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ON THE EXPONENT OF AN OSCULATORY PACKING 

DAVID W. BOYD 

1. I n t r o d u c t i o n . Suppose tha t U is an open set in Euclidean iV-space 
which has a finite volume \U\. A complete packing of U is a sequence of 
disjoint iV-spheres C = {Sn} which are contained in U and whose total volume 
equals t h a t of U. In an osculatory packing, the spheres are chosen recursively 
so t h a t for all n larger than a certain value m, Sn has the largest radius of all 
spheres contained in U\(Si~ W . . . U Sn-i~) (S~~ is the closure of S). An 
osculatory packing is simple if m = 1. If rn denotes the radius of Sn, the ex
ponent of the packing is defined by: 

e(C,U) = sup{* :2>„* = oo}. 

This quan t i ty is of considerable interest since it measures the effectiveness of 
the packing of U by C. 

In [7], Melzak, who introduced e(C> U), gave examples of complete packings 
of the uni t iV-sphere BN for which e(C, BN) = N, which is clearly the largest 
value possible. For osculatory packings, there are examples of sets U for 
which e(Co, U) = N, since one may take U to be a disjoint union of spheres 
with radii {rn} for which J2 rnN < ° ° , bu t YL rn = °° for / < N. There is a 
less trivial example in [1] of a set U C E2 with e(Co, U) = 2. 

In this paper, we give conditions on the boundary of the set U which will 
ensure t h a t e (Co, U) < N, for all osculatory packings of U. In fact, there are 
universal constants fiN < N so t h a t for most ' ' reasonable" sets U, one has 
e(Co, U) ^ jSjv. More precisely, if one assumes t h a t the volume of the set 
U(6) = {x 6 U: dist(x, dU) ^8} is O(ô^) as 5 -> 0 + , for some 7 > 0, then 
e(Co, U) ^ max(ftv, TV — 7) (Theorem 1). For convex sets, or sets with 
smooth boundaries of finite surface area, one has 7 = 1, and in this case we 
have g (Co, U) ^ fty. Our result is complementary to the result of Larman [5], 
t h a t if U = IN, the uni t iV-cube, then e(C, IN) > N - 1 + 0.03 for any 
complete packing C of IN. 

If T2 is a curvilinear triangle bounded by mutual ly tangent circular arcs, 
and if Co is the simple osculatory packing of T2, Melzak [7] showed t h a t 
1.035 < e(C0, T2) < 1.999971, and these bounds were improved by myself [2] 
to 1.28467 < e(C0, T2) < 1.93113. T h e set T2 satisfies the conditions of our 
theorem, and fi2 = (2 + V 2 ) / 2 = 1.707 . . . so t h a t we obtain an improve
men t on the upper bound for e(Co, T2) as a corollary. A special a rgument 
given in § 6 allows us to prove t ha t e(C0, T2) < (9 + V 4 1 ) / 1 0 = 1.5403 . . . . 
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We should mention that we have recently developed an algorithm for 
computing e(C0l T2) to arbitrary accuracy. Details of this will appear in the 
near future. 

(A dded in proof. Using this algorithm, we have shown that e(Coy T2) < 1.3500.) 
As further corollaries of our theorem, we obtain an estimate of the volume 

of Rn = U\(S{~ \J . . . KJ Sn~), and of the Hausdorff dimension of the residual 
set U\\J{Sk: k ^ 1}. The volume of Rn is 0(rn

N^N~^) for any e > 0. This 
result is complementary to a result of Larman [6] who showed that if C is a 
packing of IN with r\ ^ r2 ^ . . . , then \Rn\ ^ KNrn

s, where KN and 5 (= 0.97) 
are constants. 

Our method of proof is rather non-geometrical in nature. We first establish 
a basic inequality involving the sequence {rn}. We then develop some integral 
inequalities which allow us to deduce the behaviour of {rn} from the basic 
inequality. 

2. The basic inequality. To begin with, we must consider a certain 
function associated with an open set U in iV-space. Given such a set U, with 
boundary dU, we write 

U(8) = {x G U: dist(x, dU) ^ 8}. 

WTe denote the volume of U(8) by V(U, 8). The behaviour of the function 
V(U, 8) as 8 —> 0 will be of importance in our later deductions. Note that if 
U = BN and if ooN is the volume of BN, then 

V(BN, 8) = œN(l - (1 - 8)N) = 0(8) as 8 -> 0. 

If U is a bounded convex set, then V(U, 8) = 0(8) as 8 -» 0. (See [3, p. 88]). 
Finally, it is quite easy to see that if the boundary of U consists of a finite 
union of compact C2-surfaces, then V(U, 8) = 0(8) as 8 —» 0. Thus we can 
regard this type of behaviour as typical. 

LEMMA 1. Let U be an open set in Euclidean N-space with finite volume. 
Let Co = {Sn} be a simple osculatory packing of U, and let rn be the radius of Sn. 
Then, for all n ^ 0, 

oo n 

(1) £ nN ^ S {(r* + rn+1)
N - rk

N\ + V(U, rn+^N~\ 
k=n+l k=l 

Proof. By definition of a simple osculatory packing, if x G Rn, then 
dist(x, dRn) ^ rn+i. Hence, if Sk* is the closed sphere concentric with Sk and 
with radius rk + rn+i, one has 

(2) 'Rn C U(rn+1) U U{Sk*\Sk: k = 1, 2, . . . , n\. 

An osculatory packing is complete (see [1]), and so \Rn\ = X (1^1 : k ^ n + 1). 
If we now compute the volumes of the sets in (2), we obtain (1). 

Our deductions concerning e(Co, U) will be made on the basis of inequality 
(1). We first motivate what is to follow by considering what (1) would imply 
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in the case N = 2, if rn = An~a for some constants A and a with J < a < 1. 
If F(Z7, rw+i) = 0(rw+i) as n —» 00 we have 

so that 

and hence 

J2 rk
2 S 2rn+1J2 rk + nrn+1

2 + 0(n a) 
k=n+l A*=l 

l - 2 a o l - 2 a 
W ^ 2?Z < ^ ' « / i 1— la I / 1— 2a\ 

= r w + o(^ ) 2a - 1 = 1 -

1 - a S (2a - 1)(3 - a) 

which implies that a > 2 - V2. Thus T, rn
l < co provided t > (2 + V2) /2 . 

In order to arrive at this conclusion without the assumption that rn = An~a, 
we shall require an integral inequality (Lemma 3) which is a consequence 
of an inequality due to Hardy [4, § 330]. 

3. Some integral inequalities. 

LEMMA 2 (Hardy [4]). Let h be a non-negative measurable function and let 
s > 1, r > 1 be real numbers. Then 

(œ x~r( J" h(t) dtj dx < \JZ7l)S J " x~r+SHxY dx 

unless h = 0. The constant is best possible. 

Proof. See [4, p. 245]. 

LEMMA 3. Let f be a non-negative measurable function. Let a ^ 0, a > 0, 
q ^ 0, p ^ 0 be real numbers with p + q > 1 and qa < 1. Then 

(3) P x(p+q)a-2f(xy( P'f{t)q dt) dx <, — ^ — P x^^-'fix)13^dx. 
J a \ J a / 1 qa J a 

The constant is best possible. 

Proof. First let a = 0, and 

A = r x{v+«)a-lf(x)v+Q dx. 
*/o 

Assume also that p > 0, q > 0. Then, by Holder's inequality with exponents 
r = (p + q)/p and r' = (p + #)/#, one has 

(4) J " xto+5)a-2/(*r( JJ/ (o 5 dtj dx 
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The first factor in the right member of (4) is A1/r. Applying Lemma 2 to the 
second factor, with h — fQ, we find it to be less than 

\r'l(r' - (p + q)a)]A lit' 

Simplifying the constant yields inequality (3). For q = 0, (3) is an equality. 
For p = 0, we can apply Lemma 2 directly with s = 1, and h = fq. To obtain 
(3) for a > 0, apply (3) with a = 0 to the function which is zero for 0 g x < a, 
and equal to f(x) for x ^ a. 

To show that the constant is best possible, le t / (x) = x~a for n~1 ^ x S n, 
and zero otherwise, and let n —> oo. 

4. The main result. 

LEMMA 4. Let N ^ 2 be an integer, and let fiN denote the unique root of the 
following equation with N — 1 < fiN < N: 

*«-s(?)x-v* J / * - J 

Suppose that f is a non-negative measurable function which satisfies the following 
inequality for x ^ 1, where c and y are constants, and 0 < y < N: 

(5) fffff at ^ £ (flfix)»-' ff(t)' dt + cf{x). 

Suppose that f (1) < oo. Then for a < min(/3^-1, (N — T)""1)» ewe has 

(6) J i F-fttrdKao, 

and, for any real p > max(fo, N — y), one has 

/»oo 

J f(t)Pdt<O0. 

Proof. It is clear that K(x) = 0 has a unique root in each interval 
7 < x < j + 1 for j = 0, 1, . . . , N — 1 since i£(x) is strictly decreasing 
except at the points 0, 1, . . . , N. For the same reason, if j3N < x < N, then 
K(x) < 0. 

Suppose now that / ^ 0 satisfies (5) and that a satisfies 

m i n f e - 1 , (N - y)'1) > a > N~K 

Setting x = 1 in (5), we see that 

dx < oo. J 1 ^
x)Nt 
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Now, let a > 1 be arbitrary but finite and let g(x) = f(x) for 1 :g x ^ a, 
g(x) = 0 for x > a. Then g also satisfies (5) (trivially for x > a), and 

since 

/ % ( / ) " * < c o , 

and ^ a _ 1 is bounded on [1, a]. 
Multiply (5) through by x^"-2, and integrate from 1 to oo. We observe 

that, by Fubini's theorem, 
(*co / /»co \ f*co 

Ji *"\ J g{>t)Ndt) dx = (Na - 1)_1 J, «W'C*"1 - !) *• 
Also, by Lemma 3, for j = 0, 1 iV — 1, 

J ° ° a ^ ^ C * ) * - ^ J * *(*)' * ) dx g (1 - j a ) - 1 J " « ^ « ( « V dx. 

And, using Holder's inequality, with weight x^"-1 and exponents N/y and 
N/ (N — 7), we may treat the error term as follows: 

/•oo 4 /»oo 1 7 / W r»oo )(N-y)/N 

J xNa-2g(x)ydx^\j x^-'gixf dxj [jiX
Na-1x-N,w-"dxj 

Thus, inequality (5) for g implies, since a < (N — y)"1, that 

(7) {(Na - I ) " 1 - £ (f) (1 - J**)"1} £ x^gixf dx 

g (Na - I)'1 J" g(tfdt + c(N(N - y)'1 - Na) 

x { j ~ x^'gixf dx 

(N-y)/N 

\y/N 

The constant in the left member of (7) is — a_ 1 i£(a - 1) which is greater than 
zero since fiN < or1 < N. Dividing (7) through by 

using 
Uoo )y/N 

xNa~lg(x)N dx^ , 

f~g(tfdts §~ tNa-\(t)N dt, 

and letting a —> oo , we have 

i {N-y)IN 

(8) {jV^/CO**}' 
r ( /•» ) (iv-7)/iv *] 

g «(-xca-1))-^^» - irx{ J t /of <**} + & J, 
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where b = c(N(N - y)'1 - Na)~^N^/N. From (8), we see that (6) holds 
for N-1 < a < mint /V 1 , (N - Y ) - 1 ) , and hence (6) holds for 

a < mm(l3N-\ (N - y)~l). 

Now applying Holder's inequality, we have 

poo ( /»oo ) p/N i /»oo ) (N—p) /N 

(9) J fitf * ^ | J f^fitf dtj | J riNa-1)pm~p) dtf < oo, 

provided (Na — \)p > N — p, or in other words, that p > a - 1 . This is valid 
for any or1 > max(fe, N — y) so that 

r f{t)v dt <oo for any p > max(fe, N - y). 

THEOREM 1. Let U be an open set in Euclidean N-space which has finite 
volume. Suppose that U satisfies V(U, <5) = 0(dy) as <5 —» 0, where V{U, d) is 
the volume of the set [x £ U: dist(x, dU) ^ 5 } and 0 < y ^ 1 is a constant. Let 
(3N be the constant defined in Lemma 4. Let Co be an osculatory packing of U. 
Then the exponent of Co satisfies 

e(C0, U) S max(fe, N - y) < N. 

Proof. We need only consider simple osculatory packings since in general, 
for some m, {Sm+i, Sm+2, . . .} is a simple osculatory packing of 

Rm = E / \ ( S i - U . . . U S w - ) , 

and clearly V(Rm, 6) = 0(F) as Ô -> 0 if V(U, d) = 0(8*). 
Thus, suppose that ri ^ r2 ^ . . . are the radii of the spheres in a simple 

osculatory packing of U. Then by Lemma 1, for all n ^ 0, 

(10) Ë rf ^ £ {(fjr^-'t rA + 0{rn+?). 
k=n+l j=0 \ \ J / k=l J 

L e t / be a non-negative function defined on [1, oo[ as follows: fix) — rn if 
n ^ x < n + 1, for n = 1, 2, . . . . Then, using rn+i S rn, we see that there 
is a constant c such t h a t / satisfies (5) of Lemma 4. Hence, by the conclusion 
of that lemma, 

r f(x)v dx < oo for all p > m a x ^ , N - y) 

so that 

I ] r / < oo for p > max(&, N - y) 
k=i 

which implies that e(Co, U) ^ m a x ^ , N — y). 

COROLLARY 1. Let U, Co, &v be as in Theorem 1 and let yN = min(Y, N — fiN). 
Then, the volume of the set Rn = U\(Sf~ U . . . U Sn~) is 0 (rn

yN-e) for any e > 0. 
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Proof, 

\Rn\ = *» E r" fk uW»-' E rk
N-'^ = O C r J O -

COROLLARY 2. Z,e£ U, Co, &v &e as in Theorem 1. Ze£ rf(C0, U) be the Hausdorff 
dimension of U\\J(Sk: k ^ 1). Then 

d(C0, U) ^ maxCftv, N - y) < N. 

Proof. This follows from [1, Theorem 2], since d(Co, U) ^ e(Co, U). 

5. Remarks . (1) For the first few values of N, we have (with truncated 
values) 

02 = 1.7071 . . . = (2 + V2) /2 , 

03 = 2.8228 . . . = (3 + V7) /2 , 

04 = 3.8923 . . . = 2 + (2 + V(5/2))*, 

05 = 4.9350 . . . = (5 + (15 + V76)*)/2, 

06 = 5.9612 . 
07 = 6.9772 . 
08 = 7.9867 . 
09 = 8.9924 . 

It is apparent that N — 0# —• 0 fairly rapidly. In fact, it is easy to see that 

N - fa ?A\j/ fa-j fa7A\j/ 
1 

which implies that 

0<N-fa<N- 2~N. 

(2) An example of a set U satisfying the conditions of Theorem 1 with a 
constant y < 1 is 

U = {(x, y): 1 < x < oo, 0 < y < x~s} with s > 1. 

Here V(U,8) = OW*-»"), so that 

e(Co, U) ^ max((2 + V2) /2 , (s + l)/s). 

It can be shown that, in fact, e(C0, U) = (s + l ) / s provided (s + l ) / s è 
(2 + V2) /2 (i.e. 5 ^ V2) . 

(3) Reading an earlier draft of this paper, P. R. Beesack suggested to me 
that the proof of Lemma 1 could be used to give a proof of the completeness 
of an osculatory packing different from that given in [1]. Note that, by 
equation (2), 

(*) |i?K+1| â co„£ {(rk + rn+1f - rk
N] + V(U, rn+1). 
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Applying the mean value theorem, and then Holder's inequality, to the first 
term of the right member of (*), one has: 

t i (n + rn+1)
N - rk

N} ^ f~lNrn+l± r / " 1 

( n ) (AT-D/AT 

è {2N-1N)rn+,nllN\ £ rA 

The sum Y,t=i rnN is dominated by the volume of [/, hence the series con
verges, and this, together with the fact that {rn} is decreasing implies that 
nrn+iN —» 0. Thus, the first factor on the right of (*) converges to zero. To 
show that the second factor converges to zero we simply note that 

V(U,rn+1)=\U(rn+1)\= £ \U(rk+1)\U(rk+2)\, 

so that V(U, rn+i) is the tail of a convergent series. 

6. The exponent for a curvilinear triangle. Theorem 1 is essentially 
the best result we can expect to deduce from Lemma 1, as the example 
rn = An~a shows. It is possible, however, to improve Theorem 1 in case 
N = 2 and U = T2 is a curvilinear triangle bounded by mutually tangent 
circular arcs, as we now show. 

THEOREM 2. Let T2 be a curvilinear triangle bounded by mutually tangent 
circular arcs and let C0 be a simple osculatory packing of T2. Then 

e(C0, T2) ^ (9 + V41)/10 = 1.5403 . . . . 

Proof. We begin by giving an improvement of Lemma 1, and will use the 
notation of the proof of that lemma, so that Si, 5 2 , . . . are the disks in the 
packing and Rn = T2\(Sf~ U . . . U5 B ~) , Let 5_2, 5_i, So be the disks of 
radii r_2, r_i, r0l respectively, which bound T2. We may assume that these 
disks are externally tangent since any curvilinear triangle may be inverted 
into one for which this is the case, without altering the exponent. We observe, 
by induction, that Rn is the union of 2n + 1 curvilinear triangles Ki,. . . , K2n+u 
each with in-radius at most rn+i. For a given Ki, let Lt be the (rectilinear) 
triangle whose vertices are the centres of the sides of Kt. By induction, the Lt 

have mutually disjoint interiors, and Lt C\ Rn = Kt (i = 1, 2, . . . , 2n + 1). 
Let Sk* (k ^ —2) be the disk with the same centre as Sk and radius rk + rn+i. 
We shall show that 

n 

(11) 2area( i?J < X) area(5**\5»), 
* — 2 

by showing that for each i = 1, 2, . . . , 2n + 1, 

(12) 2 area(i?n C\ Lt) < £ area((5**\5») H L,). 
Jfc=-2 
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For a fixed i, let Kt have in-radius w and sides of radii x, y, z centred at 
A, B, C, respectively. Let a, /3, and y be the angles at A, B, C, respectively, in 
the triangle Lt. If we let the sum in the right member of (12) be denoted by 
v(i), then, since the vertices of Lt are among the centres of the annuli 5fc*\5fc, 
and since rn+i ^ w, we have 

v(i) è ?<x((x + w)2 - x2) + ip((y + w)2 - y2) + %y((z + w)2 - z2) 

= (ax + Py + yz)w + \-KW2. 

On the other hand, Rnr\Lt = Kt. To show that 2area(i£z) < v(i), we 
break Li up into six triangles by joining D, the in-centre of Ku to A, B, C 
and to the vertices of Kt. Consider one of the triangles so formed, say A A DE, 
Let 8 be the angle DAE. Then, using sin 8 < 8, we have 

area(i£* H A ADE) = §(sin 8)x(x + w) — %8x2 < %8xw. 

Summing over the six triangles, we have 

area(i^j) < %(ax + @y + yz)w < %v(i). 

Summing over i proves (11). From (11) we deduce that 

(13) 2 É rk
2 < Z (fa + *Vfi)2 - rk

2) + 0(rn+1). 
/fc=rc+l k=l 

Equation (13) is an improvement of equation (1). 
Now, we can repeat the proof of Theorem 1, using (13) instead of (1), and 

we see that ]£ rn
% < oo if t ^ (9 + V41)/10 which proves Theorem 2. 
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