] | Fs

)
= 0, a.s.,

E

({
[η(t)−η(s)]2 − [Y(t)−Y(s)

]} | Fs

)
= 0, a.s.

Note that Fs ↑, η(s) is Fs-measurable for each 0 ≤ s ≤ 1 and Y(t) = τ 2
1 LZ(t,0) (for

any fixed t ∈ [0,1]) is Fs-measurable for each 0 ≤ s ≤ 1. It follows from Wang
(2015, Lem. 3.4) that the finite-dimensional distributions of (η(t),Y(t)) coincide
with those of {NY1/2(t), Y(t)}, where N is a normal variate independent of Y(t).
Since η(t) does not depend on the choice of the subsequence {n′′}, it follows from
(6.5) and (6.6) that

{
Sn(t), Ynq(t)

}⇒ {
[τ1LZ(t,0)]1/2

N, �qLZ(t,0)
}
, (6.10)

on DR2 [0,1], where N is a normal variate independent of LZ(t,0). This, together
with (6.4) and the continuous mapping theorem, yields (2.6).

The proof of (2.5) is similar. Set, for 0 ≤ t ≤ 1 and h > 0,

Sn,h(t) = ( dn

nh

)1/2
nt�∑
k=1

f (xk/h,wk), Zn,h(t) = dn

nh

nt�∑
k=1

f 2(xk/h,wk).

As h → 0 and nh/dn → ∞, Zn,h(t) ⇒ Z(t) := τ 2 LZ(t,0) by (7.4) in Proposition 7.4.
The same arguments as those leading to (2.6) can be used to establish (2.5) except
that Sn(t),Ynq(t), and Y(t) are replaced by Sn,h(t), Zn,h(t), and Z(t), respectively.
The corresponding propositions with h → 0 are given in Section 7. �
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Proof of Corollary 2.1. We only prove (2.11). The proof of the other result
is similar. Let u1k =∑m0

j=0 ψj λ
′
k−j, u2k = uk − u1k =∑∞

j=m0+1 ψj λ
′
k−j and, for r =

0,1,2, . . . ,

G̃r,m0 =
∫ ∞

−∞
K(y)E

{
u10 u1r K(y+ xr)

}
dy.

Using (2.9), for any m0 > 0 and q ≥ 0, we have(dn

n

n∑
k=1

K2(xk)u
2
1k,

dn

n

n∑
k=1

K(xk)u1kK(xk+1)u1,k+1, . . . ,

dn

n

n∑
k=1

K(xk)u1kK(xk+q)u1,k+q,

(
dn

n

)1/2 n∑
k=1

K(xk)u1k

)
⇒ (

G̃0,m0 LZ(1,0), G̃1,m0 LZ(1,0), . . . , G̃q,m0 LZ(1,0), τ̃1,m0 NL1/2
Z (1,0)

)
,

where τ̃1,m0 = G̃0,m0 + 2
∑∞

r=1 G̃r,m0 . This implies that, for any m0 > 0,q ≥ 0 and
any continuous function with l(0) = 1,(dn

n

n∑
k=1

K2(xk
)
u2

1k, J̃n,q,

(
dn

n

)1/2 n∑
k=1

K(xk)u1k

)
→D

(
G̃0,m0 LZ(1,0), τ̃ 2

1,q LZ(1,0), τ̃1,m0 NL1/2
Z (1,0)

)
,

where τ̃ 2
1,q = G̃0,m0 +2

∑q
r=1 G̃r,m0 and

J̃n,q = dn

n

n∑
k=1

K2(xk
)
u2

1k + 2dn

n

q∑
j=1

�

(
j

M

) n−j∑
k=1

K
(
xk
)
K
(
xk+j
)

u1k u1,k+j.

Consequently, to prove Corollary 2.1, it suffices to show the following:

(a) As m0 → ∞,

|G̃0 − G̃0,m0 |+
∞∑

r=1

|G̃r − G̃r,m0 | → 0. (6.11)

(b) For any m0 ≥ 1,

E
∣∣ n∑

k=1

u2k K(xk)
∣∣2 ≤ C (n/dn)

[ ∞∑
j=m0

j1/4(|ψ1j|+ |ψ2j|)
]2

. (6.12)

(c) For any r ≥ 0, as n → ∞ first and then m0 → ∞,

dn

n

n−r∑
k=1

K
(
xk
)
K
(
xk+r

)(
u1k u1,k+r −ukuk+r

)= oP(1). (6.13)
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Further, if m0 = m0(n) → ∞, that is, m0 depends on n, it also follows that
there exists M1 ≡ M1n depending on m0 such that, as n → ∞,

Rn := dn

n

M1∑
r=1

∣∣ n−r∑
k=1

K
(
xk
)
K
(
xk+r

)(
u1k u1,k+r −ukuk+r

)∣∣= oP(1). (6.14)

(d) There exists M ≡ Mn → ∞ so that, as n → ∞ first and then q → ∞,

dn

n

M∑
r=q+1

�
( r

M

) n−r∑
k=1

K
(
xk
)
K
(
xk+r

)
uk uk+r = oP(1). (6.15)

For the proofs of (6.11), (6.12)–(6.14), and (6.15), we refer to Propositions 7.5,
7.6, and 7.7, respectively. �

7. SUBSIDIARY PROPOSITIONS

This section proves the following propositions which are required in the proofs of
Theorem 2.1 and Corollary 2.1. The notation is the same as in the previous section
except where explicitly mentioned.

Proposition 7.1. For any fixed 0 ≤ t ≤ 1, r ≥ 0 and any bounded h > 0
satisfying nh/dn → ∞, ψnr(t), Zn,h(t), and S2

n,h(t), n ≥ 1, are uniformly integrable.

Proposition 7.2. For any bounded h > 0 satisfying nh/dn → ∞, {Zn,h(t)}n≥
and {Sn,h(t)}n≥1 are tight on D[0,1].

Proposition 7.3. For any 0 ≤ s < t ≤ 1, we have that:

(i) if h > 0 is bounded satisfying nh/dn → ∞, then

lim
n→∞Eei(Zn3+Zn2)[Sn,h(t)−Sn,h(s)] = 0; (7.1)

(ii) if h → 0 satisfying nh/dn → ∞, then

lim
n→∞Eei(Zn3+Zn2)

{
[Sn,h(t)−Sn,h(s)]

2 − [Zn,h(t)−Zn,h(s)]
}= 0; (7.2)

(iii) for any ε > 0, there exists a q0 > 0 such that

lim
n→∞

∣∣Eei(Zn3+Zn2)
{
[Sn(t)−Sn(s)]

2 − [Ynq(t)−Ynq(s)]
}∣∣≤ ε, (7.3)

for all q ≥ q0.

Proposition 7.4. For any bounded h > 0 satisfying nh/dn → ∞, we have

Zn,h(t) ⇒ τ 2LZ(t,0), (7.4)
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on DR[0,1]. If, in addition, γ = 0 and
∫
E
{|f̂ (t,w0)

(
1+||wr||β)

}
dt < ∞,0 ≤ r ≤ m,

then{
ψn0(t),ψn1(t), . . . ,ψnm(t)

}⇒ {
G0 ,G1 , . . . ,Gm

}
LZ(t,0), (7.5)

on DRm+1 [0,1].

Proposition 7.5. If γ = 0, we have
∑∞

r=1 |Gr| < ∞ and
∑∞

r=1 |G̃r| < ∞, and
(6.11) also holds.

Proposition 7.6. Results (6.12)–(6.14) hold and, for any bounded h > 0
satisfying nh/dn → ∞, we have

E
∣∣ n∑

k=1

u2k K(xk/h)
∣∣2 ≤ C (nh/dn)

[ ∞∑
j=m0

j1/4(|ψ1j|+ |ψ2j|)
]2

. (7.6)

Proposition 7.7. Result (6.15) holds.

7.1. Preliminary Lemmas

Except where explicitly mentioned, the proofs of all lemmas are given in the
Appendix. Throughout this section, we let Fk = σ(λk,λk−1, . . . ).

Lemma 7.1. Let p(s,s1, . . . ,sm) be a real function of its components and
t1, . . . ,tm ∈ Z, where m ≥ 0. There exists an A0 > 0 such that the following results
hold.

(i) For any h > 0 and k ≥ 2m+A0, we have

E|p(xk/h,λt1, . . . ,λtm)| ≤ C h

dk

∫ ∞

−∞
E|p(t,λ1, . . . ,λm)|dt. (7.7)

(ii) For any h > 0, k − j ≥ 2m+A0 and j+1 ≤ t1, . . . ,tm ≤ k, we have

E
[∣∣p(xk/h,λt1, . . . ,λtm)

∣∣ | Fj
]≤ C h

dk−j

∫ ∞

−∞
E|p(t,λ1, . . . ,λm)|dt. (7.8)

(iii) For any h > 0 and k − j ≥ 1, we have

E
[|p(xk/h)| ∣∣Fj

]≤ C h

dk−j

∫ ∞

−∞
|p(x)|dx. (7.9)

Proof. For the proofs of (7.7) and (7.8), we refer to Lemma A.1 of Wang et al.
(2021). As φ0 �= 0, the proof of (7.9) is simple (see, for instance, Lemma 2.1(iii)
of Wang, 2015). �
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Recalling (6.3), f (x,y) ≤ T(x)(1+||y||β) and E ||w1||max{2,4β} < ∞, where T(x)
is bounded and integrable, a simple application of Lemma 7.1(i) and (ii) yields
that, for any h > 0,

n∑
k=1

E f 2(xk/h,wk) ≤ Cnh/dn, E

[ n∑
k=1

f 2(xk/h,wk)
]2 ≤ C

(
nh/dn

)2
, (7.10)

and (7.10) still holds if f 2(xk/h,wk) is replaced by Y2
kj defined by

Ykj = E
[
f (xk/h,wk)|Fk−j

]−E
[
f (xk/h,wk)|Fk−j−1

]
,

where j ≥ 0 is a fixed integer. Furthermore, it follows from Lemma 7.1(iii) that,
for any r ≥ 1,

E
[|f (xk+r/h,wk+r)||Fk

]≤ {E[T2(xk+r/h) | Fk
]}1/2 {

E
[
(1+||wk+r||2β)|Fk

]}1/2

≤ Ch1/2 Rk,

where Rk = {E[(1+||wk+r||2β)|Fk
]}1/2

depending only on λk, . . . ,λk−m0 . Hence,
for any r ≥ 1, h > 0, and 0 ≤ s < t ≤ 1, we also have

nt�∑
k=[ns]+B0

E

[
|f (xk/h,wk)| |f (xk+r/h,wk+r)| | F[ns]

]

≤
nt�∑

k=[ns]+B0

E

[
|f (xk/h,wk)|E

{|f (xk+r/h,wk+r)| | Fk
} | F[ns]

]

≤ Ch1/2
nt�∑

k=[ns]+B0

E
{|f (xk/h,wk)|Rk | F[ns]

}
≤ C nh3/2(t − s)α/dn, (7.11)

for some α > 0, whenever B0 is sufficiently large so that (7.8) is applicable. We
remark that (7.11) holds for r = 0 if h3/2 is replaced by h. These results will be
used later.

In the next lemma, �1 is set to be a subset of � = {1,2, . . . ,k}, �2 = �−�1

and

zk(t) =
k∑

v=1

εv
(
tαv +βv

)
.

Lemma 7.2. Suppose that
∑k

v=1 α2
v ≤ Cτ 2

k and, for any �1 satisfying #�1 ≤ √
k,

B1k :=
∑
v∈�2

α2
v ≥ τ 2

k , (7.12)
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for some sequence of constants τk. Then, for any δ ≥ 0 and s1,s2 ∈ R+, we have∫
min{1,s1 |t|δ + s2}

∣∣Eeizk(t)
∣∣dt

≤ C
(
k−3 + s1 τ−1−δ

k

[
1+ ( k∑

v=1

β2
v

)δ/2]+ s2 τ−1
k

); (7.13)

∫
min{1,s1 |t|}min{1,|t|}∣∣Eeizk(t)

∣∣dt

≤ C
(
k−3 + s1 τ−3

k

[
1+

k∑
v=1

β2
v

])
. (7.14)

If, in addition,
∑k

v=1 β2
l ≤ a < ∞, then∫

|t|≥B/τk

∣∣Eeizk(t)
∣∣dt ≤ C

(
k−3 + τ−1

k B−1
)
, (7.15)

for any B ≥ 2a1/2.

Proof. The proof of Lemma 7.2 is similar to that of Wang and Phillips (2011, pp.
246–247) and is therefore omitted. But an outline of the proof is given in Appendix
A.1 for completeness. �

Since Lemma 7.2 still holds when zk(t) is replaced by zk−m0(t) when k ≥ m2
0

and since wk depends only on λk, . . . ,λk−m0 , the following lemma is a direct
consequence of Lemma 7.2.

Lemma 7.3. Let g(x,y) be a real function satisfying

• |Eg(t,w1)| ≤ C min{1,|t|} and supt E
{
(1+|ε0|)|g(t,w1)|

}
< ∞.

For any bounded h > 0 and τk ≤ C k2, we have∫ ∞

−∞

∣∣Eeizk(t/h) g(t,wk)
∣∣dt ≤ Chτ−1

k , (7.16)

for all k ≥ m2
0. Instead of (7.16), we also have∫ ∞

−∞

∣∣Eeizk(t/h)g(t,wk)
∣∣dt

≤ Ch
{
(1+αk0)τ

−2
k

[
1+ ( k∑

v=1

β2
v

)1/2]+βk0 τ−1
k

}
, (7.17)
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where αk0 = max0≤i≤m0∨(k−1) |αk−i| and βk0 = max0≤i≤m0∨(k−1) |βk−i|. Similarly,
when supk αk0 = O(1), we have∫ ∞

−∞
min{1,|t|/h} ∣∣Eeizk(t/h)g(t,wk)

∣∣dt

≤ C h
{
k−3 + [βk0(τ

−2
k + k−3)+ τ−3

k

](
1+

k∑
v=1

β2
v

)}
. (7.18)

Proof. See Appendix A.2. �

Let Ik(m) = ∫ E(eisxk/h+i
∑l

j=m+1 γjεjg(s,wk) | Fm
)
ds and

Ik,l(m) =
∫ ∫

E
(
eisxk/h+itxl/h+i

∑l
j=m+1 γjεjg(s,wk)g(t,wl) | Fm

)
dsdt,

where g(x,y) is a real function given in Lemma 7.3, and let

IIk,l(B) =
∫

|s|≥B/dk

∫
|t|≥B/dl

g1(t)g2(t)E
(
eisxk/h+itxl/h+i

∑l
j=1 γjεj | F0

)
dsdt,

where g1(t) and g2(t) are bounded real functions. The next lemma is an application
of Lemma 7.3.

Lemma 7.4. Let m ≥ 0, l− k ≥ A2
0 +1 and k −m ≥ A2

0 +1, where A0 ≥ m0 and
m0 is given as in Lemma 7.3. Suppose a :=∑l

j=1 γ 2
j < ∞.

(i) For any h > 0, we have

|Ik(m)| ≤ C h
[
d−2

k−m(1+a1/2)+βl0 d−1
k−m

]
, (7.19)

|Ik,l(m)| ≤ C h2 d−1
k−m

[
d−2

l−k(1+a1/2)+βl0 d−1
l−k

]
, (7.20)

where βl0 = max0≤j≤m0 |γl−j|.
(ii) Under SM, if |γj| ≤ C/

√
n where m ≤ j ≤ l, for any h > 0, we have

|Ik(m)| ≤ C h
(
(k −m)−1 +√

k −m/
√

n
)
, (7.21)

|Ik,l(m)| ≤ C h2 [(l− k)−1(k −m)−1 + (l− k)−3/2(k −m)−1/2]. (7.22)

(iii) For any h > 0 and B ≥ 2a1/2, we have

|IIk,l(B)| ≤ C h2
[
(l− k)−2 +B−1d−1

l−k

]
d−1

k . (7.23)

Proof. See Appendix A.3. �

Let Ik(h) = f (xk/h,wk) exp
{
i
∑n

j=m+1 μjεj/
√

n
}

and

IIlk(h) = f (xk/h,wk) f (xl/h,wl) exp
{
i

n∑
j=m+1

μjεj/
√

n
}
,
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where μl are constants satisfying |μl| ≤ C. Using Lemma 7.4, we have the
following results.

Lemma 7.5. There exists a B0 ≥ m0 such that, for all m ≥ 0, l−k ≥ B0, k−m ≥
B0, and bounded h > 0,

(i) under LM,∣∣E[Ik(h) | Fm
]∣∣≤ C h

(
d−2

k−m +dk−m/
√

n
)
, (7.24)∣∣E[IIlk(h) | Fm

]∣∣≤ C h2 d−1
k−m

(
d−2

l−k +dl−k/
√

n
)
, (7.25)

(ii) under SM,∣∣E[Ik(h) | Fm
]∣∣≤ C h

(
(k −m)−1 +√

k −m/
√

n
)
, (7.26)∣∣E[IIlk(h) | Fm

]∣∣≤ C h2
[
(l− k)−1(k −m)−1 + (l− k)−3/2(k −m)−1/2

]
.

(7.27)

Lemma 7.6. There exists a B0 ≥ m0 such that, for all m ≥ 0, l−k ≥ B0, k−m ≥
B0 and bounded h > 0,

(i) under LM,∣∣E{f (xl/h,wl)E
[
f (xk/h,wk) | Fk−m

]}∣∣≤ C h2 d−1
k d−2

l−k, (7.28)

(ii) under SM,∣∣E{f (xl/h,wl)E
[
f (xk/h,wk) | Fk−m

]}∣∣
≤ C h2

[
(l− k)−1 k−1 + (l− k)−3/2 k−1/2

]
. (7.29)

The proofs of Lemmas 7.5 and 7.6 are given in Appendices A.4 and A.5.

Lemma 7.7. Let �(.) be a measurable function with �(λ1) = 0 and E�2(λ1) <

∞. There exists an A0 such that:

(a) for all k ≥ A0 and |l− k| ≤ A0,∣∣E{�(λk−j)�(λl−j)K(xk/h)K(xl/h)
}∣∣≤ C hd−1

k ; (7.30)

(b) for all k ≥ A0, l− k ≥ A0, and l− j ≤ k,∣∣E{�(λk−j)�(λl−j)K(xk/h)K(xl/h)
}∣∣≤ C h2 d−1

k d−1
l−k; (7.31)

(c) for all k ≥ A0, l− k ≥ A0, and l− j > k,∣∣E{�(λk−j)�(λl−j)K(xk/h)K(xl/h)
}∣∣

≤ C h2

{∑j
k=0 |φk|d−1

k d−2
l−k, under LM,

k−1(l− k)−1 + k−1/2 (l− k)−3/2, under SM.
(7.32)
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Similarly, uniformly for y ∈ R, we have∣∣E{K(y+ xl/h)�(λl−j)�(λ−k)
}∣∣

≤ C h

{
d−1

l , if |l− j+ k| ≤ A0,∑j
s=0 |φs|∑l+k

s=k |φs| |(d−3
l + l−3), if |l− j+ k| > A0,

(7.33)

for any A0 ≥ 1 and j,k ≥ 0.

Proof. See Appendix A.6. �

Our final lemma gives a useful tightness criterion for a class of stochastic
processes on D[0,1].

Lemma 7.8. Let Xnk be a sequence of random variables and Xn(t) =∑nt�
k=1 Xnk.

The sequence {Xn(t)} is tight in D[0,1] if max1≤k≤n |Xnk| = oP(1) and there exist
an integer A0 ≥ 0 and a number αn(ε,δ) such that

P
(∣∣ [ns]∑

k=[ntm]+A0

Xnk

∣∣≥ ε
∣∣Xn(t1), . . . ,Xn(tm)

)
≤ αn(ε,δ),

and

lim
δ→0

lim sup
n→∞

αn(ε,δ) = 0,

for each positive ε > 0, where 0 ≤ t1 ≤ t2 ≤ ·· · ≤ tm ≤ s ≤ 1 and s− tm ≤ δ.

Proof. If A0 = 0, Lemma 7.8 is a special case of Billingsley (1974, Thm. 4).
Extension to integer A0 ≥ 1 is trivial under the condition that max1≤k≤n |Xnk| =
oP(1). The details are omitted. �

7.2. Proofs of Propositions

Propositions 7.4 and 7.7 are treated separately due to their complexity and their
proofs are given later in Sections 7.3 and 7.4, respectively.

Proof of Proposition 7.1. We only prove uniformity of S2
n,h(1) for bounded

h > 0 satisfying nh/dn → ∞. The other results are similar and simpler. Let m ≥ m0

be a constant that will be specified later. Let

S1n =
( dn

nh

)1/2 n∑
k=1

E
[
f (xk/h,wk)|Fk−m

]
,

S2n =
( dn

nh

)1/2 n∑
k=1

{
f (xk/h,wk)−E

[
f (xk/h,wk)|Fk−m

]}
.
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Note that, for any A ≥ 2,

ES2
n,h(1) I(S2

n,h(1) ≥ A) ≤ 2ES2
1n +2ES2

2nI(S2
1n +S2

2n ≥ A/2)

≤ 2ES2
1n +8A−1

ES4
2n +2ES2

2nI(S2
1n ≥ A/4)

≤ 4ES2
1n +16A−1

ES4
2n.

It suffices to show that, for some c0 > 0,

(a) ES4
2n ≤ c0m4;

(b) under LM, ES2
1n ≤ c0 d1/2−μ

m ;
(c) under SM, ES2

1n ≤ c0
(
d−1/2

m + log2 n/
√

n
)
.

Indeed, for any ε > 0, by taking A, n sufficiently large and m = A1/8, it follows
from (a) to (c) that

ES2
n,h(1) I(S2

n,h(1) ≥ A) ≤ 4c0(d
−1/2
m +d1/2−μ

m )+16c1A−1/2 + c0 log2 n/
√

n ≤ ε,

under both LM and SM, due to dm → 0 and μ > 1/2.
To prove (a), let Ykj = E

[
f (xk/h,wk)|Fk−j

] − E
[
f (xk/h,wk)|Fk−j−1

]
,0 ≤

j ≤ m−1. We may write

S2n = ( dn

nh

)1/2
m−1∑
j=0

n∑
k=1

Ykj.

Note that Ykj forms a martingale difference. Hölder’s and Burkholder’s inequalities
imply that

ES4
2n ≤ m3

( dn

nh

)2 m−1∑
j=0

E
( n∑

k=1

Ykj
)4 ≤ C2m3

( dn

nh

)2 m−1∑
j=0

E
( n∑

k=1

Y2
kj

)2 ≤ co m4,

for some c0 > 0, which yields (a), where we have used the result (7.10) with f 2(.)
replaced by Y2

kj.
We next prove (b) and (c). Let gk = E

[
f (xk/h,wk)|Fk−m

]
. For some q ≥ 1, we

may write

ES2
1n = dn

nh

[ n∑
k=1

Eg2
k +2

n∑
k=1

k+q∑
j=k+1

Egkgj +2
n∑

k=1

n∑
j=k+q

E(gkgj)
]

= Rn1 +Rn2 +Rn3. (7.34)

Recall (6.3). It follows from (7.8) in Lemma 7.1 that |gk| ≤ Ch/dm. On the other
hand, E |gk| ≤ E |f (xk/h,wk)| ≤ Ch/dk. As a consequence, we have

|Rn1|+ |Rn2| ≤ Cqh/dm
dn

nh

n∑
k=ln

E |qk| ≤ Cqhd−1
m .

As for Rn3, by taking m ≥ B0 where B0 is given in Lemma 7.6,
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(i) under LM, it follows from (7.28) that, for any q ≥ B0,

|Rn3| ≤ 2dn

nh

n∑
k=1

n∑
j=k+q

|E(gkgj)| ≤ C
hdn

n

n∑
k=1

n∑
j=k+q

d−1
k d−2

j−k

≤ Ch
∫ ∞

q
x2μ−3ρ−2(x)dx,

(ii) under SM, it follows from (7.29) that, for any q ≥ B0,

|Rn3| ≤ 2√
nh

n∑
k=1

n∑
j=k+q

|E(gkgj)|

≤ C h√
n

n∑
k=1

n∑
j=k+q

[
(j− k)−1 k−1 + (j− k)−3/2 k−1/2]

≤ Ch
(

log2 n/
√

n+
∫ ∞

q
x−3/2dx

)
.

Taking these estimates into (7.34), we obtain (b) and (c) by letting q = √
dm, as h

is bounded. This completes the proof. �

Proof of Proposition 7.2. We prove tightness of Sn,h(t). Tightness of Zn,h(t) is
shown in a similar way to Wang (2015, Thm. 2.20) and the details are omitted.

Recalling (6.1) and Lemma 7.8, it suffices to prove the following: for any fixed
s ∈ [0,1], for each ε > 0 and any bounded h > 0 satisfying nh/dn → ∞, there exists
a sequence of αn(ε,δ) satisfying limδ→0 limsupn→∞ αn(ε,δ) = 0 such that

In := sup
|t−s|≤δ

P
(∣∣ nt�∑

k=[ns]+B0

f (xk/h,wk)
∣∣≥ ε (nh/dn)

1/2 | F[ns]

)
≤ αn(ε,δ), (7.35)

where B0 is chosen as in Lemma 7.5. In fact, by noting

Jn(s,t) := E

[∣∣∣ nt�∑
k=[ns]+B0

f (xk/h,wk)

∣∣∣2 | F[ns]

]

≤ 2
nt�∑

k=[ns]+B0

∑
k≤l≤2B0

E
(|f (xk/h,wk)| |f (xl/h,wl)| | F[ns]

)
+2

nt�∑
k=[ns]+B0

n∑
l=k+2B0

∣∣∣E{f (xk/h,wk) f (xl/h,wl) | F[ns]
}∣∣∣,

it follows from (7.11) and Lemma 7.5 that, for some α > 0:
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(a) under LM [using (7.25)],

Jn(s,t) ≤ C nh(t − s)α/dn +Ch2
nt�∑

k=[ns]+1

n∑
l=k+1

d−1
k−[ns] d−2

l−k

≤ 2C nh(t − s)α/dn;
(b) under SM [using (7.27)],

Jn(s,t) ≤ C
√

nh(t − s)α+

Ch2
nt�∑

k=[ns]+1

n∑
l=k+1

[
(l− k)−1(k − [ns])−1 + (l− k)−3/2(k − [ns])−1/2

]
≤ 2C

√
nh(t − s)α .

Now (7.35) follows by choosing αn(ε,δ) = 2Cε−2δα and the fact that

In ≤ ε−2dn/(nh) sup
|t−s|≤δ

Jn(s,t) ≤ αn(ε,δ).

�

Proof of Proposition 7.3. We start with (7.2). Due to the iid properties of λk,
there exist constants μj with |μj| ≤ C,∣∣∣Eei(Zn3+Zn2)

{
[Sn,h(t)−Sn,h(s)]

2 − [Zn,h(t)−Zn,h(s)]
}∣∣∣

≤ E

∣∣∣E[ei
∑nt�

j=[ns]+1 μjεj
{
[Sn,h(t)−Sn,h(s)]

2 − [Zn,h(t)−Zn,h(s)]
} | F[ns]

]∣∣∣
≤ dn

nh

n∑
k=[ns]+1

n∑
l=k+1

E
∣∣E[IIlk(h) | F[ns]

]∣∣
≤ dn

nh

n∑
k=[ns]+1

( k+B0∑
l=k+1

+
n∑

l=k+B0

)
E
∣∣E[IIlk(h) | F[ns]

]∣∣
=: Rn4 +Rn5, (7.36)

where B0 and IIlk(h) are defined as in Lemma 7.5. Similar to (7.11) with minor
modifications, under both LM and SM, we have Rn4 ≤ C h1/2. To estimate Rn5,
under LM, it follows from (7.25) that

Rn5 ≤ Cdn

nh
h2

n∑
k=1

n∑
l=k+B0

d−1
k

(
d−2

l−k +dl−k/
√

n
)≤ Ch.

Similarly, under SM, we have Rn5 ≤ Ch by (7.27). Taking these estimates into
(7.36), we have (7.2) as h → 0.
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In a similar way for any q ≥ B0, we have∣∣Eei(Zn3+Zn2)
{
[Sn(t)−Sn(s)]

2 − [Ynq(t)−Ynq(s)]
}∣∣

≤ dn

n

n∑
k=[ns]+1

n∑
l=k+q

E
∣∣E[IIlk(1) | F[ns]

]∣∣
≤
⎧⎨⎩

dn
n

∑n
k=[ns]+1

∑n
l=k+q d−1

k−[ns] d−2
l−k, under LM,

1√
n

∑n
k=[ns]+1

∑n
l=k+q

[
(l− k)−1(k − [ns])−1 + (l− k)−3/2(k − [ns])−1/2

]
,

under SM,

≤ C

{ ∫∞
q x2μ−3dx, under LM,∫∞

q x−3/2dx+ log2 n/
√

n, under SM,

≤ ε +C log2 n/
√

n,

by choosing q sufficiently large. This proves (7.3). The proof of (7.1) is similar
and simpler, so the details are omitted. �

Proof of Proposition 7.5. With γ = 0 in assumption A1(i), we may write

xr =
r∑

i=1

∞∑
j=0

φjεi−j =
r∑

j=1

ar−jεj +
∞∑

j=0

[ar+j −aj]ε−j, (7.37)

where al =∑l
s=0 φs and al = 0 if l < 0. Let zr =∑r

k=1 εkar−k and z1r =∑m0
j=0[ar+j −

aj]ε−j. We have var(zr) ∼ d2
r for r ≥ 2m0 and, when m0 is fixed,

|Ef̂ (s,w0)e
−isz1r | ≤ E |f̂ (s,w0)(e

−isz1r −1)|+ |Ef̂ (s,w0)|
≤ C (1+|ar|)min{1,|s|}.

Now it is readily seen from the i.i.d. properties of εk and (7.18) in Lemma 7.3 that

|Gr| ≤ 1

2π

∫ ∞

−∞
|E{f̂ (s,w0)e

−isz1r
}| |E{f̂ (s,wr)e

−iszr
}|ds

≤ C (1+|ar|)
∫ ∞

−∞
min{1,|s|} |E{f̂ (s,wr)e

−iszr
}|ds

≤ C (1+|ar|)(d−3
r + r−3).

Hence,
∑∞

r=2m0
|Gr| < ∞ due to |ar| ≤ C under SM and |ar| ≤ dr under LM.

To prove (6.11) and
∑∞

r=1 |G̃r| < ∞, we make use of (7.33) in Lemma 7.7. In
fact, for any r ≥ 1 and y ∈ R, it follows from (7.33) that

|E{(u10u1r −u0ur)K(y+ xr)
}|

≤
( ∞∑

k=m0+1

∞∑
j=0

+
∞∑

k=0

∞∑
j=m0+1

)∣∣E{ψkλ
′
−k ψjλ

′
r−jK(y+ xr)

}∣∣
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≤ 2
∞∑

k=m0+1

r+k+1∑
j=r+k−1

d−1
r ||ψk|| ||ψj||

+2
∞∑

k=m0+1

∞∑
j=0

||ψk|| ||ψj||
j∑

s=0

|φs|
r+k∑
s=k

|φs| |(d−3
r + r−3)

≤ 2d−1
r

∞∑
k=m0+1

||ψk||
1∑

j=−1

||ψj+r+k||

+2C
∞∑

k=m0+1

∞∑
j=0

||ψk|| ||ψj||
j∑

s=0

|φs|
r+k∑
s=k

|φs| |(d−3
r + r−3).

Note that
∑j

s=0 |φs|∑r+k
s=k |φs|(d−3

r +r−3) ≤ Cj1/2 k1/2r−3/2 under both SM and LM.
It is readily seen from

∑∞
k=0 k1/2 ||ψk|| < ∞ that

∞∑
r=1

|G̃r − G̃r,m0 | ≤
∫ ∞

−∞
K(y)

∞∑
r=1

|E{(u10u1r −u0ur)K(y+ xr)
}|dy

≤ C
∞∑

k=m0+1

k1/2 ||ψk||
∫

K(y)dy → 0, (7.38)

as m0 → ∞. Similarly, we have |G̃0 − G̃0,m0 | → 0, as m0 → ∞, and
∑∞

r=1 |G̃r| <

∞. The proof of Proposition 7.5 is then complete. �

Proof of Proposition 7.6. The proofs of (6.13) and (6.14) are simply estab-
lished using Lemma 7.1. Indeed, by noting that

∣∣ n−r∑
k=1

K
(
xk
)
K
(
xk+r

)(
u1k u1,k+r −ukuk+r

)∣∣
≤ C

( ∞∑
l=m0+1

∞∑
l1=0

+
∞∑

l=0

∞∑
l1=m0+1

) n−r∑
k=1

K
(
xk
) ∣∣ψlλ

′
k−l ψl1λ

′
k+r−l1

∣∣,
it follows from Lemma 7.1(i) and

∑∞
l=0 l||ψl| < ∞ that, for some constant A0 > 0,

E|Rn| ≤ C M1

∞∑
l=m0+1

∞∑
l1=0

||ψl|| ||ψl1 ||
dn

n

[
(A0 +2)+

n∑
k=1

d−1
k

]
≤ C1 M1

∞∑
l=m0+1

||ψl| ≤ CM1m−1
0 .

Hence, (6.14) follows if we take M1 = √
m0. The proof of (6.13) is similar.
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We next prove (7.6). Let
∑l

j=k = 0 for k > l and �(.) be a measurable function
with �(λ1) = 0 and E�2(λ1) < ∞. Since K(x) is bounded, for A0 being chosen as
in Lemma 7.7, we have

�n ≡ ∣∣ n∑
k=1

�(λk−j)K(xk/h)
∣∣2

≤ 2
∣∣ n∑

k=A0

�(λk−j)K(xk/h)
∣∣2 +C

( A0∑
k=1

|�(λk−j)|
)2

= 2
( n∑

k=A0

n∑
|k−l|<A0

+2
n−1∑

k=A0

n∑
l=k+A0

)
�(λk−j)�(λl−j)K(xk/h)K(xl/h)

+C
( A0∑

k=1

|�(λk−j)|
)2

=: �1n +�2n +�3n, say. (7.39)

It follows from Lemma 7.7 that

E|�1n| ≤ C h
n∑

k=1

n∑
|k−l|<A0

1/dk ≤ C1 nh/dn,

E|�2n| ≤ C h2

⎧⎪⎪⎨⎪⎪⎩
∑n−1

k=A0
d−1

k

(∑n∧(k+j)
l=k+A0

d−1
l−k +∑j

k=0 |φk|∑n
l=k+j d−2

l−k

)
under LM∑n−1

k=A0
k−1/2 ∑n∧(k+j)

l=k+A0
(l− k)−1/2+∑n−1

k=A0

∑n
l=k+j

[
k−1(l− k)−1 + k−1/2 (l− k)−3/2

]
under SM

≤ C (nh2/dn)

{
j/dj +∑j

k=0 |φk| under LM,

j1/2 + log2 n/
√

n+1 under SM,

≤ C j1/2 nh2/dn,

where we have used the fact
∑j

k=0 |φk| ≤ C j/dj ≤ C j1/2 under LM. On the other
hand, it is readily seen that E|�3n| ≤ C A2

0. Taking these estimates into (7.39), for
any bounded h, we have

E
∣∣ n∑

k=1

�(λk−j)K(xk/h)
∣∣2 ≤ C j1/2 nh/dn. (7.40)

The result (6.12) now follows from

E
∣∣ n∑

k=1

uk,m0 K(xk/h)
∣∣2 = E

∣∣ ∞∑
j=m0

n∑
k=1

ψj λ
′
k−j K(xk/h)

∣∣2
≤

∞∑
j=m0

j1/4(|ψ1j|+ |ψ2j|)
∞∑

j=m0

j−1/4(|ψ1j|+ |ψ2j|)−1
E
∣∣ n∑

k=1

ψj λ
′
k−j K(xk/h)

∣∣2
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≤ 2
∞∑

j=m0

j1/4(|ψ1j|+ |ψ2j|)
∞∑

j=m0

j−1/4(|ψ1j|+ |ψ2j|)

(
E
∣∣ n∑

k=1

εk−j K(xk/h)
∣∣2 +E

∣∣ n∑
k=1

ek−j K(xk/h)
∣∣2)

≤ C (nh/dn)
[ ∞∑

j=m0

j1/4(|ψ1j|+ |ψ2j|)
]2

,

where we employ Hölder’s inequality and (7.40) with �(λk) = εk and ek, respec-
tively. The proof of Proposition 7.6 is complete. �

7.3. Proof of Proposition 7.4

We start with (7.4). The tightness of Zn,h(t) has been established in Proposition
7.2. It suffices to show that the finite-dimensional distributions of Zn,h(t) converge
to those of τ 2LZ(t,0). To this end, let g(x) = E f 2(x,w1). Under A2(b) and A3(I),
g(x) is bounded and integrable. Furthermore, by using Wang (2015, Thm. 2.20),
we have

dn

nh

nt�∑
k=1

g(xk/h) ⇒ τ 2LZ(t,0), (7.41)

whenever dn/h → ∞ and dn/nh → 0. In terms of (7.41), the finite-dimensional
distribution of Zn,h(t) will converge to those of τ 2LZ(t,0) if we show that, for any
fixed 0 < t ≤ 1,

dn

nh

nt�∑
k=1

[
g(xk/h)− f 2(xk/h,wk)

]= oP(1). (7.42)

This is essentially the same as in the proof of (A.20) for i = 2 in Wang et al. (2021)
(also see (4.8) in the article) and hence the details are omitted. (7.4) is now proved.

We next prove (7.5). It suffices to show the following:

(a) for each 0 ≤ r ≤ m, {ψnr(t)}n≥1 is tight on D[0,1]; and
(b) the finite-dimensional distributions of

{
ψn0(t),ψn1(t), . . . ,ψnm(t)

}
converge to

those of
{
G0 ,G1 , . . . ,Gm

}
LZ(t,0).

The proof of part (a) is simple. Indeed, by noting

|ψnr(t)−ψnr(s)| ≤ dn

n

nt�∑
k=[ns]+1

|f (xk,wk)f (xk+r,wk+r)|

≤ dn

n

nt�+r∑
k=[ns]+1

f 2(xk,wk) ≤ |Zn,1(t)−Zn,1(s)|+oP(1),

uniformly for s < t, the tightness of ψnr(t) is implied by that of Zn,1(t).
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To prove part (b), let hr(y) =E
{
f (y,w0)f (y+xr,wr)

}
. We have hr(y) is bounded

and integrable due to assumptions A2(b) and A3(I). Hence, as in (7.41),

dn

n

nt�∑
k=1

[
α0h0(xk)+·· ·+αmhm(xk)

]⇒
m∑

r=0

αrGrLZ(t,0),

on D[0,1], for any (α0, . . . ,αm) ∈ Rm+1. The Cramér–Wold theorem now implies
that part (b) will follow if we prove

∣∣ψnr(t)− dn

n

nt�∑
k=1

hr(xk)
∣∣= oP(1), (7.43)

for any r ≥ 0 and any fixed 0 ≤ t ≤ 1.7

The proof of (7.43) is quite technical, starting with some preliminaries. Let al =∑l
s=0 φs and al = 0 if l < 0. With γ = 0, we may write

xk =
0∑

j=−∞
[ak−j −a−j]εj +

k∑
j=1

ak−jεj, (7.44)

and

xk+r − xk =
k∑

j=−∞
[ak+r−j −ak−j]εj +

k+r∑
j=k+1

ak+r−jεj

=
0∑

j=−∞
[ar−j −a−j]εj+k +

r∑
j=1

ar−jεj+k

= x1k,r + x2k,r, (7.45)

where

x1k,r =
−A0∑

j=−∞
[ar−j −a−j]εj+k,

x2k,r =
0∑

j=−A0+1

[ar−j −a−j]εj+k +
r∑

j=1

ar−jεj+k.

It is readily seen that, for any A0 > 0,x1k,r is independent of x2k,r and x1k,r is
independent of wk and wk+r when A0 ≥ m0 +1. By letting γj = ar+j −aj, we further
have

∑∞
j=1 γ 2

j < ∞ and

x1k,r =
−A0∑

j=−∞
[ar−j −a−j]εj+k =

k−A0∑
q=1

γk−qεq +
0∑

q=−∞
γk−qεq. (7.46)

7We remark that the r in (7.43) is allowed to depend on n and we have in fact established the convergence in (7.43)
in L1 rather than in probability. These enhanced properties will be useful in the proof of Proposition 7.7.
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We next let f̂ (t,s) = ∫∞
−∞ eitxf (x,s)dx,

Vk(t,s) = f̂ (−t,wk)f̂ (s,wk+r)e
−isx2k,r,

Ar(t,s) = E
{
f̂ (−t,w0)f̂ (s,wr)e

−isxr
}
.

Using the Fourier transformations, under assumption A3(III), it is readily seen that

h1r(y,s) := 1

2π

∫
ei(t−s)y

EV0(t,s)dt = e−isy
E
{
f (y,w0)f̂ (s,wr)e

−isx20,r
}
,

h2r(y,s) := 1

2π

∫
ei(t−s)yAr(t,s)dt = e−isy

E
{
f (y,w0)f̂ (s,wr)e

−isxr
}
,

hr(y) = E
{
f (y,w0)f (y+ xr,wr)

}= 1

2π

∫
h2r(y,s)ds.

We are now ready to consider (7.43). Without loss of generality, assume t = 1. We
have

ψnr(1) = dn

2πn

n∑
k=1

f (xk,wk)

∫
f̂ (s,wk+r)e

−isxk+r ds

= dn

(2π)2n

n∑
k=1

∫ ∫
|s|≤A

f̂ (−t,wk)f̂ (s,wk+r)e
i(t−s)xk−is(xk+r−xk)dsdt +R0A

= dn

(2π)2n

n∑
k=1

∫ ∫
|s|≤A

ei(t−s)xk−isx1k,rEVk(t,s)dsdt +R1A +R0A

= dn

2πn

n∑
k=1

∫
|s|≤A

e−isx1k,r h1r(xk,s)ds+R1A +R0A

= dn

2πn

n∑
k=1

∫
|s|≤A

e−isx1k,r h2r(xk,s)ds+R2A +R1A +R0A

= dn

2πn

n∑
k=1

∫
|s|≤A

h2r(xk,s)ds+R3A +R2A +R1A +R0A

=:
dn

n

n∑
k=1

hr(xk)−R4A +R3A +R2A +R1A +R0A, (7.47)

where

R0A = dn

2πn

n∑
k=1

f (xk,wk)

∫
|s|>A

f̂ (s,wk+r)e
−isxk+r ds,

R1A = dn

(2π)2n

n∑
k=1

∫
|s|≤A

∫
ei(t−s)xk−isx1k,r

[
Vk(t,s)−EVk(t,s)

]
dt ds,
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R2A = dn

2πn

∫
|s|≤A

n∑
k=1

e−isx1k,r
[
h1r(xk,s)−h2r(xk,s)

]
ds,

R3A = dn

2πn

∫
|s|≤A

n∑
k=1

(
e−isx1k,r −1

)
h2r(xk,s)dtds

= dn

(2π)2n

n∑
k=1

∫
|s|≤A

∫
ei(t−s)xk

(
e−isx1k,r −1

)
Ar(t,s)ds,

R4A = dn

2πn

n∑
k=1

∫
|s|>A

h2r(xk,s)ds .

Recalling wk depends only on λk, . . . ,λk−m0 , where m0 is a fixed integer, it follows
from Lemma 7.1(i) and |f (y,w0)| ≤ T(y)(1+||w0||β) that

E |R0A| ≤ C
dn

n

n∑
k=1

∫
|s|>A

E
{ |f (xk,wk)| |f̂

(
s,wk+r

)|}ds

≤ C
dn

n

n∑
k=1

d−1
k

∫
|s|>A

∫
E
{|f (y,w0| |f̂ (s,wr)|

}
dyds

≤ C
∫

T(y)dy
∫

|s|>A
E
{|f̂ (s,wr)|(1+||w0||β)

}
ds → 0,

as A → ∞. Similarly,

E |R4A| ≤ C
dn

n

n∑
k=1

∫
|s|>A

E |h2r(xk,s)|ds

≤ C
dn

n

n∑
k=1

d−1
k

∫
|s|>A

∫
|h2r(y,s)|dyds

≤ C
∫

|s|>A

∫
E
{|f (y,w0| |f̂ (s,wr)|

}
dyds → 0,

as A → ∞. Hence, |R0A|+ |R4A| = oP(1), as n → ∞ first and then A → ∞. This,
together with (7.47), implies that (7.43) will follow if we prove: for any fixed A > 0,

RjA = oP(1), j = 1, 2, 3, (7.48)

as n → ∞ first and then A0 → ∞.
The proof of (7.48) for j = 2 is simple. Indeed, due to the independence between

x10,r and w1, wr, we have∫
|s|≤A

∫ ∣∣h1r(y,s)−h2r(y,s)
]∣∣dyds

≤
∫

|s|≤A

∫
E
{|f (y,w0)| |f̂ (s,wr)| |e−isx10,r −1|}dyds
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≤ A
∫ ∫

E
{|f (y,w0)| |f̂ (s,wr)|dyds E |x10,r|

≤ CA
[ ∞∑

j=A0

(ar+j −aj)
2
]1/2

,

for any fixed A > 0. This yields that

E |R2A| ≤ dn

2πn

∫
|s|≤A

n∑
k=1

E
∣∣h1r(xk,s)−h2r(xk,s)

∣∣ds

≤ dn

n

n∑
k=1

d−1
k

∫
|s|≤A

∫
|h1r(y,s)−h2r(y,s)|dyds

≤ C A
[ ∞∑

j=A0

(ar+j −aj)
2]1/2 → 0,

as n → ∞ first and then A0 → ∞, as required.
It is readily seen that (7.48) for j = 1 and 3 will follow if we prove: for any fixed

A > 0,

dn

n
sup
|s|≤A

E

∣∣∣ n∑
k=1

∫
ei(u−s)xk−isx1k,r

[
Vk(u,s)−EVk(u,s)

]
du
∣∣∣= o(1), (7.49)

dn

n
sup
|s|≤A

E

∣∣∣ n∑
k=1

∫
ei(u−s)xk

(
e−isx1k,r −1

)
Ar(u,s)du

∣∣∣= o(1), (7.50)

as n → ∞ first and then A0 → ∞.
We first prove (7.50). We may write, for any B ≥ 1 and |s| ≤ A,

n∑
k=1

∫
eiuxk

(
e−isx1k,r −1

)
Ar(u+ s,s)du

=
n∑

k=1

(∫
|u|≥B/dk

+
∫

|u|<B/dk

)
eiuxk

(
e−isx1k,r −1

)
Ar(u+ s,s)du

= �1n(s)+�2n(s), say. (7.51)

Recalling |f (x,y)| ≤ T(x)(1 + ||y||β), where T(x) is a bounded and integrable
function, we have

sup
u,s

|Ar(u,s)| ≤
∫ ∫

E
{|f (x,w0)|f (y,wr)|

}
dxdy < ∞, (7.52)

sup
s

∫
|Ar(u,s)|du ≤

∫ ∫
E
{|f̂ (t,w0)|f (x,wr)|

}
dtdx

≤
∫

T(x)dx
∫

E
{|f̂ (t,w0)

(
1+||wr||β)

}
dt < ∞, (7.53)
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1

2π
sup

s

∫ ∣∣∣∫ Ar(t + s,s)eitydt
∣∣∣dy = sup

s

∫
|h2r(y,s)|dy

≤ C
∫ ∫

E
{|f (t,w0)|f̂ (x,wr)|

}
dtdx < ∞. (7.54)

Due to (7.52), it is readily seen that, uniformly for |s| ≤ A and any B > 0,

E|�2n(s)| ≤ C sup
|u|,|s|≤A

|Ar(u+ s,s)|B
n∑

k=1

d−1
k E |x1k,r|

≤ C Bn/dn
[ ∞∑

k=A0

(ar+k −ak)
2
]1/2

. (7.55)

To consider �1n(s), writing �1n(s) = �1n,1(s)+�1n,2(s), where

�1n,1(s) =
n∑

k=1

∫
|u|≥B/dk

eiuxk−isx1k,r Ar(u+ s,s)du,

�1n,2(s) =
n∑

k=1

∫
|u|≥B/dk

eiuxk Ar(u+ s,s)du,

then (7.50) will follow if we prove

dn

n
sup
|s|≤A

E |�1n,i(s)| ≤ C (n/dn)

√
B−1 +BA2

0dn/n, i = 1,2. (7.56)

Indeed, due to (7.51)–(7.56) and τA0 :=∑∞
k=A0

(ar+k −ak)
2 → 0 as A0 → ∞, (7.50)

follows by taking B = τ
−1/3
A0

.
We only prove (7.56) for i = 1 as the result for i = 2 is similar. We have

E|�1n,1(s)|2 ≤
n∑

k=1

n∑
j=1

∣∣∫
|t|≥B/dk

∫
|u|≥B/dj

Ar(t + s,s)Ar(u+ s,s)ETkj dtdu
∣∣

=
( ∑

|k−j|≥A2
0+1

+
∑

|k−j|≤A2
0

)∣∣∫
|t|≥B/dk

∫
|u|≥B/dj

Ar(t + s,s)Ar(u+ s,s)ETkjdtdu
∣∣

=: �1n +�2n, say, (7.57)

where Tk,j = eitxk+iuxj e−is(x1k,r+x1j,r). Recalling (7.46), it follows that∣∣E(Tkj | F0)
∣∣

≤ ∣∣E(eitxk+iuxj e−is
∑k−A0

q=1 γk−qεqe−is
∑j−A0

q=1 γj−qεq | F0)
∣∣

= ∣∣E(eitxk+iuxj e−i
∑k∨j

q=1 sγ ′
q εq | F0)

∣∣, (7.58)
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where

γ ′
q =

⎧⎨⎩
γk−q +γj−q, if 1 ≤ q < k ∧ j,
γk∨j−q, if k ∧ j ≤ q < k ∨ j−A0,

0, if q ≥ k ∨ j−A0,

satisfying
∑∞

q=1 γ
′2
q < ∞. Now, by noting (7.52) and using (7.23), we have that,

uniformly for |s| ≤ A,

�1n ≤ 2E
∑

k−j≥A2
0+1

∫
|t|≥B/dk

∫
|u|≥B/dj

|Ar(t + s,s)Ar(u+ s,s)| |E(Tkj | F0)|dtdu

≤ C
∑

l−k≥A2
0+1

[
(l− k)−2 +B−1 d−1

l−k

]
d−1

k

≤ C B−1 (n/dn)
2.

Turning to consider �2n, note that

E

∣∣∣∫
|t|≥B/dk

Ar(t + s,s)eitxk dt
∣∣∣≤ B/dk sup

t,s
|Ar(t + s,s)|

+ E

∣∣∣∫ Ar(t + s,s)eitxk dt
∣∣∣

≤ CB/dk +Cd−1
k

∫ ∣∣∣∫ Ar(t + s,s)eitydt
∣∣∣dy ≤ CB/dk,

due to (7.52) and (7.53). Uniformly for |s| ≤ A, we have

|�2n| ≤
∑

|k−j|≤A2
0

∫
|u|≥B/dj

|Ar(u+ s,s)|duE
∣∣∣∫

|t|≥B/dk

Ar(t + s,s)Tkjdt
∣∣∣

≤
∑

|k−j|≤A2
0

∫
|u|≥B/dj

|Ar(u+ s,s)|E
∣∣∣∫

|t|≥B/dk

Ar(t + s,s)eitxk dt
∣∣∣du

≤ CBA2
0 n/dn.

Taking this estimate into (7.57), for any fixed A > 0, we have

sup
|s|≤A

E|�1n,1(s)|2 ≤ C
(
B−1 +BA2

0dn/n
)
(n/dn)

2, (7.59)

yielding (7.56). Then (7.50) is established.
Finally, we prove (7.49). Let σk(t,s) = Vk(t,s)−EVk(t,s). Uniformly for |s| ≤ A

where A is fixed, we have

E
∣∣ n∑

k=1

∫
eitxk−isx1k,rσk(t + s,s)dt

∣∣2
=

n∑
k=1

n∑
j=1

E

∫ ∫
e−is(x1k,r+x1j,r)eitxk+iuxjσk(t + s,s)σj(u+ s,s)dtdu
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=
( ∑

|j−k|≥A2
0+1

+
∑

|j−k|≤A2
0

)
E

∫ ∫
e−is(x1k,r+x1j,r)eitxk+iuxjσk(t + s,s)σj(u+ s,s)dtdu

=: Rn6 +Rn7, say. (7.60)

Note that σk(t + s,s) depends only on εk+r, . . . ,εk−A0 , Eσk(u+ s,s) = 0 and

sup
t,s

|σk(t + s,s)| ≤ C + sup
t

|f̂ (t,wk)|sup
t

|f̂ (t,wk+r)|
≤ C(1+||wk||2β +||wk+r||2β).

As in the proof of (7.50), it follows from (7.20) in Lemma 7.4 that

|Rn6| ≤
∑

|j−k|≥A2
0+1

∣∣E∫ ∫ e−is(x1k,r+x1j,r)eitxk+iuxjσk(t,s)σj(u,s)dtdu
∣∣

≤
∑

|j−k|≥A2
0+1

E

∫ ∫ ∣∣E[eitxk+iuxj−is
∑k∨j

q=1 γ ′
qεqσk(t + s,s)σj(u+ s,s) | F0

]∣∣dtdu

(where γ ′
q is given as in (7.58))

≤ C
∑

|j−k|≥A2
0+1

d−1
k d−2

|j−k|

≤ C

{
n/dn, under LM,

n logn/dn, under SM.
(7.61)

To consider Rn7, let lk(y) = ∫ eityσk(t + s,s)dt. It is readily seen that

|lk(y)| ≤ |f (y,wk)||f̂ (s,wk+r)|+E
{|f (y,wk)||f̂ (s,wk+r)|

}
≤ C |f (y,wk)|(1+||wk+r||β)+CE

{|f (y,wk)|(1+||wk+r||β)
}
,

and by Lemma 7.1,

E |lk(xk)|2 ≤ Cd−1
k E(1+||w1||4β) ≤ C1d−1

k .

This yields that

|Rn7| ≤
∑

|j−k|≤A2
0+1

E
{|lk(xk)| |lj(xj)|

}≤ C1

∑
|j−k|≤A2

0+1

d−1
k ≤ CA2

0n/dn. (7.62)

It follows from (7.60) to (7.62) that

dn

n
E
∣∣ n∑

k=1

∫
eitxk−isx1k,rσk(t + s,s)dt

∣∣
≤ C (A2

0 + logn)(
dn

n
)1/2 → 0,

as n → ∞ first and then A0 → ∞. This proves (7.49) and also completes the proof
of Proposition 7.4.
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7.4. Proof of Proposition 7.7

Recall (6.14) and that l(x) is continuous with l(0) = 1. It suffices to show that there
exists M ≡ Mn → ∞ so that, as n → ∞ first and then q → ∞,

dn

n

M∑
r=q+1

�
( r

M

) n−r∑
k=1

K
(
xk
)
K
(
xk+r

)
u1k u1,k+r = oP(1), (7.63)

where u1j(= u1,j) =∑m0
i=0 ψiλ

′
j−i for some m0 = m0(n) → ∞ and m0 = o

(√
n/dn

)
.

To this end, as in (7.45) and (7.46), for A0 = m0 +1, we write

xk+r − xk = x1k,r + x2k,r,

where, by using the notations al =∑l
s=0 φs with al = 0 if l < 0 and γl = ar+l −al,

x1k,r =
−A0∑

j=−∞
[ar−j −a−j]εj+k =

k−A0∑
j=1

γk−jεj +
0∑

j=−∞
γk−jεj,

x2k,r =
0∑

j=−A0+1

[ar−j −a−j]εj+k +
r∑

j=1

ar−jεj+k.

Recall that K(x) = 1
2π

∫
eitxK̂(t)dt under the condition (a). For any r ≥ 0 and ln ≥ 0,

we have

n−r∑
k=1

K
(
xk
)
K
(
xk+r

)
u1k u1,k+r

= 1

2π

n−r∑
k=1

K
(
xk
)

u1k u1,k+r

∫
|s|≤ln

K̂(s)e−isxk+r ds+L1n

= L1n(r)+L2n(r)+L3n(r), (7.64)

where, with Vk(s) = e−isx2k,r u1k u1,k+r,

L1n(r) = 1

2π

n−r∑
k=1

K
(
xk
)

u1k u1,k+r

∫
|s|>ln

K̂(s)e−isxk+r ds,

L2n(r) = 1

2π

n−r∑
k=1

K
(
xk
)∫

|s|≤ln

K̂(s)e−is(xk+x1k,r)EVk(s)ds,

L3n(r) = 1

2π

n−r∑
k=1

K
(
xk
)∫

|s|≤ln

K̂(s)e−is(xk+x1k,r)
[
Vk(s)−EVk(s)

]
ds.
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Using Lemma 7.1(i) and
∫ |K̂(s)|ds < ∞, for any m0 → ∞ satisfying m0 =

O(n/dn), there exists M1 = M1n → ∞ so that, whenever ln → ∞,

dn

n

M1∑
r=q+1

E|L1n(r)|

≤ C
M1∑

r=q+1

dn

n

[ 3m0∑
k=1

E|u1k u1,k+r|+
n∑

3m0+1

d−1
k

] ∫
|s|>ln

|K̂(s)|ds

≤ C M1

∫
|s|>ln

|K̂(s)|ds → 0. (7.65)

To estimate L2n(r), let h̃r(y) = E
[
K(y + x20,r)u10u1r

]
. It is readily seen that h̃r(y)

is bounded and integrable. Furthermore, using (7.33) in Lemma 7.7 with minor
modifications, we have∣∣̃hr(y)

∣∣≤ m0∑
l=0

m0∑
v=0

∣∣E[K(y+ x20,r)ψlλ
′
−l ψvλ

′
r−v

]∣∣
≤ C

m0∑
l=0

m0∑
v=0

||ψl|| ||ψv||
{

d−1
r , if |r − v+ l| ≤ 1,∑v

s=0 |φs|∑r+l
s=l |φs| |(d−3

r + r−3), if |r − v+ l| ≥ 2,

≤ C
m0∑
l=0

||ψl||
r+l+1∑

v=r+l−1

||ψv||d−1
r +C

m0∑
l=0

m0∑
v=0

l1/2||ψl||v1/2||ψv||d−3/2
r

≤ Cr−1d−1
r +C r−3/2 ≤ Cr−3/2,

uniformly in y ∈ R, where we have used the facts that d−1
r ≤ Cr−1/2 and∑v

s=0 |φs|∑r+l
s=l |φs|(d−3

r + r−3) ≤ Cv1/2 l1/2r−3/2 under both SM and LM and∑∞
v=0 v||ψv|| < ∞. Now, by noting that EVk(s) = EV0(s), supsE|V0(s)| ≤

E|u10 u1r| ≤ C < ∞ and

h̃r(y) = 1

2π

∫
K̂(s)e−isy

EV0(s)ds,

standard calculations, together with the Hölder inequality, show8 that

dn

n
E|L2n(r)| ≤ dn

n

n∑
k=1

E
[
K
(
xk
) ∣∣̃hr(xk + x1k,r)

∣∣]+C
dn

n

n∑
k=1

EK
(
xk
) ∫

|s|>ln

|K̂(s)|ds

≤
[dn

n

n∑
k=1

EK4/3
(
xk
)]3/4 [dn

n

n∑
k=1

E
∣∣̃hr(xk + x1k,r)

∣∣4]1/4

+C
∫

|s|>ln

|K̂(s)|ds

8Note that xk +x1k,r =∑k
j=−∞ ãk−jεj where ãk−j = ak−j +γk−jI(j ≤ k−A0) if j ≥ 1 and ãk−j = ak−j −a−j +γk−j if

j ≤ 0, and
∑n

j=−∞ ã2
j � d2

n . Lemma 7.1 still holds when the xk is replaced by xk + x1k,r .
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≤ C
[∫

K4/3(y)dy
]3/4 [∫ ∣∣̃hr(y)

∣∣4dy
]1/4 +C

∫
|s|>ln

|K̂(s)|ds

≤ Cr−9/8 +C
∫

|s|>ln

|K̂(s)|ds.

As a consequence, for any ln → ∞ and M1 → ∞ as given in (7.65), we have

dn

n

M1∑
r=q+1

E|L2n(r)| ≤ C
M1∑

r=q+1

r−9/8 +CM1

∫
|s|>ln

|K̂(s)|ds

≤ Cq−1/8 +CM1

∫
|s|>ln

|K̂(s)|ds → 0, (7.66)

as n → ∞ first and then q → ∞.
We finally estimate L3n(r). It follows from the Fourier transformation that

L3n(r) = 1

(2π)2

n−r∑
k=1

∫ ∫
|s|≤ln

K̂(−t)K̂(s)ei(t−s)xk e−isx1k,r
[
Vk(s)−EVk(s)

]
dsdt

= 1

2π

∫
|s|≤ln

K̂(s)Ln(s,r)ds, (7.67)

where Ln(s,r) = ∑n−r
k=1

∫
K̂(−t)ei(t−s)xk e−isx1k,r

[
Vk(s) − EVk(s)

]
dt. Let σk(s) =

Vk(s)−EVk(s). Uniformly, for |s| ≤ ln, we have

EL2
n(s,r) = E

∣∣ n∑
k=1

∫
K̂(t + s)eitxk−isx1k,rσk(s)dt

∣∣2
=

n∑
k=1

n∑
j=1

E

∫ ∫
K̂(t + s) K̂(u+ s)e−is(x1k,r+x1j,r)eitxk+iuxjσk(s)σj(s)dtdu

=
( ∑

|j−k|≥A2
0+1

+
∑

|j−k|≤A2
0

)
E

∫ ∫
K̂(t + s) K̂(u+ s)e−is(x1k,r+x1j,r)

× eitxk+iuxjσk(s)σj(s)dtdu

=: Rn1(s)+Rn2(s). (7.68)

Note that σk(s) depends only on εk+r, . . . ,εk−A0 , Eσk(s) = 0 and

sup
s

|σk(s)| ≤ C
(
1+|u1k| |u1,k+r|

)
.
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As in the proof of (7.50), it follows from (7.20) in Lemma 7.4 that

|Rn1(s)| ≤
∑

|j−k|≥A2
0+1

∣∣E∫ ∫ e−is(x1k,r+x1j,r)eitxk+iuxjσk(s)σj(s)dtdu
∣∣

≤
∑

|j−k|≥A2
0+1

E

∫ ∫ ∣∣E[eitxk+iuxj−is
∑k∨j

q=1 γ ′
qεqσk(s)σj(s) | F0

]∣∣dtdu

(where γ ′
q is given as in (7.58))

≤ C
∑

|j−k|≥A2
0+1

d−1
k d−2

|j−k|(1+|s|)

≤ C (1+|s|)
{

n/dn, under LM,

n logn/dn, under SM.
(7.69)

As for Rn2(s), by recalling K(x) = 1
2π

∫
K̂(t)eitxdx and A0 = m0 +1, we have

|Rn2(s)| ≤
∑

|j−k|≤A2
0+1

E
[
K(xk)K(xj)sup

s
|σk(s)|sup

s
|σj(s)|

]
≤ C1

∑
|j−k|≤A2

0+1

d−1
k ≤ Cm2

0n/dn. (7.70)

It follows from (7.67) to (7.70) that, for any ln → ∞ satisfying ln = o(
√

n/dn) and
m0 = o(

√
n/dn), there exists M2 ≡ M2n → ∞,

dn

n

M2∑
r=q+1

E|L3n(r)|

≤ C M2 sup
|s|≤ln

E
∣∣Ln(s,r)

∣∣∫
|s|≤ln

|K̂(s)|ds ≤ CM2 sup
|s|≤ln

[
EL2

n(s,r)
]1/2

≤ C M2
[
ln(1+ logn)+m2

0

]1/2 (dn

n

)1/2 → 0. (7.71)

By virtue of (7.64), (7.65), (7.66), and (7.71), for any M ≡ Mn → ∞ and Mn ≤
min{M1n,M2n}, we have

dn

n

M∑
r=q+1

�
( r

M

)
E

∣∣∣ n−r∑
k=1

K
(
xk
)
K
(
xk+r

)
u1k u1,k+r

∣∣∣
≤ C

dn

n

M1∑
r=q+1

(
E|L1n(r)|+E|L2n(r)|

)+ C dn

n

M2∑
r=q+1

E|L3n(r)| → 0,

as n → ∞ first and then q → ∞. This proves (7.63) and completes the proof of
Proposition 7.7.
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A. APPENDIX: PROOFS OF LEMMAS

A.1. Proof of Lemma 7.2

The idea of the proof is similar to that of Wang and Phillips (2011, pp. 246–247) and the
following outline is provided here for completeness. We first prove (7.13). Write �1 ≡
�1(t) (�2, respectively) for the set of 1 ≤ v ≤ k such that |tαv +βv| ≥ 1 (|tαv +βv| < 1,
respectively), and

B2 =
∑

v∈�2

αvβv and B3 =
∑

v∈�2

β2
v .

Since B2
2 ≤ B1k B3 by Hölder’s inequality, we have∑

q∈�2

(tαv +βv)
2 = t2 B1k +2tB2 +B3

= B1k(t +B2/B1k)
2 + (B3 −B2

2/B1k) ≥ B1k(t +B2/B1k)
2.

On the other hand, there exist constants γ1 > 0 and γ2 > 0 such that

∣∣Eeiε1 l∣∣≤ { e−γ1, if |l| ≥ 1,

e−γ2l2, if |l| ≤ 1,
(A.1)

since Eε1 = 0, Eε2
1 < ∞ and ε1 satisfies the Cramér’s condition due to

∫ |Eeitε0 |dt < ∞
(see, e.g., Chapter 1 of Petrov (1995)). Without loss of generality, assume α1 �= 0 and
let g(t) = Eeitα1ε0 . From these facts and the independence of εt, it follows that, for k
sufficiently large and all t,

∣∣Eeizk(t)
∣∣≤ |g(t)|

k∏
q=2

|Eeiε1(tαq+βq)|

≤ |g(t)| exp
{−γ1#(�1)−γ2

∑
v∈�2

(tαv +βv)
2}

≤ |g(t)| exp
{−γ1#(�1)−γ2 B1k (t +B2/B1k)

2}. (A.2)

Hence, by recalling (7.12) and |B2| ≤∑k
v=1 |αvβv|, simple calculations show that∫

min{1,s1 |t|δ + s2} ∣∣Eeizk(t)
∣∣dt

≤
∫

#(�1)≥
√

k
|g(t)|e−√

kdt +C
∫

#(�1)≤
√

k
(s1 |t|δ + s2)e−γ2 B1k (t+B2/B1k)

2
dt

≤ Ce−√
k +C s1

∫ (|t|+ |B2|/B1k
)δe−γ2 B1k t2 I(B1k ≥ m2

k)dt

+C s2

∫
e−γ2 B1k t2 I(B1k ≥ m2

k)dt

≤ C
(
k−3 + s1

[
m−1−δ

k +m−1−2δ
k

( k∑
v=1

|αv βv|
)δ]+ s2 m−1

k

)
.
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Result (7.13) now follows from the fact that

k∑
v=1

|αv βv| ≤ ( k∑
v=1

|αv|2
)1/2( k∑

v=1

|βv|2
)1/2 ≤ Cmk

( k∑
v=1

|βv|2
)1/2.

The proof of (7.14) is similar and hence the details are omitted. We finally prove (7.15). In
fact, by recalling B2

2/B1k ≤ B3 ≤ a, i.e, B2/B1k ≤ a1/2/mk due to (7.12), it follows from
(A.2) that∫

|t|≥B/mk

∣∣Eeizk(t)
∣∣dt

≤
∫

#(�1)≥
√

k
|g(t)|e−√

kdt +C
∫

#(�1)≤
√

k,|t|≥B/mk

e−γ2 B1k (t+B2/B1k)
2
dt

≤ Ck−3 +
∫
|t|≥2−1B/mk

e−γ2 B1k t2 I(B1k ≥ m2
k)dt

≤ C(k−3 +m−1
k B−1),

as required.

A.2. Proof of Lemma 7.3

Let Vk(t) =∑k
v=k−m0+1(tαv +βv)εv. Note that∣∣Eeizk(t/h)g(t,wk)
∣∣≤ ∣∣Eeizk−m0 (t/h)

∣∣ ∣∣EeiVk(t/h)g(t,wk)
∣∣

≤ E |g(t,w1)| ∣∣Eeizk−m0 (t/h)
∣∣.

It follows from (7.13) with s1 = 0 and s2 = 1 that∫ ∣∣Eeizk(t/h) g(t,wk)
∣∣dt ≤ Ch

∫ ∣∣Eeizk−m0 (t)∣∣dt ≤ Ch
(
k−3 + τ−1

k

)
,

yielding (7.16). Similarly, by noting that∣∣EeiVk(t/h)g(t,wk)
∣∣≤ ∣∣E(eiVk(t/h) −1)g(t,wk)

∣∣+ ∣∣Eg(t,wk)
∣∣

≤ 2min{1,αk0 |t|/h+βk0}E{|ε0||g(t,w1)|}+C min{1,|t|}
≤ Cβk0 +C min{1,αk0 |t|/h}+C min{1,|t|}, (A.3)

we have∫ ∣∣E{eizk(t/h)g(t,wk)
}∣∣dt

≤ C
∫

min{1,αk0 |t|/h} ∣∣Eeizk−m0 (t/h)
∣∣dt +Cβk0

∫ ∣∣Eeizk−m0 (t/h)
∣∣dt

+C
∫

min{1,|t|} ∣∣Eeizk−m0 (t/h)
∣∣dt

≤ Ch
{
(1+αk0)τ−2

k

[
1+ ( k∑

v=1

β2
v
)1/2]+βk0 τ−1

k

}
,
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as required in (7.17). As for (7.18), by noting that∣∣EeiVk(t/h)g(t,wk)
∣∣≤ Cβk0 +C min{1,|t|}+C min{1,|t|/h},

due to (A.3) and supk αk0 = O(1), it follows from (7.13) and (7.14) that∫
min{1,|t|/h} ∣∣E{eizk(t/h)g(t,wk)

}∣∣dt

≤ Cβk0

∫
min{1,|t|/h}∣∣Eeizk−m0 (t/h)

∣∣dt +C
∫

min{1,(|t|/h)2}∣∣Eeizk−m0 (t/h)
∣∣dt

+C
∫

min{1,|t|} min{1,|t|/h}∣∣Eeizk−m0 (t/h)
∣∣dt

≤ C h
{
k−3 + [βk0(τ−2

k + k−3)+ τ−3
k

](
1+

k∑
v=1

β2
v
)}

.

This proves (7.18).

A.3. Proof of Lemma 7.4

We only prove (7.20) and (7.22). The other proofs are similar and simpler. Note that

xk =
k∑

j=1

ρ
k−j
n ξj =

k∑
j=1

ρ
k−j
n
( j∑

u=1

+
0∑

u=−∞

)
εuφj−u

=
k∑

u=1

εu ak−u +
∞∑

u=0

ε−ubu,k, (A.4)

where ak−u =∑k−u
s=0 ρk−u−s

n φs and bu,k =∑k
s=1 ρk−s

n φs+u. It follows from the indepen-
dence of the εj that

|Ik,l(m)|
≤
∫ ∫ ∣∣E{eis

∑k
v=m+1 ak−vεv/h+it

∑l
v=m+1 al−vεv/h+i

∑l
j=m+1 γjεj g(s,wk)g(t,wl)

}∣∣dsdt

≤ C
∫ ∣∣E{ei

∑l
v=k+1(tal−v/h+γv)εv g(t,wl)

}∣∣�(t,k)dt,

(A.5)

where

�(t,k) =
∫ ∣∣E{ei

∑k
v=m+1(sak−v/h+tal−v/h+γv)εv g(s,wk)

}∣∣ds.

As in Lemma 7.2, denote by �1 a subset of � = {m+1,2, . . . ,k} and �2 = �−�1. Note
that, for any k − m ≥ 1,

∑
v∈�2

a2
k−v � d2

k−m whenever #�1 ≤ √
k −m. It is readily seen

from (7.16) with αv = ak−v and βv = tal−v/h+γv that

�(t,k) ≤ Chd−1
k−m. (A.6)

https://doi.org/10.1017/S0266466624000276 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000276


54 QIYING WANG AND PETER C. B. PHILLIPS

By similar arguments, it follows from (7.17) with αv = al−v and βv = γv that∫ ∣∣E{ei
∑l

v=k+1(tal−v/h+γv)εv g(t,wl)
}∣∣dt

≤ Ch
{
(l− k)−3 +αl0 d−2

l−k

[
1+ ( l∑

v=k+1

γ 2
v
)1/2]+βl0 d−1

l−k

}
≤ Ch

[
d−2

l−k(1+a1/2)+βl0d−1
l−k

]
, (A.7)

where a =∑l
v=1 γ 2

v , βl0 = max0≤j≤m0 |γl−j| and we have used the fact:

αl0 = max
0≤i≤m0

|αl−i| = max
0≤i≤m0

|ai| = O(1).

It follows from (A.5) to (A.7) that

|Ik,l(m)| ≤ Chd−1
k−m

∫ ∣∣Eei
∑l

v=k+1(tal−v/h+γv)εv g(t,wl)
∣∣dt

≤ C h2 d−1
k−m

[
d−2

l−k(1+a1/2)+βl0d−1
l−k

]
,

implying (7.20).
The proof of (7.22) requires some modifications. First notice that, under SM, we have

�(t,k) ≤ Ch
[
(k −m)−1 +min{1,|t|/h}(k −m)−1/2], (A.8)

rather than (A.6). Indeed, under SM, it follows that:

(a) �(t,k) ≤ Ch(k −m)−1/2 by (7.16) and, for any t ∈ R,
(b) �(t,k) ≤ Ch

[
(k − m)−1 + |t|/h(k − m)−1/2

]
by (7.17) with αv = ak−v and βv =

tal−v/h+μv/
√

n,

implying (A.8). Now, by using (A.5) first and then (7.17) and (7.18), we have

|Ik,l(m)|
≤ Ch(k −m)−1

∫ ∣∣E{ei
∑l

v=k+1(tal−v/h+γv)εv g(t,wl)
}∣∣dt

+Ch(k −m)−1/2
∫

min{1,|t|/h}∣∣E{ei
∑l

v=k+1(tal−v/h+γv)εv g(t,wl)
}∣∣dt

≤ Ch2[(l− k)−1(k −m)−1 + (l− k)−3/2(k −m)−1/2],
which yields (7.22).

A.4. Proof of Lemma 7.5

We only prove (7.25). The other proofs are similar and use the corresponding results in
Lemma 7.4. Recalling (2.4), we may write

IIlk(h) = 1

(2π)2

∫ ∫
f̂ (t,wk)f̂ (s,wl)e

itxk/h+isxl/hei
∑n

j=m+1 μjεj/
√

ndtds. (A.9)
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It follows from (A.4), the independence of εj and (7.20) with γj = μj/
√

n and g(s,wk) =
f̂ (s,wk) that

∣∣E[IIlk(h) | Fm
]∣∣

≤ 1

(2π)2

∫ ∫
E
(
eisxk/h+itxl/h++i

∑l
j=m+1 μjεj/

√
nf̂ (s,wk)f̂ (t,wl) | Fm

)
dsdt

≤ C h2 d−1
k−m

(
d−2

l−k +dl−k/
√

n
)
,

as required.

A.5. Proof of Lemma 7.6

Recalling (A.4), as in (A.9), we have

∣∣E{f (xl/h,wl)E
[
f (xk/h,wk) | Fk−m

]}∣∣
=
∫ ∫ ∣∣E{eitxl/hf̂ (−t,wl)E

[
eisxk/hf̂ (s,wk)|Fk−m

]}∣∣dsdt

≤
∫ ∫ ∣∣E{eith−1∑l

v=k al−vεv f̂ (−t,wl)
}∣∣

E
[
e(ish−1∑k

v=1 ak−vεv+ith−1∑k−m
v=1 al−vεv) f̂ (s,wk)

]
dsdt

≤ C
∫ ∣∣E{eith−1∑l

v=k al−vεv f̂ (−t,wl)
}∣∣�(t,k)dt,

where, by letting a∗
l−v = 0 if k −m+1 ≤ v ≤ k and a∗

l−v = al−v if 1 ≤ v ≤ k −m, we have

�(t,k) =
∫ ∣∣E{ei

∑k
v=1(sak−v/h+ta∗

l−v/h)εv f̂ (s,wk)
}∣∣ds.

The remainder of the proof is the same as that of Lemma 7.4 and is omitted.

A.6. Proof of Lemma 7.7

Take A0 as required in Lemma 7.1. Recalling K(x) is bounded, (7.30) follows immediately
from Lemma 7.1(i). If k ≥ A0, l− k ≥ A0, and l− j ≤ k, it follows from Lemma 7.1(ii) and
the conditional arguments that

I := ∣∣E{�(λk−j)�(λl−j)K(xk/h)K(xl/h)
}∣∣

≤ E
{|�(λk−j)�(λl−j)K(xk/h)| |E[K(xl/h)|F‖

]|}
≤ CE�2(λ1)h2 d−1

k d−1
l−k,

indicating (7.31).
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We next assume that k ≥ A0, l − k ≥ A0, and l − j > k. Recalling (A.4), as in (A.9), we
have

I =
∫ ∫ ∣∣E{eitxl/h eisxk/h�(λk−j)�(λl−j)

}∣∣|K̂(−s))| |K̂(−t)|dsdt

≤ C
∫ ∣∣E{eith−1∑l

v=k al−vεv �(λl−j)
}∣∣�(t,k)dt,

where

�(t,k) =

⎧⎪⎪⎨⎪⎪⎩
∫ ∣∣E{ei

∑k
v=1(sak−v/h+tal−v/h)εv e−i(sεk−jbj−k,k/h+tεl−kbl−k,k/h) �(λk−j)

}∣∣ds,

if k − j ≤ 0,∫ ∣∣E{ei
∑k

v=1(sak−v/h+tal−v/h)εv �(λk−j)
}∣∣ds, if k − j ≥ 1.

It follows from arguments similar to those given in the proof of Lemma 7.4 with some minor
modifications9 that:

(a) under LM, �(t,k) ≤ C hd−1
k and

I ≤ C hd−1
k

∫ ∣∣E{eith−1∑l
v=k al−vεv �(λl−j)

}∣∣dt ≤ C
j∑

s=0

|φs|h2 d−1
k d−2

l−k;

(b) under SM (noting |bj−m,m| ≤ ∑j
i=j−m |φi| ≤ C < ∞ for any m ≥ 0 and

max1≤v≤k |av| ≤ C < ∞),

�(t,k) ≤
∫ ∣∣E{ei

∑k
v=1,v�=k−j(sak−v/h+tal−v/h)εv

}∣∣(min{1,|s|/h}+min{1,|t|/h})ds

≤ Ch
(
k−1 +min{1,|t|/h}k−1/2)

and

I ≤ Chk−1
∫ ∣∣E{eith−1∑l

v=k al−vεv �(λl−j)
}∣∣dt

+Chk−1/2
∫

min{1,|t|/h}∣∣E{eith−1∑l
v=k al−vεv �(λl−j)

}∣∣dt

≤ C h2 k−1(l− k)−1 +Ch2 k−1/2 (l− k)−3/2.

This proves (7.32).
Similarly, by letting z2r =∑r

k=1,k �=r−j εkar−k, we have∣∣E{�(λr−j)�(λ−k)e
isxr/h}∣∣

≤ C
∣∣Eeisz2r/h∣∣{ 1, if |r − j+ k| ≤ A0,

|aj| |ar+k −ak|min{1,|s|2}, if |r − j+ k| > A0,

9Replace m0 by j, set γv = 0 and take m = 0. In this case, αl0 used in (A.7) satisfies

αl0 = max
0≤i≤j

|αl−i| = max
0≤i≤j

|ai| ≤
j∑

s=0

|φs|,

which can not be eliminated.
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implying that, uniformly for y ∈ R,∣∣E{K(y+ xl/h)�(λl−j)�(λ−k)
}∣∣

≤
∫

|K̂(s))|∣∣E{eisxl/h �(λl−j)�(λ−k)
}∣∣ds

≤ C h

{
d−1

l , if |l− j+ k| ≤ A0,∑j
s=0 |φs|∑l+k

s=k |φs| |(d−3
l + l−3), if |l− j+ k| > A0,

as required in (7.33).
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