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Abstract

Nearly fifty years after the introduction of skew Brownian motion by Itô and McKean
(1963), the first passage time distribution remains unknown. In this paper we first
generalize results of Pitman and Yor (2011) and Csáki and Hu (2004) to derive formulae
for the distribution of ranked excursion heights of skew Brownian motion, and then use
these results to derive the first passage time distribution.
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1. Introduction

In this paper we obtain formulae for the distributions of the first passage time and ranked
excursion heights of skew Brownian motion. Since Itô and McKean (1963) first introduced
skew Brownian motion, numerous papers in the mathematics literature have highlighted the
special structure of the process. For example, Walsh (1978) showed that skew Brownian motion
is a linear diffusion process with discontinuous scale and speed densities, and computed its
transition probability density function. Harrison and Shepp (1981) showed that skew Brownian
motion is the weak limit of a symmetric random walk on the integers with modified behavior
at the origin, and also proved that it is the unique strong solution to the stochastic differential
equation dXt = dBt + (2α − 1) dL0

t (X), where B is Brownian motion and L0(X) is the
symmetric local time of X at 0. Later LeGall (1984) and Ouknine (1990) extended the theory
of strong solutions to the corresponding stochastic differential equation for a more general class
of processes whose transition semigroups have functional-valued (generalized) infinitesimal
generators. More recently, Appuhamillage et al. (2011) computed the trivariate density of the
position, occupation, and local time of skew Brownian motion. Ramirez (2011) extended the
notion of skew Brownian motion to multiskewed Brownian motion, a process whose local time
is concentrated on a set of points.

Skew Brownian motion has also emerged in connection with diverse applications, including
mathematical finance (see Decamps et al. (2006)), Monte Carlo simulation schemes (see Lejay
and Martinez (2006)), and dispersion in heterogeneous media (see Ramirez et al. (2006),
(2008)).
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Skew Brownian motion is broadly applicable to diffusion problems in which the diffusion
coefficient is discontinuous in space. For example, Appuhamillage et al. (2010) analyzed
mathematical properties of skew Brownian motion as they relate to the convection–dispersion
movement of solute through porous media in the presence of a sharp interface. Their work
was motivated by experiments in hydrology demonstrating a fundamental asymmetry in the
breakthrough curves of solute crossing a sharp interface in opposite directions (see Berkowitz et
al. (2009)). In this context, the first passage time distribution of skew Brownian motion describes
the breakthrough times of solute injected on one side of an interface and observed on the other
side (see Appuhamillage et al. (2011)).

Similar situations arise in physical and natural sciences. For example, Brownian motion
has been widely used (and also critiqued) as a model of animal movement (see Turchin (1996)
and Blackwell (1997)). There is an emerging consensus among ecologists that landscape
heterogeneity is a necessary ingredient of movement models (see Dalziel et al. (2008)). In
particular, sharp interfaces delimiting two different movement regimes occur at the boundaries
of habitat patches (see Schultz and Crone (2001), Turchin (1991), and Wiens and Milne (1989)),
or at other environmental discontinuities such as those in ocean temperatures (see Pinaud et
al. (2005)) or the level of surface chlorophyll in oceans (see Polovina et al. (2001)). Skew
Brownian motion is an appropriate way to model this type of heterogeneity in animal movement
models, and the first passage time is a quantity of biological interest: McKenzie et al. (2009)
advocated the use of the first passage time to model the time required for an organism to first
reach a specified location in the landscape (see also Fauchald and Tveraa (2003)), and gave as
an example the foraging behavior of a predator searching for stationary prey items.

The main contribution of the present paper is to derive the first passage time distribution
of skew Brownian motion. We achieve this by first characterizing the distribution of ranked
excursion heights of skew Brownian motion. This result generalizes formulae of Pitman and
Yor (2011) for the distribution of ranked excursion heights of the standard Brownian bridge,
and analogous formulae presented in Csáki and Hu (2004) for Brownian motion. We then apply
our formulae for the ranked excursion heights of skew Brownian motion to derive our main
result on the first passage time.

The paper is organized as follows. In Section 2 we state the main results. In Section 3
we develop a coupled construction for two different skew Brownian motion processes with
different skew parameters that leads to an important relationship between distributions of ranked
excursion heights of the two processes, stated in Theorem 3.1. In Section 4 we prove the main
results as corollaries to Theorem 3.1. In Section 5 we present several examples that demonstrate
the calculations that are possible using the first passage time density, and also the asymmetry
inherent in the first passage time of particles crossing an interface in opposite directions.

2. Preliminaries and main results

To set some notation and basic definitions, let B = {Bt : t ≥ 0} be the standard Brownian
motion process on a probability space (�, F , P) and let J1, J2, . . . denote the excursion intervals
of the reflected process {|Bt | : t ≥ 0}. For α ∈ (0, 1), let {A(α)

m : m = 0, 1, . . .} be a sequence
of independent and identically distributed (i.i.d.) ±1 Bernoulli random variables with P(A

(α)
m =

1) = α. Define the α-skew Brownian motion process B(α) started at 0 by

B
(α)
t =

∞∑
m=1

1Jm(t)A(α)
m |Bt |, (2.1)

where 1S denotes the indicator function of the set S.
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Now let M
(α)
1 (t) ≥ M

(α)
2 (t) ≥ · · · ≥ 0 be the ranked decreasing sequence of excursion

heights sups∈Jm∩[0,t] B
(α)
s ranging over all m such that Jm ∩ [0, t] is nonempty. Note that

a negative excursion has height 0, and that the height of the final excursion is included in the
ranked list even if that excursion is incomplete. Our first main result gives the distribution of
ranked excursion heights.

Theorem 2.1. Fix y ≥ 0 and t > 0. Then, for each j = 1, 2, . . . , the distribution of M
(α)
j (t)

is given by the formula

P0(M
(α)
j (t) > y) =

∞∑
h=1

2

(
h − 1

j − 1

)
(1 − 2α)h−j (2α)j

(
1 − �

(
(2h − 1)y√

t

))
,

where �(·) is the standard normal distribution function.

Now let T
(α)
y = inf{s ≥ 0 : B

(α)
s = y} denote the first time for α-skew Brownian motion to

reach y, and let f (α)(x, y, t) denote the first passage time density to y at time t of α-skew
Brownian motion started at x. When α = 1

2 , this is the well-known first passage time density
f (x, y, t) for Brownian motion (see, e.g. Bhattacharya and Waymire (2009, p. 30)):

f (1/2)(x, y, t) ≡ f (x, y, t) = |y − x|√
2πt3/2

exp

{
− (y − x)2

2t

}
.

Note that f (α)(x, y, t) dt = Px(T
(α)
y ∈ dt). Our second main result gives formulae for

the first passage time density. It is obviously true, by symmetry, that f (α)(x, y, t) =
f (1−α)(−x, −y, t); thus, we state the formulae only for y > 0.

Theorem 2.2. Fix t > 0. Then

f (α)(x, y, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g
(α)
x,y(t) for x ≤ 0 < y,

g
(α)
x,y(t) + hx,y(t)

−
∞∑

n=1

2

πn
sin

{
π(y − x)n

y

}
g

(α)
0,y ∗ κn,y(t) for 0 < x < y,

f (x, y, t) for 0 < y < x,

where

g(α)
x,y = 2α

∞∑
j=1

(1 − 2α)j−1 |x − (2j − 1)y|√
2πt3/2

exp

{
− (x − (2j − 1)y)2

2t

}
for x < y,

the quantity κn,y(t) is the density at time t of the exponential distribution with parameter
λ(n, y) = π2n2/2y2, and

hx,y(t) = π

y2

∞∑
n=1

n exp

{
−π2n2t

2y2

}
sin

{
π(y − x)n

y

}

is the well-known formula (see, e.g. Feller (1968, p. 296)) for the probability that Brownian
motion started at x reaches 0 before reaching y, and that this event occurs in the time interval dt .

Interpretation. The third case in the first passage time density, when 0 < y < x, is the
simplest: it follows from the fact that all paths starting at x reach y without hitting 0 and,
hence, they are all Brownian motion paths.
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In the first case, when x ≤ 0 < y, then all paths must cross 0 and densities are obtained
as a straightforward corollary of Theorem 2.1. When α < 1

2 , we can interpret g
(α)
x,y(t)

probabilistically as the first passage time of standard Brownian motion started at x to the level
(2J − 1)y, where J is a geometric random variable with parameter 2α. Here is an informal
argument for this fact. When α < 1

2 , it is possible to construct B(α) from the standard Brownian
motion process B by flipping each positive excursion of B to be negative independently with
probability 2α, so the overall probability of an excursion remaining positive is 1

2 × 2α = α.
Each excursion of B that reaches y is a candidate to contain the first visit to y in the modified
process B(α). Define

τ0 = 0, σj = inf{t ≥ τj−1 : B(t) = y}, τj = inf{t ≥ σj : B(t) = 0}, j = 1, 2, . . . .

The time σj marks the first crossing of y in the j th excursion that reaches y, and τj marks the
end of the same excursion. It is clear that the first of these excursions that is not flipped down
will contain the first visit to y in the skew Brownian motion process, that is, T

(α)
y = σJ , where

J is a geometric random variable with parameter 2α. We can then show by repeated application
of the reflection principle that σj has the same distribution as T(2j−1)y : for each j = 1, 2, . . . ,
reflect the Brownian motion process about (2j − 1)y during the time interval [σj , τj ], which
has the effect of displacing the process by 2y (see Figure 1).

Note that this direct probabilistic interpretation does not apply when α > 1
2 : indeed, in

this case the series g
(α)
x,y(t) alternates in sign. However, this informal argument contains key

elements of our proof, which relates the excursion heights of B(α) to those of B through a
coupled construction. Although we do not directly use the reflection principle in our proofs, it
is used to derived the formulae for the distribution of excursion heights of Brownian motion,
which we do invoke.

The interpretation of the second case of Theorem 2.2 is the most complex. In this case, when
x lies between 0 and y, we must consider two types of path from x to y: those that cross 0, and

4y

3y

2y

y

0

x 1 221

t

Figure 1: Probabilistic interpretation of Theorem 2.2. See text for explanation.
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those that reach y before they reach 0. We defer the details of the proof to Section 4. After the
initial preprint of this paper was published online (see Appuhamillage and Sheldon (2011)),
Harada (2011) used different techniques to derive a formula for the second case of Theorem 2.2
that is slightly simpler than ours.

Note that, when α = 1
2 , we recover existing results for standard Brownian motion. Namely,

from Theorem 2.1 we recover the distribution of ranked excursion heights stated in Theorem 3.1
of Csáki and Hu (2004), and from Theorem 2.2 we recover the well-known first passage time
distribution of standard Brownian motion (this fact is not immediately obvious, but nonetheless
true, in the most complicated case when 0 < x < y).

3. Relating excursion heights for B(α) and B(β)

Let 0 ≤ α < β ≤ 1. Consider the following coupled construction of α-skew and β-skew
Brownian motions. Let B be the standard Brownian motion process, and let A(β) = {A(β)

m : m =
0, 1, . . .} be independently chosen excursion signs so that (2.1) yields an instance of β-skew
Brownian motion.

Next, let {A(α/β)
m : m = 0, 1, . . .} be a sequence of i.i.d. ±1 Bernoulli random variables

independent of A(β) and B with P(A
(α/β)
m = 1) = α/β. Define A

(α)
m as

A(α)
m =

{
1, A

(β)
m = 1, A

(α/β)
m = 1,

−1, otherwise.

By construction, the sequence {A(α)
m : m = 0, 1, . . .} consists of i.i.d. ±1 Bernoulli random

variables that are independent of B with P(A
(α)
m = 1) = α. Hence, by using the variables A

(α)
m

as the excursion signs in (2.1), we obtain an instance B(α) of α-skew Brownian motion.
We think of this as a two-step process: first, construct B(β) by independently setting each

excursion of |B| to be positive with probability β; then, for each positive excursion of B(β),
independently decide whether to keep it positive (with probability α/β), or flip it to be negative
(with probability 1 − α/β).

The following theorem is motivated by this coupled construction.

Theorem 3.1. Fix y ≥ 0, t > 0, and α, β ∈ (0, 1). For each j = 1, 2, . . . , the following
relation between ranked excursion heights of α- and β-skew Brownian motions holds:

P0(M
(α)
j (t) > y) =

∞∑
h=1

(
h − 1

j − 1

)(
1 − α

β

)h−j(
α

β

)j

P0(M
(β)
h (t) > y). (3.1)

Before proving Theorem 3.1, we state the following lemma from Pitman and Yor (2011),
which we will use in the proof.

Lemma 3.1. (Pitman and Yor (2011, Lemma 9).) Let

bk =
∞∑

m=0

(
m

k

)
am, k = 0, 1, . . . ,

be the binomial moments of a nonnegative sequence (am, m = 0, 1, . . . ). Let B(θ) :=∑∞
k=0 bkθ

k, and suppose that B(θ1) < ∞ for some θ1 > 1. Then

am =
∞∑

k=0

(−1)k−m

(
k

m

)
bk, m = 0, 1, . . . ,

where the series is absolutely convergent.
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Proof of Theorem 3.1. For α < β, we have, by the two-step construction of the excursion
sign A

(α)
m , M

(α)
j (t) = M

(β)
Hj

(t), where Hj has a negative binomial distribution:

P(Hj = h) =
(

h − 1

j − 1

)(
1 − α

β

)h−j(
α

β

)j

.

Hence,

P0(M
(α)
j (t) > y) =

∞∑
h=1

(
h − 1

j − 1

)(
1 − α

β

)h−j(
α

β

)j

P0(M
(β)
h (t) > y).

For β < α, the relation can be inverted by an application of Lemma 3.1. Let k := j − 1 and
m := h − 1. Then we can write (3.1) as

P0(M
(α)
k+1(t) > y) =

∞∑
m=0

(
m

k

)(
1 − α

β

)m−k(
α

β

)k+1

P0(M
(β)
m+1(t) > y).

We then apply Lemma 3.1 to the sequences

bk :=
(

1 − α

β

)k(
α

β

)−k−1

P0(M
(α)
k+1(t) > y), am :=

(
1 − α

β

)m

P0(M
(β)
m+1(t) > y).

After simplifying, we obtain

P0(M
(β)
j (t) > y) =

∞∑
h=1

(
h − 1

j − 1

)(
1 − β

α

)h−j(
β

α

)j

P0(M
(α)
h (t) > y).

4. Proofs of the main theorems

We now observe that the main results announced in the introduction will follow as corollaries
to Theorem 3.1. We first prove Theorem 2.1.

Proof of Theorem 2.1. By Theorem 3.1 of Csáki and Hu (2004),

P0(M
(1/2)
j (t) > y) = 2

(
1 − �

(
(2j − 1)

y√
t

))
.

The result is immediate from Theorem 3.1 by taking β = 1
2 in (3.1).

We now use Theorem 2.1 and the following corollary to compute the distribution of the first
passage time asserted in Theorem 2.2.

Corollary 4.1. Fix t > 0. Then

P0(T
(α)
y ∈ dt)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2α

∞∑
h=1

(1 − 2α)h−1 (2h − 1)y√
2πt3/2

exp

{
− ((2h − 1)y)2

2t

}
dt for y > 0,

2(1 − α)

∞∑
h=1

(2α − 1)h−1 (2h − 1)(−y)√
2πt3/2

exp

{
− ((2h − 1)y)2

2t

}
dt for y < 0.

(4.1)
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Proof. For y > 0 and t > 0, we have the following relation between the distributions of
T

(α)
y and the highest excursion of skew Brownian motion started at 0:

P0(T
(α)
y < t) = P0(M

(α)
1 (t) > y).

Thus, using Theorem 2.1, we have

P0(T
(α)
y < t) = P0(M

(α)
1 (t) > y)

= 4α

∞∑
h=1

(1 − 2α)h−1
∫ ∞

(2h−1)y/
√

t

1√
2π

exp

{
−z2

2

}
dz.

The result is immediate after taking the derivative of the above expression with respect to t .

Proof of Theorem 2.2. Let Ty ≡ T
(1/2)
y denote the first time standard Brownian motion

reaches y. Recalling that P0(Ty ∈ dt) = (|y|/√2πt3/2) exp{−y2/2t} dt (see, e.g. Bhat-
tacharya and Waymire (2009, p. 30)), we can write (4.1) as

P0(T
(α)
y ∈ dt) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2α

∞∑
h=1

(1 − 2α)h−1 P0(T(2h−1)y ∈ dt) for y > 0,

2(1 − α)

∞∑
h=1

(2α − 1)h−1 P0(T(2h−1)y ∈ dt) for y < 0.

(4.2)

Now note that T
(α)
0 is distributed as T0 under Px for x 	= 0, 0 < α < 1, and, thus, for t > 0,

we clearly have
Px(T

(α)
0 > t) = Px(T0 > t).

Case 1: x ≤ 0 < y. Using the strong Markov property of skew Brownian motion,

Px(T
(α)
y > t) =

∫ t

0
Px(T0 > t − s) P0(T

(α)
y ∈ ds).

Then from the first case of (4.2) we have

Px(T
(α)
y > t) = 2α

∞∑
h=1

(1 − 2α)h−1
∫ t

0
Px(T0 > t − s) P0(T(2h−1)y ∈ ds)

= 2α

∞∑
h=1

(1 − 2α)h−1 Px(T(2h−1)y > t).

By differentiating the above expression with respect to t and recalling that Px(Ty ∈ dt) =
(|y − x|/√2πt3/2) exp{−(y − x)2/2t}dt , we have

Px(T
(α)
y ∈ dt) = 2α

∞∑
h=1

(1 − 2α)h−1 |x − (2h − 1)y|√
2πt3/2

exp

{
− (x − (2h − 1)y)2

2t

}
dt.

Case 2: 0 < x < y. Observe that

Px(T
(α)
y ∈ dt) = Px(T

(α)
y ∈ dt, (T

(α)
0 ≤ t)) + Px(T

(α)
y ∈ dt, (T

(α)
0 > t)). (4.3)

We recall the following formula (see, e.g. Feller (1968, p. 296)) that we will use to compute (4.3):

Px(T0 ∈ dt, (Ty > t)) = π

y2

∞∑
n=1

n exp

{
−π2n2t

2y2

}
sin

{
πxn

y

}
dt. (4.4)
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Since the skew Brownian motion is Brownian motion until it reaches 0 for the first time
and from the reflection principle of Brownian motion, we can write the second term on the
right-hand side of (4.3) using (4.4) as

Px(T
(α)
y ∈ dt, (T

(α)
0 > t)) = Px(Ty ∈ dt, (T0 > t))

= Py−x(T0 ∈ dt, (Ty > t))

= π

y2

∞∑
n=1

n exp

{
−π2n2t

2y2

}
sin

{
π(y − x)n

y

}
dt. (4.5)

For the first term on the right-hand side of (4.3), note that

Px(T
(α)
0 < T (α)

y < t)

= Ex[1{T (α)
0 <T

(α)
y <t}]

= Ex[Ex[1{T (α)
0 <T

(α)
y <t} | T

(α)
0 , 1{T (α)

0 <T
(α)
y }]]

=
∫ t

0
Ex[1{T (α)

0 <T
(α)
y <t} | T

(α)
0 = s, 1{T (α)

0 <T
(α)
y }] Px(T

(α)
0 ∈ ds, (T

(α)
0 < T (α)

y ))

+
∫ t

0
Ex[1{T (α)

0 <T
(α)
y <t} | T

(α)
0 = s, 1{T (α)

0 ≥T
(α)
y }] Px(T

(α)
0 ∈ ds, (T

(α)
0 ≥ T (α)

y )).

Using the strong Markov property of skew Brownian motion and the fact that

Ex[1{T (α)
0 <T

(α)
y <t} | T

(α)
0 = s, 1{T (α)

0 ≥T
(α)
y }] = 0,

we have

Px(T
(α)
0 < T (α)

y < t) =
∫ t

0
E0[1{T (α)

y <t−s}] Px(T
(α)

0 ∈ ds, (T
(α)
0 < T (α)

y ))

=
∫ t

0
P0(T

(α)
y < t − s) Px(T

(α)
0 ∈ ds, (T

(α)
0 < T (α)

y )).

Using (4.2) and again from the fact that the skew Brownian motion is Brownian motion until it
reaches 0 for the first time, and Px(T

(α)
0 < T

(α)
y ) = Px(T0 < Ty) (note that here 0 < x < y),

we have

Px(T
(α)
0 < T (α)

y < t)

=
∫ t

0
2α

∞∑
h=1

(1 − 2α)h−1 P0(T(2h−1)y < t − s) Px(T0 ∈ ds, (T0 < Ty))

= 2α

∞∑
h=1

(1 − 2α)h−1
∫ t

0
P0(T(2h−1)y < t − s) Px(T0 ∈ ds, (T0 < Ty))

= 2α

∞∑
h=1

(1 − 2α)h−1
∫ t

0
P0(T(2h−1)y < t − s) Px(T0 ∈ ds)

− 2α

∞∑
h=1

(1 − 2α)h−1
∫ t

0
P0(T(2h−1)y < t − s) Px(T0 ∈ ds, (T0 > Ty))
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= 2α

∞∑
h=1

(1 − 2α)h−1 Px(T(2h−1)y < t)

− 2α

∞∑
h=1

(1 − 2α)h−1
∫ t

0
P0(T(2h−1)y < t − s) Px(T0 ∈ ds, (T0 > Ty)).

For h ≥ 1, the convolution integral in the sum of the second term in the above equation can be
written using (4.5) as∫ t

0
P0(T(2h−1)y < t − s) Px(T0 ∈ ds, (T0 > Ty))

=
∫ t

0
Px(T0 < t − s, (T0 > Ty)) P0(T(2h−1)y ∈ ds)

=
∫ t

0

∞∑
n=1

2

πn
sin

{
π(y − x)n

y

}
P0(T(2h−1)y ∈ ds)

−
∫ t

0

∞∑
n=1

2

πn
exp

{
−π2n2(t − s)

2y2

}
sin

{
π(y − x)n

y

}
P0(T(2h−1)y ∈ ds)

=
∞∑

n=1

2

πn
sin

{
π(y − x)n

y

}
P0(T(2h−1)y < t)

−
∞∑

n=1

2

πn
exp

{
−π2n2t

2y2

}
sin

{
π(y − x)n

y

} ∫ t

0
exp

{
π2n2s

2y2

}
P0(T(2h−1)y ∈ ds).

Then we have

Px(T
(α)
0 < T (α)

y < t) = 2α

∞∑
h=1

(1 − 2α)h−1 Px(T(2h−1)y < t)

− 2α

∞∑
h=1

∞∑
n=1

(1 − 2α)h−1 2

πn
sin

{
π(y − x)n

y

}
P0(T(2h−1)y < t)

+ 2α

∞∑
h=1

∞∑
n=1

(1 − 2α)h−1 2

πn
exp

{
−π2n2t

2y2

}
sin

{
π(y − x)n

y

}

×
∫ t

0
exp

{
π2n2s

2y2

}
P0(T(2h−1)y ∈ ds).

By differentiating the above equation with respect to t we obtain

Px(T
(α)
y ∈ dt, (T

(α)
0 ≤ T (α)

y ))

= 2α

∞∑
h=1

(1 − 2α)h−1 Px(T(2h−1)y ∈ dt)

− 2α

∞∑
h=1

∞∑
n=1

(1 − 2α)h−1 2

πn
sin

{
π(y − x)n

y

}
P0(T(2h−1)y ∈ dt)
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+ 2α

∞∑
h=1

∞∑
n=1

(1 − 2α)h−1 2

πn
exp

{
−π2n2t

2y2

}
sin

{
π(y − x)n

y

}

× exp

{
π2n2t

2y2

}
P0(T(2h−1)y ∈ dt)

− 2α

∞∑
h=1

∞∑
n=1

(1 − 2α)h−1 πn

y2 exp

{
−π2n2t

2y2

}
sin

{
π(y − x)n

y

}

×
∫ t

0
exp

{
π2n2s

2y2

}
P0(T(2h−1)y ∈ ds) dt. (4.6)

Recalling that Px(Ty ∈ dt) = (|y − x|/√2πt3/2) exp{−(y − x)2/2t} dt , and by (4.3), (4.5),
and (4.6), we have

Px(T
(α)
y ∈ dt) = 2α

∞∑
h=1

(1 − 2α)h−1 |x − (2h − 1)y|√
2πt3/2

exp

{
− (x − (2h − 1)y)2

2t

}
dt

− 2α

∞∑
h=1

∞∑
n=1

(1 − 2α)h−1 πn

y2 exp

{
−π2n2t

2y2

}
sin

{
π(y − x)n

y

}

×
∫ t

0
exp

{
π2n2s

2y2

}
(2h − 1)y√

2πs3/2
exp

{
− ((2h − 1)y)2

2s

}
ds dt

+ π

y2

∞∑
n=1

n exp

{
−π2n2t

2y2

}
sin

{
π(y − x)n

y

}
dt

= 2α

∞∑
h=1

(1 − 2α)h−1 |x − (2h − 1)y|√
2πt3/2

exp

{
− (x − (2h − 1)y)2

2t

}
dt

−
∞∑

n=1

2

πn
sin

{
π(y − x)n

y

}

×
∫ t

0

π2n2

2y2 exp

{
−π2n2(t − s)

2y2

}
2α

×
∞∑

h=1

(1 − 2α)h−1 (2h − 1)y√
2πs3/2

exp

{
− ((2h − 1)y)2

2t

}
ds dt

+ π

y2

∞∑
n=1

n exp

{
−π2n2t

2y2

}
sin

{
π(y − x)n

y

}
dt.

Case 3: 0 < y < x. Note that, in this case all skew Brownian motion paths till the first
passage time to y are away from 0. Thus, we have

Px(T
(α)
y ∈ dt) = |y − x|√

2πt3/2
exp

{
− (y − x)2

2t

}
dt.

5. Asymmetries in the first passage time density

A basic property of the first passage time density of regular Brownian motion is that it is
symmetric in x and y, i.e. that Px(Ty ∈ dt) = Py(Tx ∈ dt) for any x, y ∈ R and t ≥ 0.
A practically important feature of skew Brownian motion is that it introduces an asymmetry in

https://doi.org/10.1239/jap/1346955326 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955326


Skew Brownian motion 695

0.030

0.025

0.020

0.015

0.010

0.005

0 5 10 15 20 25 30 35 40 45 50

α = 0.9
1 to –1
–1 to 1

0.025

0.020

0.015

0.010

0.005

0 5 10 15 20 25 30 35 40 45 50

α = 0.75
1 to –1
–1 to 1

0.015

0.010

0.005

0 5 10 15 20 25 30 35 40 45 50

α = 0.5
1 to –1
–1 to 1

0.025

0.020

0.015

0.010

0.005

0 5 10 15 20 25 30 35 40 45 50

α = 0.25
1 to –1
–1 to 1

0.030

0.025

0.020

0.015

0.010

0.005

0 5 10 15 20 25 30 35 40 45 50

α = 0.1
1 to –1
–1 to 1

0.000 0.000

0.000

0.000

0.000

Figure 2: The densities P−1(T
(α)
1 ∈ dt) (solid lines) and P1(T

(α)
−1 ∈ dt) (dashed lines) for α < 1

2 (top

row), α = 1
2 (middle row), and α > 1

2 (bottom row).

the first passage time density for x and y on opposite sides of the origin. Appuhamillage et al.
(2011) first demonstrated this by proving that there is a stochastic ordering between the random
variables with densities P−y(T

(α)
y ∈ dt) and Py(T

(α)
−y ∈ dt) when α 	= 1

2 . In simple terms, it
takes longer to cross from negative to positive than to cross from positive to negative when
α < 1

2 , and the opposite is true when α > 1
2 .

Our results quantify these relationships further by explicitly giving the densities in each
case. We conclude by illustrating the numerically computed densities P−1(T

(α)
1 ∈ dt) and

P1(T
(α)
−1 ∈ dt) for different values of α. In Figure 2(a) we see that P−1(T

(α)
1 ∈ dt) < P1(T

(α)
−1 ∈

dt) for α < 1
2 . In Figure 2(b), we recover the symmetry of Brownian motion when α = 1

2 . In
Figure 2(c) we see that P−1(T

(α)
1 ∈ dt) > P1(T

(α)
−1 ∈ dt) for α > 1

2 .
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