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Abstract

Contrary to the general impression that variation principles are of purely
theoretical interest, we show by means of examples that they can lead to
considerable practical advantages in the solution of non-linear vibration
problems. In this paper, we develop a variation principle for the period
of a free oscillation, as a function of the average value of the Lagrangian
over one period. Even extremely simple-minded approximations to the
true motion lead to excellent values for the period. The stability of such
free oscillations against small disturbances of the initial conditions is
treated in a previous paper.

1. Introduction

"Variational principles in themselves contain no new physical content,
and they rarely simplify the practical solution of a given mechanical problem.
Their value lies chiefly as starting points for new formulations of the
theoretical structure of classical mechanics" [1]. This opinion of variation
principles is generally accepted, we believe wrongly. It is the purpose of
this, and the previous [2], paper to point out that variation principles in
classical mechanics can be of considerable practical use, and to illustrate
their use by some simple examples. For this purpose, we have developed a
new variation principle for the period of a periodic motion of a non-linear
oscillating system, have adapted a standard variation method to study
the stability of such a periodic motion against small perturbations in the
initial conditions, and have developed iteration schemes for obtaining better
approximations, starting from a given approximation to the motion. For
the sake of simplicity, we restrict ourselves here to "free", as opposed to
"forced", vibrations; but this restriction is not essential.

If the oscillating system has only one degree of freedom, and is con-
servative, then the solution of the equations of motion is straightforward,
and an explicit solution is known in terms of certain definite integrals.
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Satisfactory as this might appear at first sight, in practice this method
leaves much to be desired. In all but the simplest case of a linear spring,
the integrals are at least elliptic integrals, and usually even worse. The
solution obtained is awkward and "undurchsichtig". The information of
practical interest is of two kinds:

(1) The value of the period of the motion as a function of other para-
meters, e.g., of the maximum displacement, of the total energy, or some
related quantity.

(2) The "shape" of the motion q = q(t), i.e., the admixture of higher
harmonics to the sine-wave zero order approximation.

Although the elliptic integrals can be expanded in series form, and the
answers to (1) and (2) obtained that way, this is a rather awkward procedure;
and all too often the integrals are not even elliptic integrals, and almost
nothing is known about their analytic properties. This situation is particular-
ly bad for question (2), since the exact solution gives t as a function of q,
rather than q as a function of /. If the integrals are not elliptic, the inver-
sion of t = t(q) so as to find q = q(t) is apt to be quite a problem.

If the oscillating system has several degrees of freedom, the situation is
much worse yet; there is no general method of finding periodic solutions
of the equations of motion in closed form; and even if such a solution, or a
one-parameter family ef such solutions (we shall call the latter a "mode")
is obtained somehow, there remains the problem of stability against small
perturbations of the initial conditions. For example, consider a system of
two masses connected to each other and to two walls by non-linear springs,
as shown in Fig. 1, and constrained to move in a straight line. This system

FIGURE I

Fig. 1. A system of springs and masses. The two outer springs are identical and the masses
are equal.

was considered by Rosenberg and Atkinson [3], and it was found that there
are circumstances under which one mode (e.g., both masses moving in the
same direction) is stable, whereas the other mode (masses moving in op-
posite directions) is unstable against small perturbations of the initial
conditions; i.e., if the system is set into motion in a way approximating
to the second mode, its motion is not even approximately periodic or similar
to the pure second mode.

In the present paper, we describe a variation technique for obtaining
practical answers for the periodic motions (the "modes") of the non-linear
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system. A previous paper [2] is devoted to similar techniques for investigating
the stability (against small perturbations of the initial conditions) of the
modes so obtained.

2. A Variation Principle for the Period

In this section we derive an expression for the period and show that it is
variationally correct if the time average of the Lagrangian is maintained
constant during the variation.

We consider an N degree of freedom system whose configuration is
described by the coordinates qx, qs,.. ., qN. We suppose that the kinetic
energy K and the potential energy V have the following forms

(2-1) K(q, g) = 2 2
< - l i-l

(2.2)

where mtt = mH. We also suppose that the total energy is conserved,
that is

(2.3) K(q, q) + V(q) = E

and that the system is in motion, this motion being periodic with period T.
Introducing the new independent variable T = t\T and considering qt = q^r)
as a function of this variable instead of time t, we may write the energy
equation (2.3) in the form

We integrate (2.4) with respect to T from x = 0 to r = 1, i.e., over one
period. This yields an expression for T2 in terms of certain integrals, namely

(2.5) T* = Jl'°
E-J0.1

where

In some motions of physical systems it is known a priori that the kinetic
energy vanishes at some time during the motion. In this case we may write

(2.7a) E = V,max"

In general, though, this does not happen, and we require an expression
for E in terms of the motion q(r), without a priori knowledge of the period
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T. Such an expression may be obtained by multiplying equation (2.4) by

and then integrating from T = 0 to T = 1. This leads to the generalisation
of (2.5)

~j^ Jr+\,» T Jr,t+1 ~ bJr.i-

Eliminating 1/7"2 from two different equations of that type we have for all
non-negative integral values of (r, s) ^ (rr, s')

ia rj-^\ j? Jr,>+lJr'+l,t' Jr+l,tJr'.t'+l

Jr.tJr'+l.t' ~ Jr+l.tJr'.s'

Any expression of this type may be used for E. However the integrals can
be lengthy and it is usually convenient to use this expression with r' = s' =
r = 0 and s — 1, namelyx

fa nn\ F J0,2jl,0 7l,l/o,l
(2.7c) E = J 0,1 J 1,0 J1.1

We now estabUsh a variational property of (2.5). We consider the variation
dCT2) of T2 as a result of replacing ^ ( T ) , the exact solution of the equations
of motion, by ̂ (r) + <5<7«(T). Here ^ ( T ) is also periodic in T, with period 1.
It is easily shown that

(2.8) = T2
f ( ^ 2 - d{E-J9A))

a 7o,i \ l i

However, as K is a function of q and q, we may write SJ1>0 in the following
forms

Jo o

Using integration by parts and the relation dq = (d/dt) dq the final term in
the integration may be transformed with the result

The boundary terms vanish because of the assumed periodicity of ^ ( T )

1 The choice r = 0, s = 1 is preferable to r = 1, s = 0, because r = 1, s = 0 involves
higher powers of the derivative of the function q(r). This can lead to larger errors if q{r) is
only approximate.

https://doi.org/10.1017/S144678870002694X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002694X


[5] The practical use of variation principles in non-linear mechanics 361

as a function of x. Now, for the exact motion, Lagrange's equations are
valid. That is

2£-L2£Z.
dq} it 8qf dqt

Using this, it follows that

CT N W
(2.9) *Jx.* = T\ 2-jr-Wt = T*dJ0>1

Jo i-i "Is
and substituting this into (2.8) gives

•£ —Jo.i

We define

(2.11a) L{q) = E-2V[q)

and

(2.11b) L = E- 2/0>1 = jl [E- 2V(q)]dx.

The function L(q) is numerically equal to the Lagrangian L = K — V
provided that qt = qt{t) is the correct solution of the equations of motion.
Similarly, L is numerically equal to the average value of the Lagrangian
over one complete period of the motion. It should be noted that, for a
one-parameter family of periodic motions of the system, the value of L
is usually a possible way of specifying this one parameter, in principle just
as good as specifying the energy or the amplitude of the motion.2

Equation (2.10) can be written in the form

(2.12) 6p*) = -™lL.

Thus, the first order variation of expression (2.5) for the -period vanishes if
the variation about the exact motion is such that the average Lagrangian L
given by (2.116) is kept constant; i.e. if dL = 0.

Conversely, suppose we insert into (2.5), instead of the true solution
qt = ^ ( T ) , some approximation q( = ft(r). We then obtain an approximate
value of T2 from (2.5). Let us insert the same approximation qt = / ,(T)
into the definition (2.11b); this leads to an approximate value of L. Sup-
pose that the deviations /<(T) — #,(T) are of order e; then both J 2 and L

1 None of these three distinguish motions of a mode which differ from each other only
in phase. However L is unsuitable if the mode is in fact linear, as for all the motions in a
linear mode L = 0. From a utilitarian standpoint, it is inconceivable that this variation
principle would be used to determine the period of a linear mode.
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in general have errors of order e; however, if there exists a one-parameter
family of periodic solutions of the equations of motion, we may choose
L as the parameter in question, and we can then compare the exact and
approximate values of the period considered as a function of L (rather than,
say, as a function of the amplitude of the motion). If the comparison is
made in that particular way, (2.12) shows that the error in T(L) will be
of the order ea, i.e., the approximate value obtained for the period will
be significantly more accurate than the approximation qt = /,(T) from
which this value was derived.

As an illustration, consider the following simple example: a mass m is
constrained to move in a straight line, and connected to the point q = 0
by means of a highly non-linear spring, with potential energy

(2.13) V(s) = W

where /? is positive. It is clear that the motion is periodic and that the mass
is stationary twice during each period. We may denote by q^^^ the am-
plitude of this motion and use (2.7a) for the energy. Thus

(2.13a) E = VWKX = Mnx

From purely dimensional considerations we obtain the results

PWmax)

L =

where Cx and Ca are constants, and it is easily seen that both are positive.
The problem is simple enough to allow a straigthforward exact solution

in terms of elliptic integrals. The exact results are

(2.15a) Cx = 4[#(£)]2 = 13.750

(2.15b) Ca = £ = 0.33333.

Now suppose we pick the most simple-minded approximation to the mo-
tion, namely just a sine-wave shape:

(2.16) q(x) a /(T) = ?max sin (2m).

Substitution of (2.16) into (2.5) and (2.11b) gives results of the expected
form (2.14), but of course with incorrect values of the constants Cx and
Ca, namely

8rc
(2.17a) Cx = — = 15.791

5

(2.17b) C2 = i = 0.2500.
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As expected, these values are not very close to the exact values (2.15).
Now, however, let us consider the value L as the parameter specifying

the motion, rather than considering qmSlX as the parameter. That is, we
eliminate qmax between (2.14a) and (2.14b) in order to get

(2.18a) ^ ^

where

(2.18b) C3 = ^Vcl.

The variation principle leads us to expect that the approximate value of
Ca should lie quite close to the exact value. The two values are

(2.19) Ca = 7.9388 (exact) C3 = 7.8957 (appr.)

Thus, the variational form for the period has led to a result with only \
percent error! This error must be compared with the errors in the non-
variational estimates (2.17), which are 15 percent for Cx and 25 percent
for C2. The reduction of errors from 25 percent to £ percent can well be
claimed to "simplify the practical solution of a given mechanical problem".

As a further illustration we apply the method of this section to a par-
ticular system in which the energy E is not the same as Vmax, and we
use for E the expression (2.7c). We consider a simple pendulum of mass m
and length h rotating in a vertical plane. In terms of the variable 0 the
energy equation of the system is

(2.20) $mh2d2 + mgh cos 6 — E.

The potential energy V is always less than mgh while E can be arbitrarily
large. For simplicity we confine our.attention to the case when the pen-
dulum is rotating and not.oscillating, i.e.

E>mgh.
We make the substitution

z = h cos 0

so that the energy equation becomes

The exact solution is straightforward; writing

(2.22) k =
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the solution for z, in terms of the Jacobian elliptic functions of modulus
k, is

(2.23) ^- =

The period T, the time average of the Lagrangian L and the energy, ex-
pressed in terms of the complete elliptic integrals are:

(2.24a) T = ̂ --tkK{k)

(2.24c) E = mghl^-l}.

By elimination of the parameter k between (2.24a) and (2.24b) the square
of the period may be expressed in terms of L. This relation is illustrated
in fig. 2 by the full line. T2 may be expressed in terms of a power series
expansion in (L)~x. The leading terms are

(2.25) is useful for large energies, i.e., small T2, large Z.and small k.
So much for the exact solution. Applying the variation calculation,

we start with a simple trial function

(2.26) — = cos 2m.
h

This is clearly the exact solution in the limit of infinite energy. In that
limit the potential energy mgh cos 6 is negligible. Using this function,
evaluations of integrals J0A, J02, J1>0 and /1 # 1 leads to a vanishing de-
nominator and finite numerator in the expression for E giving E = L = oo
and T = 0. These results are in accord with the simple type of trial func-
tion (2.26).

We now use a more sophisticated trial function. We bring in a term
a cos 4JC and a constant term so that z varies between ±A. This leads to

(2.27) j = cos 2T - 2a sin* 2T |a| ^ J.

We expect a high energy approximation for small a. The restriction on the
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O 4 O 8

E/mgh

Fig. 2. The square of the period T expressed in terms of the time average of the Lagrangian
L for the system whose energy equation is (2.21).

The full curve is the exact relation obtained by eliminating k between (2.24a) and (2.24b).
The broken curve is the approximation obtained by eliminating a between (2.29a) and (2.29b).
The point P corresponds to a = —0.26 and the tangent to the curve at P is vertical. The
numbers attached to poiats on the curves are the values of Ejmgh derived from (2.24c) and
(2.29c) which correspond to the appropriate values of T* and L. It should be noted that
adjacent points on the two curves do not correspond to the same value of E. This is a con-
sequence oi.the fact that the expression for T* is variationally correct with respect to L,

but the expression for £ is not variationally correct.

magnitude of a is necessary; if |a| > \ (2.27) gives a motion in which
\zjh\ exceeds 1.

The integrals J0A, JOiS, Jlo and / l f X are elementary but lengthy and are
each functions of a of definite parity. They are

(2.28)

7o.i(a) = -

Ao(«) =
2a

m2gn2h2

[16a-( l+4a)8 / 2+( l -4a)3 / 2 ] |a|

{2 + 16a2 - (1 - 4a)8/2 - (1 + 4a)8/2]
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In terms of these expressions, the quantities T, L and E are given by

(2.29b) Z(a) = £(a)-2/0>1(oc)

Jl.oJo.2 Jo.lJl.l
(2.29c) £(a) =

Ji.oJo.i Ji.i

respectively.
By eliminating a between (2.29a) and (2.29b), the square of the period

T2 may be expressed in terms of L. The expansion for T2 in terms of (X)"1

differs from the corresponding exact expansion (2.25) only by terms in
(Llmgh)-6 and higher negative powers. In Fig. 2, J2 is plotted against L
for values of a between 0 and —0.25. Higher values of a, as mentioned
above, correspond to unrealistic motions and in fact lead to divergent
integrals. Reference to fig. 2 indicates that the largest error in T as cal-
culated in this way is only one fortieth of the true value of T. Over nearly
all the range of a, the proportional error is very much smaller.

3. The Method of Variation of Parameters

It is not necessary to make a definite guess /(T) at the solution q(x)
of the equations of motion, before using the variation principle for the
period. Rather, we may introduce some parameters into the "trial function"
/(T), and use the variation principle itself to determine the best values
of the parameters.

This process is best explained by example. Instead of (2.16), let us
choose a more complicated form of trial function which includes the next
(third) harmonic term; that is let us choose

(3.1) /(T) = ?max[(l + y) sin (fcn:) +y sin (&»)].

This contains two parameters, <?max and y. We need one parameter, let us
say qm!a, in order to keep the average Lagrangian L constant during the
variation. The other parameter, y, is free, however, and its actual value
is determined by the condition that the period computed from (2.5) is an
extremum.

Straightforward computation gives formulas completely analogous to
(2.14) and (2.18), except that Cx, C2, and C8 are now all functions of y,
namely
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(3.3) Ca(y) =

(3.4) Ct(y) =

where

(3.5) G(y) = f ( i + y ) *

According to (2.18a), the conditiop. for an extremum of the period T,
keeping L constant, is simply that Ca should have an extremum value, i.e.,

(3.6)
dy

= 0.

This condition determines the "best" value of y in (3.1). In Fig. 3, we

O-O5

Fig. 3. C, as a function of y using expressions (3.2) to (3.6).

show the function C3(y) in the neighbourhood of y = 0; it is apparent
that there is an extremum at

(3.7) y = —0.0350.

The corresponding value of C3 is

(3.8) C3 = 7.9365.

This must be compared with the exact value given in (2.19), Cs = 7.9388.
The error is therefore only 0.03 percent whereas the simpler trial function
(2.16) gave £ percent error in T*.

The value of the parameter y is of the right order of magnitude, but
not as close as the value of the period. Straightforward (though tedious)
Fourier expansion of the exact solution gives

(3.9)
q = qmax {0.955008sin (2TIT) — 0.043049 sin (6m) + 0.001860 sin

+ 0.000080 sin (14jrr) + 0.000003 sin -\ }.
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Thus the true value of y is close to —0.043, which differs from the value
determined variationally, —0.036. This is to be expected, since only the
period itself is variationally correct (i.e., has an error of the order of the
square of the error in the trial function); incidental parameters, such as
y, have first-order errors.

It should be noted that the extremum in Fig. 3 is neither a maximum
nor a minimum, but a horizontal point of inflection. This shows at once
that the variation principle (2.5) does not provide either an upper or a lower
bound for the true period. This is unfortunate for practical purposes: it
would help greatly to know the sign of the error.
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