
J. Austral. Math. Soc. (Series A) 69 (2000), 153-161

TAMENESS AND GEODESIC CORES OF SUBGROUPS

RITA GITIK

(Received 13 December 1999; revised 15 February 2000)

Communicated by C. F. Miller

Abstract

Let N be a finitely generated normal subgroup of a finitely generated group G. We show that if the trivial
subgroup is tame in the factor group G/N, then N is tame in G. We also give a short new proof of the
fact that quasiconvex subgroups of negatively curved groups are tame. The proof utilizes the concept of
the geodesic core of the subgroup and is related to the Dehn algorithm.

2000 Mathematics subject classification: primary 57M07, 57M30,57N10, 20F32, 20F34.

1. Introduction

A 3-manifold M is called a missing boundary manifold if it can be embedded in a
compact manifold M such that M \ M is a closed subset of the boundary of M.

One of the long-standing open problems in the field of 3-manifolds is the missing
boundary manifold conjecture due to Simon ([Sim]). He conjectured that if Mo is a
compact orientable irreducible 3-manifold, and M is the cover of Mo corresponding
to a finitely generated subgroup of ni(M0), then M is a missing boundary manifold.

This conjecture has been verified in many special cases, (see [Kir, page 151] and
[Gab] for additional information), however the general case is still open. In the
special case when M has no boundary and izx (M) is finitely generated, M is a missing
boundary manifold if and only if it is homeomorphic to the interior of a compact
manifold. In this case M has finitely many ends, so it is a missing boundary manifold
if and only if each of its ends is tame. (An end is tame if it is homeomorphic to a
product (closed surface)x[0, oo).) Hence the missing boundary manifold conjecture
is also known as the tame ends conjecture.

Thurston showed in [Thu] that if Mo is hyperbolic, geometrically finite and has
infinite volume, then every cover of MQ with a finitely generated fundamental group
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has tame ends. Bonahon showed in [Bon] that any hyperbolic manifold M with finitely
generated TZX (M) has tame ends, provided ni (M) is not a free product.

Tucker proved in [Tuc] that a non-compact orientable irreducible 3-manifold M is
a missing boundary manifold if and only if for any compact submanifold C of M the
group 7Ti (M \ C) is finitely generated.

This observation made it possible to reduce the missing boundary manifold con-
jecture to a group-theoretic problem. The first results in this direction were obtained
by Casson and Poenaru, (see [Poe]). Mihalik introduced the notion of a tame pair
of groups in [Mil]. Let Mo be a 3-manifold with the fundamental group G, and let
M be a cover of Mo corresponding to a subgroup H of G. Then the pair (G, H)
is tame if and only if M is a missing boundary manifold. This approach resulted in
various group-theoretical results which implied some special cases of the tame ends
conjecture, (see [Mil, Mi2]).

However, the concept of a tame subgroup seems to be of independent interest. For
example, it is not known weather the trivial subgroup is tame in any finitely generated
group. Also there are no examples of a non-tame pair (G, H) with both H and G
finitely generated.

In this paper we introduce a different, though equivalent, definition of a tame
subgroup. Let Mo be a compact orientable irreducible 3-manifold, let G = 7Ti(M0),
and let H be a subgroup of G. Choose the presentation G = (X\R). Let K be the
standard 2-complex representing G, that is, K has one vertex, K has an edge for any
generator x € X, and K has a 2-cell for any relator r e R. Let Cayley2(G) be the
universal cover of K, and let Cayley2(G, H) be the cover of K corresponding to a
subgroup H of G.

Let Mo be the universal cover of Mo and let M be the cover of Mo corresponding to
H. Then Cayley2(G) imbeds quasi-isometrically in Mo, and Cayley2(G, H) embed-
ded quasi-isometrically in M. Let C be a compact submanifold of M. It is easy to see
that the fundamental group of Cayley2(G, H) \ C is finitely generated if and only if
the fundamental group of M \ C is. So Tucker's theorem implies that M is a missing
boundary manifold if and only if ^•1(Cayley2(G, H) \ C) is finitely generated for any
finite subcomplex Cof Cayley2(G, H).

This discussion motivates the following definition.

DEFINITION 1. A subgroup H of a group G is tame in G if for any finite subcomplex
C of Cayley2(G, H) the group ^1(Cayley2(G, H) \ C) is finitely generated.

2. Preliminaries

Let Mo be a compact orientable irreducible 3-manifold, and let G = 7Ti(M0).
Choose a presentation G = {X\R). Let X* = [x,x~l\x e X], and f o r x e X define
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Oc"1)"1 = x. Recall that the Cayley graph of G, denoted Cayley(G), is an oriented
graph whose set of vertices is G and the set of edges is G x X*, such that an edge
(g, x) begins at the vertex g and ends at the vertex gx.

DEFINITION 2. Let H be a subgroup of G, and let {Hg} be the set of right cosets
of H in G. The relative Cayley graph of G with respect to H (or the coset graph) is
an oriented graph whose vertices are the cosets {Hg}, the set of edges is {Hg} x X*,
such that an edge (Hg,x) begins at the vertex Hg and ends at the vertex Hgx. We
denote it Cayley(G, H).

A word in X is any finite sequence of elements of X*. Denote the set of all words
in X by W(X), and denote the equality of two words by =.

DEFINITION 3. The label of a path

p = (Hgl,xi)(Hgixi,x2)---(Hgixl--xn-uxn)m Cayley(G, H)

is the function Lab(p) = x\x2 ...xn e W(X).

As usual, we identify the word Lab(p) with the corresponding element in G.

Note that Cayley(G) is the 1-skeleton of Cayley2(G), and Cayley(G, H) is the
1-skeleton of Cayley2(G, H). The following example illustrate the definitions.

LEMMA 1. Let Hbea subgroup of a group G, and let Ho be a finite index subgroup
of H. Then H is tame in G if and only if Ho is.

PROOF. Let 4> : Cayley(G, Ho) -»• Cayley(G, H) be the covering map, and let C
be a finite subcomplex of Cayley(G, H). As Ho is a finite index subgroup of H, (f>
is a finite to one map. Then #~'(C) is a finite subcomplex of Cayley (G, Ho). If
Ho is tame in G, then 7Ti(Cayley(G, Ho) \ <p~x(C)) is finitely generated. As </> is a
finite covering map from Cayley(G, Ho) \ </>~'(Q to Cayley(G, H) \ C, it follows
that 7Ti(Cayley(G, Ho) \ 4>~\C)) is a finite index subgroup of 7r1(Cayley(G, H) \
C), hence 7Ti(Cayley(G, H) \ C) is finitely generated, so H is tame in G. In the
other direction, if Co is a finite subcomplex in Cayley(G, Ho), then C = <f>{C0) is a
finite subcomplex in Cayley(G, H). If H is tame in G, then 7Ti(Cayley(G, H) \ C)
is finitely generated, hence 7Ti(Cayley(G, Ho) \ (j>~l(C)) is finitely generated. But
Cayley(G, Ho) \ Co is constructed from Cayley(G, Ho) \ <p~l(C) by adding a finite
complex, hence TC\ (Cayley(G, Ho) \ Co) is finitely generated, so Ho is tame in G. •
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3. Normal subgroups

Let Y be a subset of a generating set of a group G, and let p be a path in
Cayley(G, H). We say that p is labeled with Y if Lab(p) is a word in Y*. We
denote the inverse of a path pby p.

THEOREM 1. Let N be a finitely generated normal subgroup of a finitely generated
group G. Then N is tame in G if the trivial subgroup is tame in the factor group G/N.

PROOF. Let p : G -*• G/N be the projection map. Let X = {xi,... ,xm]
be a generating set for N and let Y = {yu... , yk] be a subset of G such that
[p(yi),... , p(yic)} is a generating set for G/N. Choose the presentation {X, Y\R, T)
for G, where R consists of the conjugation relators of the form {yiXjyJxrij\nj €
N, 1 < i < k,l < j < m). In this presentation Cayley(G, AT) is isomorphic to a
product of Cayley(G/AT) and a wedge of m circles, one circle for each generator of
N, however Cayley2(G, N) need not be a product. Let C be a finite subcomplex in
Cayley2(G, N). Choose a basepoint v in Cayley(G, N) \ C and let / be a loop in
Cayley(G, N)\C beginning at v. Then / can be written as a product l{l2 • • • /„, where
each /, is a loop beginning at v, all the loops l2i are labeled with Y, and all the loops
l2i-\ have the form pn-\qii-\Pu-u where p2;-i is labeled with Y and q2i-i is labeled
withX.

We claim that using the conjugation relators from R each loop /2/-i is homotopic in
Cayley2(G, N) \ C to a loop f2,_] which begins at u and is labeled with Y. The proof
is by induction on the length of the path /72/-i- If its length is 0, then we can take
/2,_! = ht-\. Assume that the statement is true if pu-i is shorter than n. Consider a
loop I2i-i with p2i-i of length n, so p2/-i = et • • • en and q = e\ • • • e\, where e, and e'j
are edges in Cayley(G, N)\C. Consider a path ene\en. AsLab(en)Lab(e'1)Lab(en)~1

is a part of a conjugation relator from R, there exists a path si in Cayley(G, / / )
labeled with X such that ene\ensx bounds a 2-cell in Cayley(G, H). This cell provides
a homotopy of en e\ en to sx. Similarly, for 1 < j < I we construct a homotopy of en e'j en

to a path Sj labeled with X. Combining these homotopies we obtain a homotopy of
/2,_i to a path e\ • • • en-\S\ • • • S/en_i •••e\, and we can use the inductive assumption.
It remains to show that the paths Sj and the 2-cell bounded by ene'jinSj belong to
Cayley(G, H) \ C. Indeed, by construction, the path ene'jen is in Cayley(G, H) \ C.
As C is a closed complex, it follows that the 2-cell bounded by ene'jenSj lies in
Cayley(G, H) \ C. Also all the edges in s; have the same common initial and terminal
vertex, which belongs to the path /2i-i and lies in the compliment of C. Hence all
the edges of Sj lie in the compliment of C, proving the statement. Therefore / is
homotopic to a product t{l2t3 • • • /„, where each /2, is a loop beginning at the basepoint
v, labeled with Y, and all the loops ?2,_i are labeled with X. By construction, all
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the vertices of the paths r2;-j coincide with the basepoint v, so all fci-i belong to the
O-neighbourhood of v. However, if the trivial subgroup is tame in G/N, then the
paths l2i can be homotoped to a bounded neighborhood of v in Cayley(G/H) \ C,
so they can be homotoped to a bounded neighbourhood of v in Cayley(G, H)\ C.
Therefore, if the trivial subgroup is tame in G/N any loop / in Cayley(G, N)\C can
be homotoped to a loop in a bounded neighborhood of v, so N is tame in G. •

Recall that Mihalik proved in [Mi2] that if N is a normal subgroup of G and the
groups G, N and G/N are finitely presented, then any finitely generated subgroup of
infinite index in N is tame in G. Lemma 1 and Theorem 1 show that if the trivial
subgroup is tame in G/N, then any finite index subgroup of N is tame in G.

4. Geodesic core of a subgroup

A geodesic in the Cayley(G) is a shortest path joining two vertices. Let pH :
Cayley(G) -> Cayley(G, H) be the projection map: pH(g) = Hg and PH(g,x) =
(Hg,x).

DEFINITION 4. (See [Git].) A geodesic in Cayley(G, H) is the image of a geodesic
in Cayley(G) under the projection pH. The geodesic core of Cayley(G, H) is the
subgraph of Cayley(G, H) which consists of the union of all the vertices and all the
edges which belong to closed geodesies in Cayley(G, H) beginning at the vertex HI.
We denote it Core(G, H).

Note that any path p in Cayley(G, H) which begins at H • 1 ends at H • Lab(p),
so a path p beginning at H • 1 is closed, if and only if Lab(p) € H.

A subgroup H of G is AT-quasiconvex in G if any geodesic in the Cay ley graph
of G with the endpoints in H belongs to the AT-neighbourhood of H. A subgroup is
quasiconvex in G if it is AT-quasiconvex in G for some A".

The following lemma from [Git] gives an important equivalent definition of quasi-
convexity.

LEMMA 2. A subgroup H of a group G is K-quasiconvex if and only i/Core(G, H)
belongs to the K-neighbourhood of H • 1 in Cayley(G, H).

PROOF. Let y be a closed geodesic in Core(G, H) beginning at H • 1. Then
Lab(y) € H and y is the image of a geodesic y in Cayley(G) which begins at 1
with Lab(y) = Lab(y) under the projection map. But the projection map preserves
distances from H, and it maps H c Cayley(G) onto H • 1 e Cayley(G, H), so
y C NK(H • 1) C Cayley(G, H) if and only if y c NK(H) c Cayley(G). •
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The following example illustrate the definitions.

EXAMPLE 1. Let G = (x, y\xyx~ly~l) be the standard presentation of Z x Z, and
let H = {x} be a subgroup of G. For any vertex x" of H there exists a unique geodesic
in Cayley(G) connecting 1 and x", namely the horizontal path p with Lab(p) = x"
so H is a O-quasiconvex subgroup of Cayley(//). Cayley(G, H) can be described as
follows: the set {Hyn, n € Z] is the set of all cosets of H in G, hence we consider it
as the set of vertices of Cayley(G, H). The edge (Hy", v) begins at the vertex Hy"
and ends at the vertex Hy"y = Hyn+l. The edge (Hyn, x) begins at the vertex Hy"
and ends at the vertex Hy"x = Hxy" — Hy", hence this edge is a loop. The geodesic
core of Cayley(G, H) consists of a single vertex H • 1 and a single edge (// • 1, x),
which begins and ends at H • 1. The diameter of the geodesic core of Cayley(G, H)
is 0, because it has only one vertex, verifying again that H is 0-quasiconvex in G.

On the other hand, consider a subgroup L = (xy) of G. A path /> beginning at
vertex 1 of Cayley(G) with Lab(p) = x"y" is a geodesic in Cayley(G), and the vertex
x" of Cayley(G) is in p, but d(x", L) = n, so L is not quasiconvex in Cayley(G). In
order to describe Cayley(G, L), note that {Ly", n G Z} is the set of all cosets of L in
G, so we consider it as the set of vertices of Cayley(G, L). The edge (Ly", y) begins
at the vertex Ly" and ends at the vertex Ly"y — Lyn+X. However, the edge (Lyn, x)
begins at the vertex Ly" and ends at the vertex Ly"x = Lxyy"~l = Ly"~l. The
geodesic core of Cayley(G, L) is the whole graph Cayley(G, L) which is unbounded,
demonstrating again that L is not quasiconvex in G.

Recall that a path p is an L -local geodesic if each subpath of p of length at most L
is a geodesic. For example, any path in Cayley(G) is a 1-local geodesic. A geodesic
triangle in Cayley(G) is a closed path p = p\PiPi, where each p{ is a geodesic. A
group G is 8 -negatively curved if each side of each geodesic triangle in Cayley(G)
belongs to the 8 -neighbourhood of the union of two other sides. We consider only
negatively curved groups that are finitely generated.

We use the following well-known fact.

LEMMA 3 ([Gro]). Let G be a 8-negatively curved group, and let L > 48. Then
any L-local geodesic p in Cayley(G) belongs to the M-neighbourhood of a geodesic
y joining the endpoints of p, where M depends only on L and on 8.

5. Quasiconvex subgroups

Up to this point we worked with some fixed presentation (X\R) of G. Now we
need to redefine the presentation.
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DEFINITION 5. Let {X \R) be a presentation of G, and let 2L be a constant which is
bigger than the length of the longest relator in R. Let R' be the set of all reduced words
w in W(X) which represent 1G such that \w\ < 2L. Then {X\R') is a presentation for
G, and we use it for the rest of the paper.

DEFINITION 6. An L-local geodesic in Cayley(G, H) is the image of an L-local
geodesic in Cayley(G) under the projection pH.

LEMMA 4. Let (X\R'} be the presentation of a group G, as in Definition 5, let C
be a finite subcomplex o/Cayley2(G, H), and let v0 be a vertex in Cayley2(G, H)\C
with d(v0, C) < L. Then any closed path q in Cayley(G, H)\C beginning at v0 is
homotopic in Cayley2(G, H)\ C to a closed path p in Cayley(G, H)\ C beginning
at v0 with the following property: there exists a decomposition p = p\ • • • pn such
that pn-\ is a maximal subpath of p which belongs to the L-neighbourhood of C, and
Pn is an L-local geodesic in Cayley(G, H)\C with both endpoints distance L away
from C.

PROOF. Let t be a maximal subpath of q which lies outside the L-neighbourhood
of C and is not an L-local geodesic in Cayley(G, H). Then there exists a subpath t'
of t shorter than L, which is not a geodesic, so t can be shortened by replacing t' with
a shorter path t". As ft" is a closed path which is shorter than 2L, the word Lab(f'f")
is a relator in R', so it bounds a 2-cell in Cayley2(G, H). As \t"\ < L, this cell lies
in the complement of C in Cayley2(G, H). As the path obtained from q by replacing
t' with t" is homotopic to q in Cayley2(G, H)\ C, lies in the complement of C in
Cayley(G, H) and is shorter than q, we obtain the required path p after finitely many
repetitions of above procedure. •

LEMMA 5. Let H be a K-quasiconvex subgroup of a &-negatively curved group G,
let L > 48, let M be as in Lemma 3, and let p be an L-local geodesic in Cayley(G)
with both endpoints distance d away from H. Then p belongs to the (K+M+d+28)-
neighbourhood of H in Cayley(G).

PROOF. Let Si and s2 be geodesies in Cayley (G) of length at most d joining a vertex
h\ e H to the initial vertex of p, and the terminal vertex of p to a vertex h2 € H,
respectively. Let y' be a geodesic with the same endpoints, as p, and let y be a geodesic
joining hi to h2. As H is /f-quasiconvex in G, y belongs to the Jf-neighbourhood of
H. Consider a closed path Siy's2y in Cayley(G). This path is a geodesic 4-gon in a
^-negatively curved group G, hence y' belongs to the 25-neighbourhood of the union
of the other 3 sides. As s{ and s2 are shorter than d, it follows that y' belongs to the
(K + d + 2<5)-neighbourhood of H. As p is an L-local geodesic, Lemma 3 implies
that it belongs to the M-neighbourhood of y', proving Lemma 5. •

https://doi.org/10.1017/S1446788700002147 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002147


160 Rita Gitik [8]

THEOREM 2. A quasiconvex subgroup H of a negatively curved group G is tame
in G.

PROOF. Let H be a £-quasiconvex subgroup of a 5-negatively curved group G,
and let C and v0 be as in Lemma 4. Let q be any closed path in Cayley(G, H)\C
beginning at v0. Let p be a path equivalent to q, as described in Lemma 4. As
C is a finite graph, it belongs to the € -neighbourhood of H • 1 in Cayley(G, H)
for some constant e. Then by construction, the subpaths p2;-i of p belong to the
(e + L)-neighbourhood of H • 1, hence the endpoints of the subpaths p2i belong to the
(e + L)-neighbourhood of H • 1. Then Lemma 5 implies that the subpaths p2i belong
to the (e + L + M + K + 2<5)-neighbourhood of H • 1. Therefore, q is homotopic in
Cayley2 (G, H) \ C to a path in the (e + L + M + K + 2<5)-neighbourhood of H • 1. As
G is finitely generated, this neighbourhood is a finite graph, proving Theorem 2. •

REMARK. Recall that a Dehn presentation for the group G is a finite presentation
(X\R) such that any non-trivial reduced word w e W(X) representing 1G contains
more than half of some r e R, that is, there exists a decomposition r = rxr2 with
kil > \ri\ such that w; = wir\U>2. A group with a Dehn presentation has the following
algorithm, known as the Dehn algorithm, for a solution of the word problem. Let
L be the length of the longest relator in R. Given a word w € W(X), check all its
subwords which are shorter than L + 1. If none of these subwords is a bigger half
of some relator in R, then w does not represent l c . Otherwise, there exists a relator
r = rxr2 e R with \rt\ > \r2\ such that w contains rx as a subword. But then the word
w' obtained from w by replacing r{ by r^1 is equivalent to w in G and is shorter than
w, so the algorithm terminates after finitely many steps. We would like to point out
that the proof of Lemma 4 is based on a similar procedure.
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