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Differential correction procedure allows us to improve orbits for which new
observations are available; however, it only works provided the original orbit
is within the convergence domain of the pseudo—Newton method. Given the
strong nonlinearity of the problem, this only occurs when the residuals of
the new observations with respect to the old orbit are quite small.

On the contrary, if a single opposition asteroid, observed only on a
short arc, is “lost”, i.e. not recovered for several years, it can be difficult
to identify it with a newly observed one. There are now ~ 20,000 lost
asteroids with poorly determined orbits; if the proposed Spaceguard survey
will be realized, the problem of identifying millions of new discoveries within
catalogues of comparable size will be one of the main challenges. We have
begun experimenting with algorithms of orbit determination, to perform
both positive and negative identification of asteroids lost for many years.

1. Algorithms

Let us recall the definition of the classical algorithm of differential cor-
rections for orbit improvement. If the residuals are ;, (1 = 1,m) and the
weights are W = Diag[o;~?], the target function is
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If y are the solve for variables, such as the orbital elements at some
epoch time, then the least square solution is § such that Q(7) = min Q(y).
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If the partial derivatives with respect to the solve for variables are available

0§ 9%
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then we can compute the gradient and the Hessian of the target function
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Truncating the Taylor expansion of the gradient to order one and solving
for a value of the change in y corresponding to a stationary point, we obtain
a step of Newton method
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where the normal system matrix is I~! = GTWG — ¢TWH.

The pseudo-Newton method is obtained by replacing I'"! with an ap-
proximation which does not contain the Hessian matrix, that is: GTWG.
In both cases, the improvement procedure is stopped by a criterion, such

as
_ [AyTT 1Ay
1Ayl = VW <<1I.

The differential corrections algorithm is very efficient when the initial
estimate of y is close to the solution §; however, the convergence domain
of the Newton method is very small when the target function is strongly
nonlinear, as is the case when it contains the solutions of an N-body prob-
lem. Moreover, the first derivative G is quite easy to compute by solving
numerically the variational equations (the linearized equations for relative
motion), but the second derivative H is not often available and using the
pseudo-Newton approximation further shrinks the convergence domain.

Differential corrections are therefore a perfectly adequate method for
improvement of the orbits already well observed, but they can fail to con-
verge whenever the residuals before the first correction are large; moreover,
in this case, the difference between the normal system of the Newton and
of the pseudo-Newton method is not small at all. If a single opposition as-
teroid, observed only on a short arc, is not recovered for several years, then
the position uncertainty of the asteroid grows to a very large size until the
asteroid is “lost”, that is, it can be in widely separated regions of the sky.
In this case, if the same asteroid is observed again, the identification with
an already known one can be very difficult, because the orbital elements as
computed from a short arc can be wrong by a significant amount. Even if
the identification is correct, when the two arcs are linked in a single orbit
the initial residuals are typically very large and the algorithm can fail.
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Two approaches are possible to solve this problem: either we use an
optimisation method well suited to strongly nonlinear problems, capable of
finding a minimum of the target function even when it is very far from the
initial guess, or we define an algorithm to improve the first guess so that
the initial residuals are not large (strategy described in the next section).

To make the strongly nonlinear identification problem easier to handle,
we adopted a formulation closer to a linear problem. The orbit between the
discovery and the supposed recovery of the asteroid is decomposed into a
number N of shorter arcs, each with independent initial conditions; the re-
quirement that the asteroid is the same can be translated into constraints on
the junction of each couple of consecutive arcs. Thus, the initial value of the
residuals is small, but the constraints are not initially satisfied. So, we need
to use an algorithm capable of finding the solution of a constrained opti-
misation problem, with 6 N variables. To this end, optimisation algorithms
are known and have been implemented in a software system codenamed
LANCELOT (Large And Nonlinear Constrained Eztended Lagrangian Op-
timization Techniques) by Conn, Gould and Toint (1992).

LANCELOT includes two main algorithms: AUGLG (AUGmented La-
Grangian) is used to solve the generally constrained problem: min{Q(y)},
such that {yeR", l; <y <wu;, 1<i<n; ¢j(y) =0, 1< j<m}andthe
constraints are: ¢j(y) = 0, j = 1,m. This algorithm minimizes the Aug-
mented Lagrangian function ®, defined as

B(y, ), 5,) = Q) + 3 Nieily) + % 3 siiei(y)?
=1 =1

using SBMIN, then it decreases p until the constraints are satisfied (with a
given accuracy). SBMIN (Simple Bound MINimization) solves the bound-
constrained minimum problem: min{Q(y) : yeR", ; < y;i < w;, 1 < i< n}
by unidimensional search methods with confidence region.

In this paper we compare the results obtained in the asteroid identifica-
tion problem by using the classical differential correction algorithm (DC)
and by the use of LANCELOT. The observations and their partial deriva-
tives are computed in both cases by the same subroutines, which solve the
full N-body problem with variational equations, with very good accuracy
(by Everhart (1985) method, an implicit Runge-Kutta of order 15).

2. Problems and Results

We have used data (observations and orbits) stored at the MPC to test how
effective and reliable the classical DC and nonlinear optimisation methods
—-such as LANCELOT- are to perform positive and negative identifications
of single opposition (lost) asteroids. The test cases have been obtained in
a simple way: we define a metric for the difference in orbital elements
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where a, h, k, p, ¢ are equinoctial elements (Broucke and Cefola, 1972) and
A1, A2 are the mean longitudes reduced to the same epoch by two-body
propagation. The use of metrics of this kind is discussed by several authors
in different contexts (Muinonen and Bowell, 1993; Milani et al., 1994; Zap-
pala et al., 1990) and it would be worthwhile to experiment also with other
ones. We then computed the distance between all the couples of asteroids in
a large catalogue with ~ 26,321 records (essentially all the orbits available
from MPC and other sources as of Dec. 1994). We sorted the couples by
distance and tested for possible identifications the closest ones. This proce-
dure is easy to automatize and is now used also by the MPC; of course it is
not good to detect the most difficult cases, those in which the two sets of
elements are far apart because of poor determination over too short arcs.
Problem 1: Positive identifications. Which criteria should be used
to confirm that two single opposition asteroids are the same?

If a minimum for the target function is found with @ < 6 (weights are
such that @ is in arcsec?) and each of the two arcs has at least 3 observa-
tions over at least 3 days, the identification is confirmed. As a byproduct
of this test of the algorithms and the software, we have found 10 new iden-
tifications, later accepted by the MPC, and other 3 already known.

However, in some cases, there are observations to be discarded (normally
labeled as such in the MPC files). If this is not done, a larger @ can result
even from a good identification. If the arcs either have less than 3 observa-
tions, or are less than 3 days long, fake low minima can occur, to the point
of generating crazy identifications (two asteroids, in different positions on
the same plate, identified with a third one). Searching strategies in surveys
must take this into account; if not, they could produce useless data.

If LANCELOT gives the same results as DC, as in most of our tests,
there is no point in using a more computationally intensive procedure.
However, for the reasons explained above, our tests were not too difficult,
because the orbital elements solved from each of the two arcs were close.
Problem 2: Reliability of the identification procedure. Can a low
minimum, therefore a positive identification, be missed?

The pure DC algorithm is very sensitive to the initial guess chosen.
The convergence domain is very small, thus, the iterative procedure can be
divergent, even when the low minimum exists. LANCELOT uses a more
robust optimisation algorithm, however it is much more expensive.

An effective solution is to use DC, even in the pseudo-Newton formula-
tion, but with an initial guess for the common orbit containing the two arcs
which results in moderately large initial residuals. One such procedure is
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also used at the MPC, but the algorithm is not documented. We have devel-
oped our own algorithm to generate an initial guess for the mean longitude
and semimajor axis of such a common orbit. It is obtained by computing
a two-body orbit such that the mean longitude coincides with those of the
two arcs at their epoch times. If the number of revolutions performed by
the common orbit in the time span between the two epochs is known, there
is only one semimajor axis satisfying this condition. The number of revolu-
tions is not known a priori, but can be guessed by two-body extrapolation
from each of the two short arcs; if the two extrapolations differ by one or
more revolutions, the only way is to try several different initial guesses for
a, obtained for each possible number of intervening revolutions.

With this initial guess we have obtained by DC all the identifications
confirmed by LANCELOT; this would not be so with other simple initial
guesses, such as the mean of both sets of elements. We have also tested a
set of 25 identifications proposed by the MPC, and found convergence to a
low minimum by DC in all cases. We intend to perform a large scale test
of such an identification procedure, including much more difficult cases.

Problem 3: Can the target function () have stationary points other
than the absolute minimum?

In theory, there is no mathematical proof that ¢ cannot have many sad-
dles and even many local minima. In practice, we have found one example
3024PL=93 OO7 where DC, with initial guess at the mean of the two sets
of elements, finds a stationary point with ¢ = 2547., while LANCELOT
finds a minimum at @ = 0.67; the same minimum can also be obtained by
DC with the initial guess computed as explained above. This is likely to be
a quite rare case, but it is important to know that a saddle can occur. To
test whether a stationary point is a minimum or a saddle we would need to
have full information on the second derivatives of @, that is to know the sec-
ond derivatives of the solution of the N-body problem; this is possible, but
computationally expensive. The use of LANCELOT is other alternative,
since a nonlinear optimisation method does not converge towards saddles,
but its computational cost is high too. Cases with multiple local minima
can also occur when the observations are taken far from opposition.
Problem 4: Negative identifications. What happens when the two
arcs do not belong to the same asteroid?

In some cases, a stationary point with ¢ > 200 can be found by DC.
However, is it a minimum (Problem 3)? In a large fraction of the cases,
LANCELOT can find a minimum with ¢ > 200. In this case, the identi-
fication should be refused (unless there is a wrong observation). The ad-
vantage of a robust nonlinear optimisation algorithm is obvious in these
cases; however, the computational cost is too high to propose a brute force
searching method for identifications (such as testing all possible couples
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with “similar” orbital elements). Moreover, in some cases neither DC nor
LANCELOT can find a minimum: the iterations diverge (e > 1). In these
cases the identification can neither be accepted nor be refused. A method
to refuse identifications which is totally reliable has not been found yet.

TABLE 1. Statistics of the results

DIFF. CORR. LANCELOT

Positive identifications 28.9 % 28.9 %
Negative identifications 33.3 % 53.3 %
Divergent cases 33.3 % 17.8 %

In a set of 45 tests, we have found the results summarized in Table 1.
It is apparent that DC should be used first, followed by an additional in-
vestigation of both negative identifications and divergent cases.

Problem 5: Which method will be suitable when the number of
observations will increase by a factor of about 100?

If the number of asteroids observed only over a very short arc (1-2 days)
is very large, the problem of asteroid identifications may become computa-
tionally intractable. If the orbits are good enough, because the observing
strategy is such that they are all observed for a longer time, we believe it
is possible to develop a fully automated algorithm for positive and nega-
tive identification. Such a method must take into account all the possible
pitfalls, including multiple minima, saddles, divergent cases which result in
neither a positive nor a negative identification, and initial extrapolations
wrong by more than one revolution. We still cannot present such an algo-
rithm, but we are working to clarify its mathematical foundations.
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