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FREE PRODUCTS WITH AMALGAMATION
AND p-ADIC LIE GROUPS

D. D. LONG AND A. W. REID

ABSTRACT. Using the theory of p-adic Lie groups we give conditions for a finitely
generated group to admit a splitting as a non-trivial free product with amalgamation.
This can be viewed as an extension of a theorem of Bass.

1. Introduction. The existence of a splitting of a finitely generated group as a non-
trivial free product with amalgamation, or HNN-extension is an extremely useful tool.
The existence of a map to Z determines an HNN-decomposition, however detecting a
free product with amalgamation decomposition is usually harder, but often of more use.
One of the main results of this paper is Theorem 1.1 which guarantees a free product
with amalgamation under certain conditions.

THEOREM 1.1. Let Γ be a finitely generated non-elementary subgroup of SL(2ÒC)
whose traces consist of algebraic numbers and which contains an element whose trace
is not an algebraic integer. Further suppose that Γ does not contain a free subgroup of
finite index.

Then Γ splits as a non-trivial free product with amalgamation.

The theorem is similar to the GL2-subgroup theorem of Bass [1], [2] (see Theorem 4.1
below). Indeed, using the result that a finitely generated group is virtually free if and only
if the group is a graph of groups where all vertex groups are finite (see [11], Theorem 7.2)
one can refine the statement of the theorem. For example, Theorem 1.1 can be viewed as
an extension of Theorem 4.1 in the torsion-free case, as it dispenses with the possibility
of an HNN-extension. A further discussion of this is given in Section 4.

The methods of the paper are those of p-adic Lie groups, and grew out of our paper
[7] with C. Maclachlan. The present paper provides a more elegant proof to the main
result of [7]. It also re-proves some well-known results in 3-manifold topology.

2. p-adic Lie groups and Lie algebras. Here we collect salient points from the
theory of p-adic Lie groups and their Lie algebras. Throughout p is a fixed prime and k is
a finite extension of Qp. Our main interest is in the group SL(2Ò k). There is considerable
overlap with [7] and so we only give a brief summary. See also [5] or [10] for details.

Received by the editors February 26, 1997.
The first author was partially supported by the N.S.F.
The second author was partially supported by the N.S.F. and The Royal Society.
AMS subject classification: 20E06.
c
Canadian Mathematical Society 1998.

423

https://doi.org/10.4153/CMB-1998-056-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-056-x


424 D. D. LONG AND A. W. REID

2.1.

DEFINITION 2.1. Let H be a topological group. Then H is defined to be a p-adic
Lie group if H has the structure of an analytic manifold over Qp and if the function
H ð H ! H defined by (xÒ y) ! xy�1 is analytic.

By a Lie algebra over k we mean a vector space over k with a multiplication which
satisfies the conditions

x2 = 0 and (xy)z + (yz)x + (zx)y = 0

The following theorem summarizes what we need here, a reasonably full account
over Qp is given in Section 4 of [7]. The arguments for k are identical. We denote by
sl(2Ò k) the trace-less matrices in M(2Ò k). This is a 3-dimensional Lie algebra over k
when equipped with the obvious Lie bracket.

THEOREM 2.2. (i) SL(2Ò k) is a p-adic Lie group whose Lie algebra is sl(2Ò k).
(ii) Let L be a 3-dimensional non-solvable Lie algebra over k. Then L is isomorphic

to sl(2Ò k) or D0, the pure quaternions in the unique division algebra of quaternions over
k. These algebras are non-isomorphic, and any other Lie algebra of dimension at most
3 is solvable.

Part (ii) of Theorem 2.2 follows from the classification theorem for quaternion algebras
over local fields, [14], which states there are precisely two isomorphism classes of
quaternion algebras over any finite extension k of Qp; namely M(2Ò k) or the unique
division algebra of quaternions D. The elements of norm 1 in D, which we denote by
D1, is a compact p-adic Lie group whose Lie algebra is D0.

We require the following result, which is presumably well-known. We fix some
notation; we let Lk denote either of the two Lie algebras in Theorem 2.2(ii).

LEMMA 2.3. Let G be a non-solvable Lie subgroup of SL(2Ò k). Then the Lie algebra
of G is isomorphic to L‡ for some subfield ‡ of k.

PROOF. Let L(G) denote the Lie algebra of G. Since G is a subgroup of SL(2Ò k),
as usual, we may identify L(G) as a subalgebra of sl(2Ò k). Therefore this subalgebra
is defined over a subfield, ‡ say, of k. Now L(G) 
‡ k can be identified with a Lie
subalgebra of sl(2Ò k) which is defined over k. Since this can have dimension at most 3
over k it follows that L(G) can have dimension at most 3 over ‡. Since G is non-solvable,
Theorem 2.2 implies that L(G) must be L‡.

2.2. If G is a group, we let Gp = hgp j g 2 Gi. Recall that a profinite group is a compact
Hausdorff topological group whose open subgroups form a base for the neighbourhoods
of the identity and can be characterised as an inverse limit of an inverse system fGig
of finite groups. If the finite groups Gi are all p-groups, we obtain a pro-p group and if,
furthermore, the maps in the inverse system are all surjective and the quotients GiÛGp

i
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abelian, then the inverse limit is a powerful pro-p group. Finally, a pro-p group is termed
uniform if it is finitely generated, powerful and satisfies

[Pi(G) : Pi+1(G)] = [G : P2(G)] for all iÒ

where P1(G) = G and Pi+1(G) is defined recursively as Pi(G)p[Pi(G)ÒG]. One should take
closures in the previous statement, but the assumption that G is finitely generated makes
this unnecessary. ([5] Corollary 1.20). The following fundamental result characterises
p-adic Lie groups in terms of these uniform pro-p groups, cf. [5] Theorem 9.34.

THEOREM 2.4. Let G be a topological group. Then G is a p-adic Lie group if and only
if G contains an open subgroup which is a uniform pro-p group.

We now briefly discuss the construction of the Lie algebra of a p-adic Lie group from
an open uniform subgroup. See [5] Chapters 7, 8 and 10 for details.

Let U be an open uniform pro-p subgroup of the p-adic Lie group G. Using the
discussion in Section 8.2 of [5] Λ = log U can be defined. Then Λ is a Zp-Lie algebra,
and the Lie algebra of G is obtained as Λ
Zp Qp. This turns out to be independent of the
choice of open uniform subgroup, see [5] Chapter 10.

2.3. We conclude this section with a discussion of SL(2Ò k) and the group D1 (recall
Section 2.1). Throughout this section ô will denote a local uniformizer for k, ó the
valuation on k and O the valuation ring of k. O is a compact open subring of k and
so SL(2ÒO) becomes a compact open subgroup of SL(2Ò k), and as such is a p-adic
Lie group. One way to view the (unique) p-adic analytic structure on SL(2ÒO) is by
considering the principal congruence subgroups Γj obtained as the kernel of the maps

SL(2ÒO) ! SL(2ÒOÛP j)Ò

where P is the unique maximal ideal in O. These groups are uniform pro-p groups when
p is odd, when p is even, the groups Γj are uniform for j ½ 2. In either case the groups
Γj form a basis of open neighbourhoods of the identity in SL(2ÒO).

A fact about D1 that we will make use of is:

LEMMA 2.5. Traces of elements in D1 lie in O.

PROOF. The extension of the valuation ó from k to D is simply given by °(a) =
ó
�
nD(a)

�
where nD is the reduced norm on D.

If a has norm one it follows in particular that a 2 M = fd 2 D j °(d) ½ 0g, the
valuation ring of D which is the unique maximal order in D (see [14] Chapter 2). From
the definition of an order, elements in M have traces in O.

If K is a finite extension of k, the uniqueness of a p-adic structure for the Lie group
SL(2Ò k) (see [5] Theorem 10.6) implies that the induced topology on SL(2Ò k) as a
subgroup of SL(2ÒK) coincides with the one described above.

The main technical lemma in this article is the following.

LEMMA 2.6. Let G be a non-compact, non-solvable p-adic Lie subgroup of SL(2Ò k).
Then the Lie algebra of G is isomorphic to sl(2Ò ‡) for some subfield ‡ of k.
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PROOF. Let ‡ be the field generated over Qp by all the traces of elements in G.
Since G is a p-adic Lie group, Theorem 2.4 implies that G contains an open uniform

subgroup O. The ‡-algebra, A, generated by finite ‡-combinations of elements of O is a
quaternion algebra over ‡. Therefore A is isomorphic to M(2Ò ‡) or the unique division
algebra of quaternions D over ‡. Let A0 denote the pure quaternions in A. Since ‡ is a
complete field, A is a complete algebra.

We claim that G ² A. To see this note that O contains a basis f1Ò e1Ò e2Ò e3g for A
over ‡. Furthermore, this extends to a k-basis of M(2Ò k). Thus any element of g is a
k-combination of the basis elements. We will show g is an ‡-combination.

Let g = a + Σxiei, then by definition tr(g) = 2a 2 ‡. Now consider ge�1
i for each

i = 1Ò 2Ò 3. Since ge�1
i 2 G it is easily seen that each xi 2 ‡ as required.

The proof now proceeds as follows. By Lemma 2.3 the Lie algebra of G is one of
sl(2Ò ‡) or D0 (defined over ‡). We shall eliminate the latter as a possibility. To do this
we use the construction of the Lie algebra log O discussed above in Section 2.2.

Using the action of the tree of SL(2Ò k) (cf. [9]), O is conjugate into SL(2ÒO), and on
passing to a subgroup of finite index if necessary (which will not change the Lie algebra),
we can assume that this conjugate, which we will continue to call O, is a subgroup of
some Γj. We assume that A is conjugated also and continue to call it A. Thus, every
element in O has the form x = 1 +ô ja for some a 2 M(2ÒO). Note that since x 2 O ² A,
x � 1 2 A and so for any integer m, (ô ja)m 2 A.

Now consider log(x). By definition

log(1 + ô ja) =
X

(�1)n+1 (ô ja)n

n


By our remark above, each term in the summation is an element of A, and as A is a
complete algebra we deduce that the sum above converges to an element of A. We next
claim that log(1 + ô ja) 2 A0. It suffices to show that the reduced trace of log(1 + ô ja)
is zero. First note that if x̄ denotes the usual canonical involution on M(2Ò k), then its
restriction to A coincides with the canonical involution on A. Thus, with this the following
is easy to establish;

tr
�
log(1 + ô ja)

�
= log(1 + ô ja) + log(1 + ô ja) = log(1 + ô ja) + log(1 + ô j ā)

= log[(1 + ô ja)(1 + ô j ā)]

Now as 1 + ô ja 2 O, it has reduced norm equal to one (as the determinant is the reduced
norm), and so we deduce that tr

�
log(1 + ô ja)

�
= 0 as was claimed. Hence we conclude

from the discussion in Section 2.2 that the Lie algebra of G is A0.
Let us assume that A0 ≤ D0 (recall Theorem 2.2), so that A ≤ D. Now A ² M(2Ò k),

and by standard results in quaternion algebras we can embed D in M(2ÒK) for some
quadratic extension K of k. By the Skölem-Noether theorem (see [14]) this isomorphism
is achieved by an an inner automorphism of M(2ÒK) and so trace is preserved. From
above G ² A, and indeed as elements in G have determinant 1, G is contained in the
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norm 1 elements of A. As G is non-compact it contains an element whose trace is not in
O. However, these comments together with Lemma 2.5 means G cannot be conjugate
into D1. Hence A cannot be isomorphic to D, and this contradiction means A0 ≤ sl(2Ò ‡)
as was required.

3. Main result. Our main result is a classification theorem for Lie subgroups of
SL(2Ò k), where throughout this section k will always be a finite extension of Qp for some
prime p.

THEOREM 3.1. Let G be a non-compact, non-solvable Lie subgroup of SL(2Ò k). Then
there is a subfield ‡ of k, containing Qp, such that G is conjugate to SL(2Ò ‡) over a finite
extension of k.

The proof is essentially the argument of [7] Theorem 5.4. We will make use of some
results in [10] which we state for convenience (see [10], p. 130–131).

THEOREM 3.2. Let G be a p-adic Lie group and H1 and H2 Lie subgroups. Then
H1 \ H2 is a Lie subgroup, and if L(H1), L(H2) and L(H1 \ H2) denote the Lie algebras
of H1, H2 and H1 \H2 respectively (identified with subalgebras of the Lie algebra of G),
then L(H1 \ H2) = L(H1) \ L(H2).

THEOREM 3.3. With the hypothesis as above, if L(H1) = L(H2), then in a neighbour-
hood of the identity H1 = H2.

PROOF OF THEOREM 3.1. As in the proof of Lemma 2.6 let ‡ be the subfield of k
generated over Qp by the traces of elements of G. Denote the valuation ring of ‡ by R.
Since G is non-compact it follows from the action on the tree of SL(2Ò k) (see [9] or
[7]) that G contains an element g whose trace does not lie in R. By conjugating we may
assume that g is diagonal and G ² SL(2ÒK) where K is at most a quadratic extension of
k.

By Lemma 2.6, G has Lie algebra sl(2Ò ‡). By definition SL(2ÒR) is a Lie subgroup
of SL(2ÒK), whose Lie algebra is sl(2Ò ‡). Hence by Theorem 3.2, G\SL(2ÒR) is p-adic
Lie group whose Lie algebra is sl(2Ò ‡). By Theorem 3.3, G and SL(2ÒR) agree on a
neighbourhood V of the identity in SL(2ÒK). As discussed in Section 2.3, the topology
on SL(2ÒR) coincides with induced topology from SL(2ÒK) and so it follows that V
must contain an open subgroup of SL(2ÒR), and hence one of the principal congruence
subgroups Γj of SL(2ÒR) (recall Section 2.3). Hence G contains a group Γj.

Now it is well-known that SL(2Ò ‡) is generated by the subgroups ([8]),

U =
( 

1 q
0 1

! þþþþþ q 2 ‡
)

and L =
( 

1 0
q 1

! þþþþþ q 2 ‡
)


It follows using the diagonal element g that the group hgÒΓji contains both U and L and
so G = SL(2Ò ‡) (the details are completely analogous to that given in [7] Theorem 5.4).
This completes the proof.
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4. An extension of a theorem of Bass. We now discuss some applications of
Theorem 3.1. We begin with a discussion of Bass’s theorem ([1] and [2]). We will work
in SL(2) rather than GL(2), and in this setting Bass’s theorem is:

THEOREM 4.1. Let Γ be a finitely generated subgroup of SL(2ÒC). Then one of the
following cases occurs:

1. There is an epimorphism f : Γ ! Z such that f (u) = 0 for all unipotent elements
u 2 Γ.

2. Γ is a non-trivial free product with amalgamation.

3. Γ is conjugate to a group of upper triangular matrices
 

a Ł
0 1Ûa

!
with a a root

of unity.
4. Γ is conjugate to subgroup of SL(2ÒA) where A is a ring of algebraic integers.

Using Theorem 3.1 we are able to show (1) of Theorem 4.1 is removed if we further
assume that Γ does not contain a free subgroup of finite index. As remarked in the
Section 1, having a free subgroup of finite index is equivalent to being a graph of groups
where all vertex groups are finite. Denote by H the class of such groups with a unique
vertex.

THEOREM 4.2. Let Γ be a finitely generated non-elementary subgroup of SL(2ÒC)
whose traces consist of algebraic numbers and which contains an element whose trace
is not an algebraic integer. Suppose in addition that Γ Û2 H .

Then Γ splits as a non-trivial free product with amalgamation.

The proof requires the following result in [9] (Theorem 3 on p. 79).

THEOREM 4.3. Let k be a finite extension of Qp and G a subgroup of SL(2Ò k). If G is
dense in SL(2Ò k) then G splits as a non-trivial free product with amalgamation.

PROOF OF THEOREM 4.2. Firstly if Γ is virtually free, then since it is not in H
there will be a non-trivial free product with amalgamation decomposition. Thus we now
assume that Γ is not virtually free. The non-elementary assumption implies that Γ cannot
be conjugate to a group of upper triangular matrices, and the existence of a trace which
is not an algebraic integer implies that Γ is not conjugate into SL(2ÒA).

Since Γ is assumed to have algebraic traces, we can conjugate so that entries of
elements of Γ are algebraic. Let k be the field generated over Q by the coefficients of
matrices in Γ. Since Γ is finitely generated, k is a finitely generated extension algebraic
extension of Q. In particular k is a finite extension of Q. Using the existence of an element
g whose trace is not algebraic integer, we choose a valuationó on k such tható

�
tr(g)

�
Ú 0.

Denote by kó the completion of k using the ó-adic metric. By the classification theorem
of local fields this is a finite extension of Qp for some prime p. Completion induces a
faithful representation i of Γ into SL(2Ò kó). Let Γó denote the closure of i(Γ) in SL(2Ò kó).

Now we claim that i(Γ) is not discrete. For if it were, then by passing to a torsion-free
subgroup of finite index, we may apply Ihara’s theorem (see [6] and [9] Chapter II,
p. 82–83) and deduce that i(Γ) is virtually free, contradicting our assumption.
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As a closed subgroup of a p-adic Lie group Γó is a p-adic Lie group (see [10],
p. 155). The existence of the element g implies that Γó is noncompact. Exactly as in [7]
Lemma 5.2, the nonelementary assumption, together with the fact that Γó is non-discrete
implies that Γó is nonsolvable.

By Theorem 3.1 we can conjugate Γó (over a finite extension of kó) so that Γó =
SL(2Ò ‡) for some subfield ‡. Summarizing we obtain a faithful representation of Γ into
SL(2Ò ‡) which is dense in SL(2Ò ‡). By Theorem 4.3 it follows that Γ splits as a non-trivial
free product with amalgamation.

By the results of [3], we may deduce that Γ (as in Theorem 4.2) admits a non-trivial
free product with amalgamation decomposition where the vertex and edge stabilizers are
finitely generated.

A special case of Theorem 4.2 is:

THEOREM 4.4. Let Γ be a finitely generated non-elementary subgroup of SL(2ÒC)
whose traces consist of algebraic numbers and which contains an element whose trace
is not an algebraic integer. Suppose in addition that Γ is torsion-free.

Then Γ splits as a non-trivial free product with amalgamation.

As a final remark we observe that the condition about “virtual freeness” in 4.2 is used
to guarantee that the image of Γ under the inclusion map into SL(2Ò k) is not discrete.
The following theorem replaces this assumption.

THEOREM 4.5. Let Γ be a finitely generated non-elementary subgroup of SL(2ÒC)
whose traces consist of algebraic numbers and which contains an element whose trace
is not an algebraic integer. Assume further that there is an element x of infinite order
whose trace is an algebraic integer. Then Γ splits as a non-trivial free product with
amalgamation.

PROOF. The proof follows the arguments above, the only point to check is that (in
the notation of the proof of Theorem 4.2) i(Γ) is not discrete in SL(2Ò kó), for then the
rest of the argument follows directly as in the proof of Theorem 4.2).

Thus assume that i(Γ) is discrete. By conjugating i(Γ) in GL(2Ò kó) if necessary we
can assume that the “integral” element x given by hypothesis lies in SL(2ÒRó), where Ró

is the ring of ó-adic integers in k. But then all powers of x will lie in SL(2ÒRó) . However,
SL(2ÒRó) is compact and if i(Γ) is discrete, then we must have i(Γ) \ SL(2ÒRó) is finite,
and this contradicts x being of infinite order.

5. Applications. We now give some specific applications of Theorem 4.2 to 3-
manifold groups. The results here are already known but this offers a different proof.

We begin with some lemmas. The first is well-known so we omit the proof.

LEMMA 5.1. Let V be an algebraic set defined over Q which has dimension 0. Then V
consists of a finite collection of points, all of whose coordinates are algebraic numbers.
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Recall if G is a finitely generated group we denote by Hom
�
GÒSL(2ÒC)

�
the set of

homomorphisms of G into SL(2ÒC). It is a standard fact that Hom
�
GÒSL(2ÒC)

�
has the

structure of an affine algebraic set defined over Q.

THEOREM 5.2. Let G Û2 H be a finitely generated group for which

Hom
�

GÒSL
�
2Ò (C)

��
has a component V which consists of faithful, irreducible rep-

resentations. Suppose further that V has dimension at least 4.
Then G splits as a non-trivial free product with amalgamation.

PROOF. That the dimension of V is at least 4 means that V contains more than one
conjugacy class of representation. Suppose that we add extra Z polynomials to obtain
an algebraic subset of V containing a component of dimension zero. It follows from
Lemma 5.1 that the coordinates of this point ö are algebraic. We wish to arrange that
there is an element ã of G such that tr(öã) is not an algebraic integer. For then we can
apply Theorem 4.2 to obtain a splitting as a free product with amalgamation for ö(G)
and hence G.

Given ã in G the function fã: V ! C given by fã(ö) = tr(öã) is polynomial. If for
every ã this function is constant then every pair of representations in V have the same
character as a given irreducible representation, and therefore are all conjugate. But this
contradicts the dimension of V being at least 4

Choose ã for which this function is not constant and choose an algebraic non-integer
z in the image of fã. This is possible since fã dominates C, so that the image can omit
only finitely many values. Setting V1 to be the preimage f�1

ã
(z), we see that this is an

integrally defined subalgebraic set of V consisting of faithful irreducible representations.
If V1 contains a pair of nonconjugate representations, then we repeat this argument.

The argument terminates in an integrally defined subalgebraic set V0 consisting of one
conjugacy class of representation, which therefore contains a representation of the form:

ö0(ã) =
 

0 1
�1 a

!
ö0(å) =

 
b c

�c�1 0

!


We may add extra Z polynomials to produce a subset of V0 containing only this repre-
sentation. This completes the proof.

In the same vein we have:

THEOREM 5.3. Let G be a finitely generated group for which Hom
�

GÒSL
�
2Ò (C)

��
has a component V of dimension at least 5.

Then G splits as a non-trivial free product with amalgamation.

PROOF. As above V consists of more than one conjugacy class of irreducible repre-
sentation. We subdivide into two cases:

Suppose first that there is some element of the commutator subgroup ã for which
the function fã is nonconstant. Then as above we find a subalgebraic set V1 of V where
tr
�
ö(ã)

�
= z for every ö 2 V1 where z is some algebraic noninteger. Since reducible
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representations take the value 2 on any element of the commutator subgroup (cf. [4]),
we see that V1 contains only irreducible representations, moreover, it has dimension at
least 4. It follows that there is at least one further element å whose trace varies on V1,
and we may arrange that the trace of this element is some algebraic integer, not of the
form ° + °̄ where ° is any root of unity. This guarantees that the representations in this
subset map å into SL(2ÒC) as an element of infinite order.

We now proceed as above cutting down dimensions until we obtain a single algebraic
representation which satisfies the hypothesis of Theorem 4.5, to deduce the requisite
splitting for the image group, whence the original group.

The second case is only marginally different; suppose that every character of an
element of the commutator subgroup is constant. Notice that there must be at least one
such element whose trace is not 2, else all the representations on V are reducible. Whence
consideration of this character shows that none of the representations on V are reducible.

Now we argue as in the first paragraph, choosing some nonconstant character and
pulling back some nonalgebraic integer value. The irreduciblity of representations in V1

has now already been guaranteed and we choose the second nonconstant character as
above.

As a corollary of 5.2 we have the following result first proved by Shalen [12] when
no boundary component was a torus, and extended in [4] to allow tori. Both these results
require the hypothesis that H1(] M; Q) surjects onto H1(M; Q).

COROLLARY 5.4. Let M be a compact orientable irreducible 3-manifold with incom-
pressible boundary for which every incompressible torus is boundary parallel. Assume
] M does not consist entirely of tori. Then ô1(M) admits a splitting as a non-trivial free
product with amalgamation.

PROOF. By Thurston’s hyperbolization theorem for Haken manifolds, the interior
of M admits a hyperbolic structure. Since there is at least one boundary component of
genus at least 2, Teichmüller theory dictates that the subset of Hom

�
ô1(M)ÒSL(2ÒC)

�
consisting of holonomy representations of complete hyperbolic structures on M is at least
4. The corollary now follows from Theorem 5.2.

As is standard in 3-manifold topology, the existence of a splitting as a free product
with amalgamation of ô1(M) determines an incompressible surface in M. However, in
general, one cannot deduce that there is a separating incompressible surface. For instance
if one takes a Seifert fibered space M over a torus with a single cone point with cone
angle 2ôÛn, the results of [7] imply that ô1(M) splits as a non-trivial free product with
amalgamation. However since any incompressible surface in M is horizontal or vertical
it is easy to see in this case that an incompressible surface must be non-separating. The
hypothesis mentioned above in [12], [4] guarantee a separating surface.

Omitted from Corollary 5.4 was the case where all boundary components are tori.
One can get a similar result if there is component V of Hom

�
ô1(M)ÒSL(2ÒC)

�
of large

dimension (cf. Theorem 5.3). We simply do the following case, first proved in [4].

https://doi.org/10.4153/CMB-1998-056-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-056-x


432 D. D. LONG AND A. W. REID

COROLLARY 5.5. Let K ² S3 be a knot whose complement admits a complete hyper-
bolic structure of finite volume. Then S3 n ë(K) contains a separating incompressible
surface, where ë(K) denotes an open tubular neighbourhood of K.

PROOF. We first fix some notation. Let L be a longitude for K and let Γ =
ô1(S3 n K). From [13], the component V of Hom

�
ΓÒSL(2ÒC)

�
containing the faith-

ful discrete representation has dimension 4. Furthermore, since tr
�
ö(L)

�
is known to

vary on V, the method of proof of Theorem 5.2 implies we can find a representation
ö 2 V for which ö(Γ) has traces which are algebraic numbers, and for which tr

�
ö(L)

�
is

not an algebraic integer.

The representation ö need not be faithful, so we must deal with the possibility that
ö(Γ) 2 H . Assume that this is the case. Then since Γ admits a unique map to Z it follows
that the graph G in question is a single loop with a unique vertex. So that there is a map
ö(Γ) ! Z. The group Γ admits only one map to the integers, and this map kills the
longitude. However, the composition

Γ ! ö(Γ) ! Z

does not kill the longitude, a contradiction.

We deduce that, by Theorem 4.2, ö(Γ), and therefore Γ, splits as a non-trivial free
product with amalgamation. The only issue remaining is to ensure that after compression
the surface separates. To see this note that as above, the splitting constructed ensures that
L does not map into an edge stabilizer under the action on the tree of SL(2).

It seems harder to guarantee that the surface produced above has non-empty boundary,
as is done in [4].
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