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REMARKS ON THE PURE CRITICAL EXPONENT PROBLEM

E.N. DANCER

In this paper, we use geometric and analytic methods to study the existence of
positive solutions of the pure critical exponent problem with Dirichlet boundary
conditions. In particular we prove that there is no solution for domains which
are nearly star-shaped and we show that being conformal to a star-shaped domain
does not characterise the domains for which the problem has no solution. We also
answer some questions of Rodriguez et al.

In this paper, we discuss the existence of positive solutions of the pure critical
exponent problem

-Au = uv in Q

(1) u = 0 on dCl.

Here Cl is a bounded domain in Rm with smooth boundary, m > 2 and p is
the critical exponent (m + 2)(m — 2)~ . We discuss a slight generalisation of star-
shapedness namely weakly star shaped and then prove that, if Cl is C2 close to a
weakly star-shaped domain, then (1) has no positive solution. (We do not know if this
is true for sign changing solutions.) In a companion paper [4], Kewei Zhang and I have
proved a similar result for p > (m + 2)(m — 2)"1 (and related results). The proofs
there are quite different. As a consequence of my result above, it follows that (1) has
no positive solution on Q if f2 is C2 close to a domain D where D is conformally
equivalent to a bounded weakly star shaped domain. We then use this to show that
there exists domains ft which are not conformally equivalent to bounded weakly star
shaped domain but (1) has no positive solution. This disposes of a natural conjecture
for when (1) has a positive solution. In the process, we obtain a useful characterisation
of which domains are conformal to bounded weakly star shaped domains. We use this
to give a much simpler proof of a much stronger version of a result of Rodriguez, Comte
and Lewandowski [12] and answer two questions there.
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334 E.N. Dancer [2]

1. WEAKLY STAR SHAPED DOMAINS

A domain ft C Rn is weakly star shaped if there exists xo € ft such that every half
line through x0 intersects ft in a connected set (possibly consisting only of {x0}). This
connected set is an "interval". This is basically the usual definition of star-shapedness
except that we allow xo to belong to dCl. This is more convenient later. We refer
to xo as a centre of ft. The following result is possibly known but we do not know a
reference.

PROPOSITION. Assume that ft is a bounded C2 domain. Then ft is weakly
star shaped with centre x0 if and only if (x — xo,n(x)) ^ 0 on 9fi where n(x) is the
outward normal.

REMARK. Clearly, if x0 G dCl, it suffices to assume the condition for x not equal to

x0 .

PROOF: Since our conditions only involve the line segment joining xo to x and
the component of the normal in the direction of x — xo, it suffices to assume ft is
2-dimensional.

The condition is clearly necessary because if (x—xo, n(x)) < 0, the outward normal
at x makes an obtuse angle with x — xo (in the direction away from XQ ) and hence the
outward normal makes an acute angle with x0 — x. Thus ax + (1 - a)x0 ^ ft if a is
close to 1 and less than 1. (Since ft is smooth, we must move out of ft if we move in
any direction making an acute angle with the outward normal). This contradicts the
connectedness of ft D {tx + (1 — t)xo : t ) 0 } .

To prove the condition is sufficient, assume x\ € ft but tox\ + (1 — to)xo $ ft for
some to € (0,1). By approximating x\ by points of intft and by a limit argument, we
see that we can assume x\ € intft. By a similar argument, the same condition holds for
all points near x i . We shall prove below that there exist points x arbitrarily close to x\
such that (n{tx + {\ — t)x0), (x — xo)) ^ 0 if t ^ 1 and tx+(l - t)x0 € 9ft. Assuming
this for the moment, it follows that we can also assume that x\ has this property. If
sxi + (l - s)x0 i ft where s € (0,1), let a = inf {t: t > 0, ax i+( l - a)x0 € ft} . Then
axi + (1 — a)xo € 5ft while (a — e)xi + (l — (a — e))xo € ft if e is small and positive.
We then argue much as in the first part to check that (n(ax\ + (1 - a)x0), (xi — x0)) ^
0. But by our choice of xj.,(n(axi + (1 — a)xo),(xi - x0)) / 0. Hence n(axi +
(1 — a)xo) • (xi — xo) < 0 which contradicts our assumptions. This proves our claim
except we have to prove that we can choose x\ suitably.

In fact, we prove our claim that, for most xi, (n(txi + (1 — £)xo), (xi — xo)) ^ 0
whenever tx\ + (1 — t)xo £ 9ft. To see this we look at the C1 map 5(x) =
||x — xoll"1 (x - xo) of 9ft\{xo} to S1. By Sard's theorem, most values of 5 in S1 are
regular values and hence it suffices to prove that if X2 G 9ft\{xo} and S'fa) has zero
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kernel, then (n(x2) , (x2 - x0)) ^ 0. To see this, note that, if (n(x2) , (x2 - x0)) = 0,
then the tangent space to dCl at x2 is parallel to x2 — xo and hence the C1 surface dtt
near x2 is of the form x2 + a (x 2 - xo) + o(5) where a is small. A simple computation
then shows S'(x2)(x2 — xo) = 0 which proves our claim. This completes the proof. D

REMARKS.

1. It is easy to construct examples of domains which are weakly star shaped but
not star shaped. The advantage of weakly star shaped is that it follows easily from the
proposition that if f2n is weakly star shaped and Cln —> fio in the C1 sense, then fio
is also weakly star shaped. (Thus the set of weakly star shaped domains is closed in a
suitable topology.)

2. If Q is weakly star shaped, Q is contractible and hence by duality theorems for
manifolds (as in [7]), it follows that dQ is connected.

3. If Q is weakly star shaped and x is the point of dQ furthest from xo, then
n(x) is parallel to x — xo and hence (n(x), (x — xo)) > 0. Thus strict inequality must
hold at some points of dQ.

4. It is easy to see that, if Q is weakly star shaped and x €Q, then txo + (l - t)x £
Q for 0 < t < 1. (This uses that int f2 = Q) and this is in fact an equivalent condition.
(The equivalence follows by taking closures.)

To complete this section, we discuss briefly which bounded domains are conformally
equivalent to bounded weakly star shaped domains. We shall assume our domains are
C 1 , our conformal transformations are C 1 and m ^ 3 . By Vaisala [13], any conformal
transformation C on an open set in Rn can be extended to a conformal transformation
on Rn. Note that conformal transformations which do not involve inversion are of no
interest to use because these are compositions of orthogonal transformations, transla-
tions and the maps x —> rx where r > 0 and hence preserve weak star-shapedness.
A conformal transformation involving inversions can be uniquely written in the form
x —» b + r \\x + a\\~2 T(x + a) where T is an orthogonal transformation (see [13]).
We refer to 6 as the point at oo. (It is the image of oo under the transformation.)
Hence if fii is bounded and weakly star-shaped and T(f2i) is bounded where T is
conformal and involves an inversion then —a $. f2, and if xo is a centre of Oi then T
maps half lines segments from x0 to infinity to planar circular semi arcs joining T(x0)
to 6. Moreover, by connectedness, T(T2i) intersected with the same semi arc will be
connected. Note that a semi arc is one of the two arcs joining x0 and b on the circle.
Since the argument is reversible we see that a bounded C 1 domain Q is conformal
to a weakly star shaped bounded domain if and only if there exists an x in f2 and a
b € Rm\€l such that every planar circular semi arc joining x and b intersects Q in a
connected set. (Here we should include the case b = oo to include the possibility that
Q, is already weakly star-shaped and allow the limiting arc of the straight line through
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x and b. Equivalently we could assume every planar circular arc joining b and xo
intersects Cl in a connected set (since these are one dimensional sets). These arcs are
all arcs with centres on the hyperplane of points equidistant from x and b. Of course
the problem is in the correct choice of x and b. Each x E Rn\{x, b} lies on a unique
circular arc. Let ^ ^ ( x ) be the unit tangent vector to this arc at x determined by
differentiating at x in the direction moving from x to b. Then by the proposition and
the remark immediately after it, we see that a bounded C 1 domain fi is conformally
equivalent to a bounded weakly star shaped domain if and only if there exists x £ Cl
and b € Rn\Q, such that (t>x,i>(z), n(x)) ^ 0 on 5f2\{x}. (Note that a conformal trans-
formation preserves angles). From the above we have a quite convenient geometric and
analytic characterisation of which bounded C 1 domains are conformally equivalent to
bounded weakly star-shaped domains. We shall also refer to x as a centre of fi.

As a simple consequence of the analytic characterisation and a simple compactness
argument, if the r2n are bounded domains which are conformally equivalent to bounded
weakly star-shaped domains and if Qn —> Cl in the Cl sense, then f2 is also conformally
equivalent to a bounded weakly star shaped domain unless the points at infinity bn for
fln approach fi as n tends to infinity. (I do not mean to imply points at infinity are
unique.) Note that if | |6n| | —> oo as n —> oo, then 17 will be weakly star-shaped.

Finally note that, if £1 is bounded and open and conformally equivalent to a weakly
star-shaped domain then $1 is clearly contractible. On the other hand not every con-
tractible domain is conformal to a bounded weakly star shaped domain. (For example,
this follows since there are contractible domains for which (1) has a positive solution.
We shall meet further examples later.)

2. NEARLY WEAKLY STAR SHAPED DOMAINS

In this section, we prove two results. We firstly show that in domains which are
almost weakly starshaped, (1) has no positive solution. We also use this and the results
of Section 1 to show that there exist bounded domains other than those conformal
to bounded weakly star shaped domains for which (1) has no positive solution. This
answers a natural question. Note that there are contractible domains for which (1) has
a positive solution. (See [1, 6] or [10].)

THEOREM 1. Assume that Q is a bounded C2 weakly star shaped domain and
assume Qn —> Cl in the C2 norm as n —> oo. Tien (1) on Cln has no positive
solution for large n.

REMARK. The proof is complicated because we do not have a priori bounds for positive
solutions.

PROOF: By the Pohozaev identity, we see that, if un is a positive solution of (1)
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on

(2)

Here it is convenient to change notation slightly and use vn{x) for the outward unit
normal to a fin at i . Suppose we can prove there is a K > 0 such that

(3) sup
dun

di;"
inf

dun

where K is independent of n . Then

(4) f <(x-x0), */•(*))
dvn

1 inf
ann

dun

where Tn = {x <E d£ln : ((x - xo),v
n(x)) < o } , /*„ = inf{((x - x0), vn{x)) : x € Tn}

and Hn-i is (n — 1)-dimensional Hausdorff measure. When x is at maximal distance

on dfln from XQ, ((X - xo),i/n(x)) = \\x — xo\\ and hence we easily see that there is

a subset Wn of d£ln\Tn with (n — 1)-dimensional Hausdorff measure bounded below

by 7 > 0 independent of n and ((x — xo),vn(x)} ^ I > 0 independent of n on iyn.

Hence

(5) f (x-xo,v
n(x))

Jann-Tn

dun inf

oo, (4) and (5) contradict (2) for n large. Hence itSince /xn —> 0 as n

suffices to prove (3).

We first prove (3) assuming that there exist S, K > 0 and independent of n such

that

(6) un(x) if d(x,dnn) ^ S.

We prove (6) a little later. To deduce (3), choose a smooth surface 5 in Q, close to
dfi, (within 6/2 of 5 ) such that 5 intersects each normal to dCl and this intersection is
unique. Let 5 be a small closed neighbourhood of 5 with smooth boundary. Now the
un are uniformly bounded on 5 (also uniformly in n) and hence — Aun = anun where
an is uniformly bounded on S (and uniform in n) . By applying the Harnack inequality
(see [9, Corollary 8.21]) on 5 , we see that on a slightly smaller neighbourhood V,

there exists K\ independent of n such that sup un ^ K\ infs un. We can now apply
v

W2>p estimates (or the C1>a estimates) in [9] to obtain a C1>a independent of n for
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B~1un on Wn, where Wn is the region bounded by S and dCln and Bn = supu n .

There are a couple of points to be noted here. Firstly we need to follow the discussion
in [9, p.237-230 (see also p.98 there)] to check the bounds can be made independent
of n. The argument is a localisation argument. Secondly, to obtain the bounds near
S we use that our earlier Harnack inequality estimate implies B~1un is bounded on
Wn U V and hence we can use interior estimates near 5 . Moreover it follows that
we have a positive lower bound for —(1/Bn)-^-^ on dfln where, as before, vn is the
outward unit normal. To see that this is true, suppose by way of contradiction that it
is false. Then there exists a subsequence of the B~1un converging uniformly in the C1

norm to a solution u of Au = au on the region W between S and dCl such that u

is bounded by 1, has a positive lower bound on 5 and has a zero normal derivative at
some point of dfl (and u = 0 on dVt). Here a is bounded. There are two points here.
Firstly, we extend the un to be zero outside f2n to obtain functions on a fixed domain.
Secondly, if B~lun converge uniformly to zero on 5 , then, by the Harnack inequality,
B~1un converge uniformly to zero on V and hence u vanishes identically on V. By
the Harnack inequality, it follows that u = 0 on W. This is impossible since B~1un

converges uniformly and suplVn B~1un = 1. However by the Hopf maximum principle

applied to u on W, •=— < 0 on dil. Hence we have a contradiction. This proves that
ov

—i?"1-^—^ has a positive lower bound on diln (uniformly in n) . Since we also have a
/"IT/1

bound for on dQn (uniform in n), this proves (3).

It remains to prove (6). This is a more geometric argument. By our convergence

assumptions there is a \i > 0 independent of n and xx such that each point xi e dQ,n
is on the boundary of a ball BXl<n in Rm\Q,n of radius \x (that is a touching ball). Here

\i is rather small. We use an inversion in BXl ,„. Under this inversion, fin becomes a C2

domain fiI1)Tl contained in BXltU and touching dBXl<n at x\. Moreover if x" 6 d£ln

converges to #i G dCl as n —> oo, fi£i,n converges in the C2 norm to ClXl as n —> oo

uniformly in x i . (Slxi is the image of Si under the inversion in the ball BXl n € Rm\£l).

Now by the conformal invariance, vn(y) = (\\y-Xo\\) ~mun((y - x%)/ \\y - XQ||2) is

a positive solution of (1) on f2XliT, with vn(y) = 0 on dClXltTl. (Here XQ is the centre

of Bxitn.) We can use the method of sliding planes (see as in [8]) to vn on S~2xiin

and obtain that vn increases in certain directions. By repeating the argument of De

Figueredo, Nussbaum and Lions [5, p.51-53], we see that there exists e,j,C > 0

independent of n such that if x e Sle,n = {x € Sln : d(x,dCln) < e} there exists a

measurable set Ix,n with n{Ix,n) ^ 7 (where /J, denotes Lebesque measure) such that

Ix,n C nn\fl1/Utn = Tn and u n (O ^ Cun{S) if £ e /«,„. (That s \n , n converges in
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C2 to fiXl ensures that we can do this uniformly in n). Hence we see that

(7) / . < ^ 7C-pun(x)p if xefi£,n.
J

On the other hand, by scalar multiplying (1) (for Q — f2n) by (f>n, the positive
eigenfunction of —A on fin (for Dirichlet boundary conditions on diln), normalised
so that ||0n|l2,nn = 1 we see that / n (u^ — Xi(Cln)un)4>n = 0 where Ai(fin) is the
eigenvalue corresponding to <j>n. Since Ai(fin) —> Ai(ft) as n —> oo (by the theory
of domain variation as in [3] or [11]) and since yp — jy is bounded below on [0,oo)
whenever 7 > 0, it follows easily that JQ v%<f>n ^ K where K is independent of n.
Suppose that M is a compact subset of fi. By domain variation again, 4>n —> <j>
uniformly on M where <f> is the first eigenfunction of —A on £2. Hence there is a
K\ > 0 such that 4>nip) ^ K\ if x £ M and n is large. Hence

(8) f <
JM

where K2 is independent of n. If we choose M = {x € Cl : d(xidCl) ^ e/4} then
Tn C M for large n and hence the result follows from (7) and (8). This completes the
proof. D

REMARKS 1. We do not know if the result is true for changing sign solutions. Note
that, by the Pohojaev identity argument, there are no changing sign solutions if fi is
weakly star shaped.

It follows that if Qn —> Q in the C2 sense and ft is conformally equivalent to
a bounded C2 weakly-star-shaped domain, then (1) has no positive solution on £)„
for large n. This follows because, if fi is conformally equivalent to £2 where both are
bounded domains, then (1) has a positive solution on fi if and only if it has a positive
solution on Cl. This is obvious for translations, rotations and rescalings so that we need
only consider inversions in a ball of radius 1 centre zero. Now if Cl is the image of Cl
under this inversion, it is well known and easy to see that u is a solution on fl if and
only if v(y) = \\y\\2~mu (y/ \\y\\2) is a positive solution on {x/ \\x\\2 : x € fl} and
hence our claim follows.

It is a natural question to ask whether being conformal to a weakly star shaped set
characterises the domains f2 for which (1) has no positive solution. We now construct
an example to show that this is not the case.

To construct such an example we shall construct a smooth family of domains
Wt, t € [0,1] such that Wo is weakly star shaped and W\ is not conformal to a bounded
weakly star shaped domain. If we can construct such a family with T — {t 6 [0,1] : Wt
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is conformally equivalent to a bounded weakly star shaped domain } is closed, then we
shall have the required example. This follows because if 7 = supT, then 7 < 1, W7+£

is not conformally equivalent to a bounded weakly star shaped domain while by one of
our remarks after Theorem 1, the critical exponent problem on W7+£ has no positive
solution as required (because W7+e is a C2 small perturbation of W7).

We now consider when T is closed. If Wtn is conformal to a bounded weakly
star shaped domain for all n, and tn —> t as n —> 00, then by the remarks at the
end of Section 1, the only way that Wt can fail to be conformal to a bounded weakly
star shaped domain is that the point at infinity bn of Wtn satisfies bn —¥ dWt as
n —> 00. We show that this does not occur if we choose the family Wt carefully. This
will complete the construction of our example.

We construct Wo as follows. Let Tk', k = 1, • • • ,s (where s ^ 4) be open balls
of small radius with centres on the ball of radius 4 and so that the centres are well

a

spaced. We define Wo = B\ U \J co(Tjt U {0}) . It is easy to see that Wo is weakly star
fc=i

shaped but the only point it is weakly star shaped from is zero. We can easily smooth
the corners without affecting those properties. We note that Wo can not be conformal
to a weakly star shaped domain with the "point at infinity" b close to BWQ . To see
this, note that, whatever the location of the centre a, there must be at least s — 1
circular arcs, each in one of the co(Tk U {0}) s joining ||x|| = 2 to ||x|| = 3. However,
if the T'ks are chosen small, these circular arc's must have small curvature. However,
some elementary geometry shows that the only circular arc joining o and b having
small curvature between a and b must have direction nearly parallel to b - a in the
set {x : ||x|| ^ 4}. Here we use that ||6|| is not large. Provided the centres of the T'ks
are well spaced, this clearly leads to contradiction. Thus the point b "at infinity" can
not be near dWo • For future reference note that this argument shows that the point b
"at infinity" must be large, the circular arcs must have small curvature within our set
(except possibly for those in the Tk containing the centre a) and the centre a which is
the intersection points of all those arcs with small curvature must be near zero.

We now define the Wt for t > 0 by squeezing each of the tubes co({0} U Tk); or
more precisely the part of the tubes with 1 < ||x|| < 2. We explain this by drawing
a two dimensional cross section of a tube. (We do the squeezing in a symmetric way
within a tube and we squeeze each tube in the same way). We could easily give a
formula for the squeezing but the diagram is more informative.

In the diagrams, we have not drawn them to scale (by widening the tube) to make
them easier to understand. Since the W[s are the same as Wo for 2 ^ ||x|| ^ 3, the
argument in the previous paragraph shows that, if Wt is conformal to a bounded weakly
star shaped domain, then the point at infinity bt is not near the boundary of Wt and
this holds uniformly in t. (Remember that the part of Wt in {x : 2 < ||x|| < 3} is
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Figure 1

independent of t.) Hence, as we saw earlier, {t: Wt is conformal to a weakly star shaped
bounded domain } is closed and hence we are finished if we prove that Wt becomes not
conformal to a bounded star shaped domain before the two sides of co(Tk U {0}) are
squeezed together. To see this, note that, by the remarks at the end of the previous
paragraph, the point at infinity bt must be large, at must be small and the circular
arcs must be nearly straight within Wt- Now consider x in Wo with 2 < ||x|| < 3
and x very close to the boundary. Since the circular arcs are very straight, at is small
and bt is large, it is easy to see that the semi-arc joining at to bt through x will cross
dWt at three points when the squeezing is significant (one with ||x|| close to 4 and two
where the circular arc crosses the region being squeezed (as in the diagram). Hence the
connectedness condition fails and Wt is not conformal to a weakly star shaped bounded
domain. This completes the construction of the counterexample.

Finally, another example is mentioned in Section 3, while a higher dimensional
version of the example in [4] could almost certainly be used to obtain another example
(though there would be a good deal of tedious geometric arguments to justify them).
The example in [4] (or more precisely a higher dimensional analogue) probably also
provides an example where we make a small perturbation of a star-shaped domain and
obtain domains not conformal to bounded weakly star shaped domains.

3. AN EXAMPLE

Here we show that our geometric techniques can be used to give a simple proof of
a result much stronger than one in Rodriguez, Comte and Lewandowski [12]. In fact,
we answer two open questions in [12].

Let B be the open ball in Rm, e > 0, p< - 1 , I € (0,1). We define

CE = {(xr, xm) : x'

fie = B\{x £C£:x

\\x'\\ ^ e(xm - p){\ - p)'1}
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THEOREM 2 . For Q-QE, (1) has no solution.

REMARK. If we replace up by |u | p - 1 u, the result also applies to sign changing solu-
tions.

PROOF: Except for a technical smoothness problem, it suffices to show that Cle

is conformal to a bounded weakly star-shaped domain. (Note that this contradicts a
comment in [12, p.245]). We choose a = (0, —B) where B € (0,1) and is close to 1 and
b = (0,a) where a is larger than 1. Here a is the centre and b is the point at infinity.
We shall specify a more closely later. Note that, unlike [12], we do not require e to be
small. It suffices to show that every planar circular semi arc joining a and b intersects
Cle in a connected set. By the symmetry of Cle under rotations about the em axis, we
see that this reduces to a two dimensional problem. Hence we can set m = 2. It is now
elementary geometry. Any circular semi arc joining a and b is part of a circle with
centre (s, (a - B)/2), containing a and b. This circle will intersect the unit circle T
x\ + x\ — 1 m exactly two points, once on each of the two semi arcs joining a and
b. (It must intersect more than once because b is outside T while a is inside T). We
need only consider semi arcs in i i ^ 0. Suppose we can prove the circular semi arc
P through the corner where a straight edge meets a curved edge does not intersect
any straight edge (or other corner). If we prove this, a simple connectedness argument
implies that semi arcs to the "right" of P will not intersect the straight edge of dde

and will intersect the curve edge exactly once while semi arcs to the "left" of P will
not intersect the curved part of dCle. Now our semi arcs to the "right" of P will be of
the form x\ = g(x2) for a ^ x2 ^ — B where g decreases for a ^ x2 ^ (a - B)/2 and
g is even about x2 — (a — B)/2. On the other hand the boundary of Ce in xi > 0 is
an increasing function of x2 for x2> I. Hence if (a — B)/2 ^f, we see that the semi
arc can meet the part of CE in xi > 0 in at most one point (and P cannot meet again
this part of C£). The claim on our semi arcs now follows easily provided (a — B)/2 ^ £
which is true if a and B are chosen suitably (for I G (0,1)).

There is one technical point in our proof. fie will be conformal to a bounded
weakly star shaped domain Cle with corners but still with the rotational symmetry. To
prove non-existence, we need to check that Q£ is smooth enough so that the Pohozaev
identity holds. This follows by the argument in [3, p.655-657]. This completes the
proof. D

REMARKS.

1. We could also take a = (—1,0) and b = (1,0) where the geometry is a little

simpler. However, our choice of a and 6 has the advantage we can use them for many

smooth perturbations of £le.

2. With a little care, it can be shown that fie is still conformal to a bounded
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weakly star shaped domain if I — 1 or indeed I is slightly larger than 1. However it
can be shown that £ ^ 1 is the best condition on £ we can allow for fie to be conformal
to a weakly star shaped domain if we want a condition independent of e and £. Note
also that we could replace CE by {(x',xm) : \\x'\\ ^ /J,} and the arguments are still
valid (though here we can not go above £ = 1). If £ < 1, we could even allow a very
small "knob" at the end of the tube. In this case, the domains are quite close to those
in Dancer [1] or Ding [6] and it shows the importance of the "knob" at the end of the
tube in the examples there. Note that the methods in [1] can be modified to cover cases
where the spherical "knob" does not lie at the centre of the outer ball. These examples
seem to suggest it is very difficult to decide for which Cl (1) has a positive solution.

3. It is possible, though a lot of tedious geometrical arguments are needed, to show
that, if we round off the corners in our previous example, then as we increase I we
obtain a different example where (1) has no solution even though Q is not conformal
to a bounded weakly star-shaped domain. (The difficulty is in establishing that the
obvious choices of the centre and the point at infinity are optimal.)

4. In general, conformal equivalences seem to be very useful for domains with
one spike or reentrant region but less useful for domains with several spikes (or several
reentrant regions).
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