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Abstract. The cohomology ring of the moduli spaceM(n; d) of semistable bundles of coprime rank
n and degree d over a Riemann surface M of genus g > 2 has again proven a rich source of interest
in recent years. The rank two, odd degree case is now largely understood. In 1991 Kirwan [8] proved
two long standing conjectures due to Mumford and to Newstead and Ramanan. Mumford conjectured
that a certain set of relations form a complete set; the Newstead-Ramanan conjecture involved the
vanishing of the Pontryagin ring. The Newstead–Ramanan conjecture was independently proven by
Thaddeus [15] as a corollary to determining the intersection pairings. As yet though, little work has
been done on the cohomology ring in higher rank cases. A simple numerical calculation shows that the
Mumford relations themselves are not generally complete when n > 2. However by generalising the
methods of [8] and by introducing new relations, in a sense dual to the original relations conjectured
by Mumford, we prove results corresponding to the Mumford and Newstead-Ramanan conjectures in
the rank three case. Namely we show (Sect. 4) that the Mumford relations and these ‘dual’ Mumford
relations form a complete set for the rational cohomology ring ofM(3; d) and show (Sect. 5) that
the Pontryagin ring vanishes in degree 12g � 8 and above.
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1. Introduction

Let M(n; d) denote the moduli space of semistable holomorphic vector bundles
of coprime rank n and degree d over a Riemann surface M of genus g > 2:
Throughout this article we will write

�g = g � 1:

Recall that a holomorphic vector bundle E over M is said to be semistable (resp.
stable) if every proper subbundle F of E satisfies

�(F ) 6 �(E) (resp. �(F ) < �(E));

where �(F ) = degree(F )=rank(F ) is the slope of F . Nonsemistable bundles are
said to be unstable. When n and d are coprime the stable and semistable bundles
coincide.

Let E be a fixedC1 complex vector bundle of rank n and degree d overM . Let
C be the space of all holomorphic structures on E and let Gc denote the group of all
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14 RICHARD EARL

C1 complex automorphisms of E . Atiyah and Bott [1] identify the moduli space
M(n; d) with the quotient Css=Gc where Css is the open subset of C consisting
of all semistable holomorphic structures on E . In this construction both C and Gc
are infinite dimensional; there exist other constructions [7] of the moduli space
M(n; d) as genuine geometric invariant theoretic quotients which are in a sense
finite dimensional approximations of Atiyah and Bott’s construction.

There is a known set of generators [12, 1] for the rational cohomology ring of
M(n; d) as follows. Let V denote a universal bundle over M(n; d) �M . Atiyah
and Bott then define elements

ar 2 H2r(M(n; d);Q); bsr 2 H2r�1(M(n; d);Q);

fr 2 H2r�2(M(n; d);Q); (1)

where 1 6 r 6 n; 1 6 s 6 2g by writing

cr(V ) = ar 
 1 +
2gX
s=1

bsr 
 �s + fr 
 ! 1 6 r 6 n; (2)

where ! is the standard generator of H2(M ;Q) and �1; : : : ; �2g form a fixed
canonical cohomology basis for H1(M ;Q). The ring H�(M(n; d);Q) is freely
generated as a graded algebra overQ by the elements (1). Notice from the definition
that f1 = d. We further introduce the notation

�i;j =

gX
s=1

bsi b
s+g
j

:

The universal bundle V is not unique, although its projective class is. We may
tensor V by the pullback toM(n; d)�M of any holomorphic line bundle K over
M(n; d) to give another bundle with the same universal property. This process
changes the generators of H�(M(n; d);Q). In particular it changes a1 by nc1(K)
and c1(�!V ) by (d � n�g)c1(K) where � : M(n; d) �M ! M(n; d) is the first
projection and �! is the direct image map from K-theory [5, p. 436]. Since n and
d are coprime there exist integers u and v such that

un+ v(d� n�g) = 1:

Thus if we take K to be

det(V jM(n;d))
u 
 (det�!V )

v

then V 
 ��(K�1) is a new universal bundle such that

ua1 + vc1(�!V ) = 0: (3)

Following Atiyah and Bott [1, p. 582] we replace V by this normalised universal
bundle.
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MODULI OF RANK THREE STABLE BUNDLES 15

The normalised bundleV is universal in the sense that its restriction to f[E]g�M
is isomorphic to E for each semistable holomorphic bundle E over M of rank n
and degree d and where [E] is the class of E in M(n; d): Then the stalk of the ith
higher direct image sheaf Ri��V (see [5, Sect. 3.8]) at [E] is

Hi(��1([E]); Vj��1([E])) = Hi(M;Vj[E]�M) �= Hi(M;E):

Tensoring E with a holomorphic line bundle over M of degree D gives an
isomorphism betweenM(n; d) andM(n; d+nD). Since n and d are coprime we
may assume without any loss of generality that 2�gn < d < (2�g + 1)n and so we
will write

d = 2n�g + � (0 < � < n);

from now on. From [11, Lemma 5.2] we know that H1(M;E) = 0 for any
semistable holomorphic bundle E of slope greater than 2�g. Thus �!V is in fact a
vector bundle overM(n; d) with fibre H0(M;E) over [E] 2M(n; d) and, by the
Riemann–Roch theorem, of rank d� n�g = n�g + �.

In particular if we express the Chern classes cr(�!V ) in terms of the generators
ar; b

s
r and fr ofH�(M(n; d);Q) then knowing the images of the rth Chern classes

in H�(M(n; d);Q) vanish for r > n�g+� gives us relations in terms of the images
of the generators in H�(M(n; d);Q): Now from [1, Prop. 9.7] we know that

H�(M(n; d);Q) �= H�(M0(n; d);Q)
H�(Jac(M);Q); (4)

where Jac(M) is the Jacobian of the Riemann surface M and M0(n; d) is the
moduli space of rank n bundles with degree d and fixed determinant line bun-
dle.H�(Jac(M);Q) is an exterior algebra on 2g generators and we can choose the
isomorphism (4) so that these generators correspond to b1

1; : : : ; b
2g
1 and the elements

a2; : : : ; an; b
1
2; : : : ; b

2g
n ; f2; : : : ; fn correspond to the generators ofH�(M0(n; d);Q).

So we can find relations in terms of a2; : : : ; an; b
1
2; : : : ; b

2g
n ; and f2; : : : ; fn by equat-

ing to zero the coefficients of
Q
s2S b

s
1 in the Chern classes cr(�!V ) for r > n�g+ �

and for every subset S � f1; : : : ; 2gg:
Mumford’s conjecture, as proven by Kirwan [8, Sect. 2], was that when the

rank n is two then these relations together with the relation (3) from normalising
the universal bundle V provide a complete set of relations in H�(M0(2; d);Q).
Subsequently a stronger version of Mumford’s conjecture has been proven [3]
showing the relations coming from the first vanishing Chern class c2g(�!V ) generate
the relation ideal of H�(M0(2; d)) as aQ[a2; f2]-module.

Remark 1. In the rank two case the Mumford relations above differ somewhat
from the relations �r introduced by Zagier and studied in [2, 6, 14, 17]. In the
notation of [17]

	f1;:::;2gg

�
�t� a1

2

�
=
(�1)g�g=2+g

22g�1 t�gF0(t
�1);
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16 RICHARD EARL

where 	f1;:::;2gg(x) denotes the coefficient of
Q2g
s=1 b

s
1 in 	(x) = �r>0 cr(�!V )

x2g�1�r and F0(t) =
P1

r=0 �rt
r. In the notation of [6] �r appears as �r=r! and in

[14] as �(r)=r!:
We will demonstrate later (Remark 3) that the Mumford relations are not com-

plete when the rankn is greater than two. For now we intoduce a new set of relations.
LetL be a fixed line bundle overM of degree 4�g+1 and let � : M(n; d)�M !M
be the second projection. Then �!(V

� 
 ��L) is a vector bundle over M(n; d) of
rank (3�g + 1)n � d = ng � � with fibre H0(M;E� 
 L) over [E]. By equating
to zero the coefficients of

Q
s2S b

s
1 in the Chern classes cr(�!(V

� 
 ��L)) for
r > ng � � and for every subset S � f1; : : : ; 2gg we may find relations in terms
of the generators a2; : : : ; an; b

1
2; : : : ; b

2g
n ; and f2; : : : ; fn. We will refer to these new

relations as the dual Mumford relations.

Remark 2. The mapE 7! E�
L induces an automorphism ofH�(M(2; d);Q)
mapping the Mumford relations to the dual Mumford relations and vice versa.
Hence we can deduce that the dual Mumford relations are complete when the rank
is two from Kirwan’s proof of Mumford’s conjecture [8, Sect. 2].

Our first result (to be proved in Section 4) now reads as:

THEOREM 1. The Mumford and dual Mumford relations together with the relation
(3) due to the normalisation of the universal bundle V form a complete set of
relations for H�(M(3; d); Q):

The Newstead–Ramanan conjecture states [12, Sect. 5a] that the Pontryagin ring
of the tangent bundle toM(2; d) vanishes in degrees 4g and higher. The conjecture
was proven independently by Thaddeus [15] and Kirwan [8, Sect. 4], and has been
proven more recently by King and Newstead [6] and Weitsman [16]. In Section 5
we will use a similar method to Kirwan’s but now also involving the dual Mumford
relations to prove:

THEOREM 2. The Pontryagin ring of the moduli space M(3; d) vanishes in
degrees 12g � 8 and above.

2. Kirwan’s approach

The group Gc is the complexification of the gauge group G of all smooth automor-
phisms of E which are unitary with respect to a fixed Hermitian structure on E [1,
p. 570]. We shall write G for the quotient of G by its U(1)–centre and Gc for the
quotient of Gc by its C�-centre.

There are natural isomorphisms [1, 9.1]

H�(Css=Gc;Q) = H�(Css=Gc;Q) �= H�

Gc
(Css;Q) �= H�

G
(Css;Q)

since the C�-centre of Gc acts trivially on Css, Gc acts freely on Css and Gc is the
complexification of G. Atiyah and Bott [1, Th. 7.14] show that the restriction map
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MODULI OF RANK THREE STABLE BUNDLES 17

H�

G
(C;Q) ! H�

G
(Css;Q) is surjective. Further H�

G
(C;Q) �= H�(BG;Q) since C

is an affine space [1, p. 565]. So putting this all together we have

H�(BG;Q) �= H�

G
(C;Q)! H�

G
(Css;Q) �= H�(M(n; d);Q) (5)

is a surjection.
As shown in [1, Prop. 2.4] the classifying space BG can be identified with

the space Map
d
(M;BU(n)) of all smooth maps f : M ! BU(n) such that the

pullback to M of the universal vector bundle over BU(n) has degree d. If we pull
back this universal bundle using the evaluation map

Map
d
(M;BU(n))�M ! BU(n) : (f;m) 7! f(m);

then we obtain a rank n vector bundle V over BG �M . If we restrict the pullback
bundle induced by the maps

Css �EG �M ! C �EG �M ! C �G EG �M
'
! BG �M

to Css � feg �M for some e 2 EG then we obtain a G–equivariant holomorphic
bundle on Css�M . TheU(1)–centre of G acts as scalar multiplication on the fibres,
and the associated projective bundle descends to a holomorphic projective bundle
overM(n; d)�M which is in fact the projective bundle of V [1, pp. 579–580].

By a slight abuse of notation we define elements ar; bsr; fr in H�(BG;Q) by
writing

cr(V) = ar 
 1 +
2gX
s=1

bsr 
 �s + fr 
 ! 1 6 r 6 n:

Atiyah and Bott show [1, Prop. 2.20] that the ring H�(BG;Q) is freely generated
as a graded algebra overQ by the elements ar; bsr; fr. The only relations amongst
these generators are that the ar and fr commute with everything else and that the
bsr anticommute with each other.

The fibration BU(1)! BG ! BG induces an isomorphism [1, p. 577]

H�(BG;Q) �= H�(BG;Q)
H�(BU(1);Q):

The generators ar; bsr and fr of H�(BG;Q) can be pulled back via a section of this
fibration to give rational generators of the cohomology ring of BG. We may if we
wish omit a1 since its image in H�(BG;Q) can be expressed in terms of the other
generators. The only other relations are again the commuting of the ar and fr,
and the anticommuting of the bsr. We may then normalise V suitably so that these
generators for H�(BG;Q) restrict to the generators ar; bsr; fr for H�(M(n; d);Q)
under the surjection (5).

The relations amongst these generators for H�(M(n; d);Q) are then given by
the kernel of the restriction map (5) which in turn is determined by the map

H�
G(C;Q) �= H�

G
(C;Q)
H�(BU(1);Q)

! H�

G
(Css;Q)
H�(BU(1);Q) �= H�

G(C
ss;Q):
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18 RICHARD EARL

In order to describe this kernel we consider Shatz’s stratification of C, the space of
holomorphic structures on E [13]. The stratification fC� : � 2 Mg is indexed by
the partially ordered set M, consisting of all the types of holomorphic bundles of
rank n and degree d, as follows.

Any holomorphic bundle E over M of rank n and degree d has a canonical
filtration (or flag) [4, p. 221]

0 = E0 � E1 � � � � � EP = E

of sub-bundles such that the quotient bundles Qp = Ep=Ep�1 are semi-stable and
�(Qp) > �(Qp+1). We will write dp and np respectively for the degree and rank
of Qp. Given such a filtration we define the type of E to be

� = (�(Q1); : : : ; �(QP )) 2 Q
n;

where the entry �(Qp) is repeated np times. When there is no chance of confusion
we will also refer collectively to the strata of type (n1; : : : ; ns) and we will write �
for the collection of strata with np = 1 for each p. The semistable bundles have type
�0 = (d=n; : : : ; d=n) and form the unique open stratum. The setM of all possible
types of holomorphic vector bundles overM will provide our indexing set. A partial
order on M is defined as follows. Let � = (�1; : : : ; �n) and � = (�1; : : : ; �n) be
two types; we say that � > � if and only ifX

j6i

�j >
X
j6i

�j for 1 6 i 6 n� 1:

The set C� � C; � 2M, is defined to be the set of all holomorphic vector bundles
of type �.

The stratification also has the following properties:

(i) The stratification is smooth. That is each stratum C� is a locally closed Gc-
invariant submanifold. Further for any � 2M [1, 7.8]

C� �
[
�>�

C� : (6)

(ii) Each stratum C� is connected and has finite (complex) codimension d� in C.
Moreover given any integer N there are only finitely many � 2 M such that
d� 6 N . Further d� is given by the formula [1, 7.16]

d� =
X
i>j

(nidj � njdi + ninj�g) (7)

where dk and nk are the degree and rank, respectively, of Qk.

(iii) The gauge groupG acts on C preserving the stratification which is equivariantly
perfect with respect to this action [1, Th. 7.14]. In particular there is an
isomorphism of vector spaces
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MODULI OF RANK THREE STABLE BUNDLES 19

Hk

G(C;Q) �=
M
�2M

H
k�2d�
G (C�;Q) = Hk

G(C
ss;Q)�

M
�6=�0

H
k�2d�
G (C�;Q):

The restriction map H�
G(C;Q)! H�

G(C
ss;Q) is the projection onto the sum-

mand H�
G(C

ss;Q) and so the kernel is isomorphic as a vector space toM
k>0

M
�6=�0

H
k�2d�
G

(C�;Q): (8)

Remark 3. We can at this point use a dimension argument to show that the
Mumford relations are generally not complete when the rank n is greater than
two. From the isomorphism (8) we can see that for the Mumford relations to be
complete it is necessary that the least degree of a Mumford relation must be less
than or equal to the smallest real codimension of an unstable stratum. The degree
of �k

r;S
equals 2(n�g+��nr�k)�jSjwhich is least when r = �1; k = n�1; and

S = f1; : : : ; 2gg: So the smallest degree of a Mumford relation is 2(�+(n�1)�g):
However a simple calculation minimising the codimension formula (7) shows that
the least real codimension of an unstable stratum is 2(�+(n� 1)�g) when � < n=2
and is 2(n � � + (n � 1)�g) when � > n=2. Hence the Mumford relations are
not complete when n > 3 and � > n=2: A similar argument shows that the dual
Mumford relations are not complete when � < n=2 since the smallest degree of
a dual Mumford relation is 2(n � � + (n � 1)�g): Clearly however this simple
argument does not tell us anything concerning the union of the Mumford and dual
Mumford relations.

To conclude this section we will describe a set of criteria for the completeness
of a set of relations in H�(M(n; d);Q) and reformulate the Mumford and dual
Mumford relations in a way more suited to these criteria. Consider the formal
power series

c(�!V)(t) =
X
r>0

cr(�!V) � t
r 2 H�

G(C;Q)[[t]]:

The vanishing of the image of cr(�!V) in H�(M(n; d);Q) for r > n�g + � is
equivalent to the image of c(�!V)(t) being a polynomial of degree at most n�g + �
or equally to the image of

	(t) = tn�g+�c(�!V)(t
�1)

being a polynomial of degree at most n�g + � in H�(M(n; d);Q)[t]: If we write
	(t) as the series

	(t) =

�gX
r=�1

(�0
r + �1

rt+ � � �+ �n�1
r tn�1)(~
(t))r;
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20 RICHARD EARL

where ~
(t) = tn + a1t
n�1 + � � � + an then the Mumford relations are equivalent

to the vanishing of the images of �k
r;S
(r < 0; 0 6 k 6 n� 1; S � f1; : : : ; 2gg) in

H�(M0(n; d);Q) when we write

�kr =
X

S�f1;:::;2gg

�kr;S
Y
s2S

bs1: (9)

We will refer to �k
r;S
(r < 0; 0 6 k 6 n � 1; S � f1; : : : ; 2gg) as the Mumford

relations.
Similarly we know that the restriction of

	�(t) = tng��c(�!(V
� 
 ��L))(�t�1)

to H�(M(n; d);Q) is a polynomial. As before we may put 	�(t) in the form

	�(t) =

�gX
r=�1

(�0
r + �1

r t+ � � �+ �n�1
r tn�1)(~
(t))r;

where ~
(t) = tn + a1t
n�1 + � � � + an and similarly we write

�kr =
X

S�f1;:::;2gg

�kr;S
Y
s2S

bs1: (10)

We will refer to �k
r;S
(r < 0; 0 6 k 6 n�1; S � f1; : : : ; 2gg) as the dual Mumford

relations.
The motivation for this is that the restrictions of �k

r;S
and �k

r;S
to the strata C�

are easier to calculate in this form. This is a crucial step in applying the following
completeness criteria.

Given � = (�1; : : : ; �n); � = (�1; : : : ; �n) 2 M then we write � � � if there
exists T , 1 6 T 6 n, such that

�i = �i for T < i 6 n and �T > �T :

We write � � � if � � � or � = �: A few easy calculations verify that � is a total
order on M with minimal element �0, the semistable type. For an unstable type �
we will write �� 1 for the type previous to � with respect to � :

PROPOSITION 4 (Completeness criteria). Let R be a subset of the kernel of the
restriction map

H�
G(C; Q)! H�

G(C
ss; Q):

Suppose that for each unstable type � there is a subset R� of the ideal generated
by R such that the image of R� under the restriction map

H�
G(C; Q)! H�

G(C� ; Q)
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MODULI OF RANK THREE STABLE BUNDLES 21

is zero when � � � and when � = � contains the ideal of H�
G(C�; Q) generated by

e�, the equivariant Euler class of N�, the normal bundle to the stratum C� in C:
ThenR generates the kernel of the restriction map

H�
G(C; Q)! H�

G(C
ss; Q)

as an ideal of H�
G(C; Q):

Remark 5. The proof of Proposition 4 below follows similar lines to the proof
of [8, Prop. 1]. However there are some differences–the order� does not generally
coincide with 6 – and further the proof of [8, p. 867] as given is true only for
the rank two case. For these reasons we include a proof of Proposition 4 below
although it clearly owes many of its origins to [8].

Proof. Let � 2M and define

V� =
[
���

C� :

We will firstly show that V� is an open subset of C containing C� as a closed
submanifold. Note that if � 6 � then � � � and thus by property (6) if � � � then
C� � C � V�. The stratification is locally finite and hence V� is open. Further note
that the closure of C� in V� equals

V� \
[
�>�

C� = C�

as required.
Recall now that the composition of the Thom–Gysin map

H
��2d�
G (C�;Q)! H�

G(V�;Q);

with the restriction map

H�
G(V�;Q)! H�

G(C�;Q)

is given by multiplication by the Euler class e� which is not a zero-divisor in
H�
G(C�;Q) [1, p. 569]. It follows from the exactness of the Thom–Gysin sequence

� � � ! H
��2d�
G (C�;Q)! H�

G(V�;Q)! H�
G(V��1;Q)! � � �

that the direct sum of the restriction maps

H�
G(V�;Q)! H�

G(C�;Q)�H�
G(V��1;Q)

is injective. Hence inductively the direct sum of restriction maps

H�
G(V��1;Q)!

M
���

H�
G(C� ;Q)
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22 RICHARD EARL

is injective and in particular the image of any element of R� under the restriction
map

H�
G(C;Q)! H�

G(V��1;Q)

is zero.
For any given i > 0 there are only finitely many � 2 M such that 2d� 6 i and

so for each i > 0 there exists some � such that

Hi

G(C;Q) = Hi

G(V�;Q):

Hence it is enough to show that for each � the image in H�
G(V�;Q) of the ideal

generated by R contains the image in H�
G(V�;Q) of the kernel of the restriction

map

H�
G(C;Q)! H�

G(C
ss;Q): (11)

Note that the above is clearly true for � = �0 as V�0 = Css: We will proceed by
induction with respect to �.

Assume now that � 6= �0 and that � 2 H�
G(C;Q) lies in the kernel of (11).

Suppose that the image of � in H�
G(V��1;Q) is in the image of the ideal generated

by R: We may, without any loss of generality, assume that the image of � in
H�
G(V��1;Q) is zero. Thus by the exactness of the Thom–Gysin sequence there

exists an element � 2 H
��2d�
G (C�;Q) which is mapped to the image of � in

H�
G(V�;Q) by the Thom–Gysin map

H
��2d�
G (C�;Q)! H�

G(V�;Q):

Hence the image of � under the restriction map

H�
G(C;Q)! H�

G(C�;Q)

is �e�, and by hypothesis there is an element 
 of R� which maps under the
restriction map

H�
G(V�;Q)! H�

G(C�;Q)

to �e�. Now the images of 
 and � in H�
G(V��1;Q) are both zero and we also

know the direct sum of the restriction maps

H�
G(V�;Q)! H�

G(C�;Q)�H�
G(V��1;Q)

to be injective. Thus the images of 
 and � in H�
G(V�;Q) are the same, completing

the proof. 2

Remark 6. Kirwan’s completeness criteria follow from the above criteria since
for each �

V��1 � C �
[
�>�

C� :
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MODULI OF RANK THREE STABLE BUNDLES 23

So if the restriction of a relation to H�
G(C� ;Q) vanishes for every � 6> � then

certainly the same relation restricts to zero in H�
G(C� ;Q) for any � � �.

Remark 7. Kirwan’s proof of Mumford’s conjecture [8, Sect. 2] amounts to
showing that for each unstable type � = (d1; d2) the set

R� =
[
f�0

d2�2g+1;S; �
1
d2�2g+1;Sg;

where the union is taken over all subsets S � f1; : : : ; 2gg, satisfies the above
criteria. In the rank two case the criteria of proposition 4 are in fact equivalent to
Kirwan’s completeness criteria since � and 6 coincide.

3. Chern class computations

We first describe the restriction maps H�
G(C;Q) ! H�

G(C�;Q) and our preferred
generators for H�

G(C�;Q). Let � = (d1=n1; : : : ; dP =nP ). Let C(np; dp)ss denote
the space of all semistable holomorphic structures on a fixed Hermitian vector
bundle of rank np and degree dp and let G(np; dp) be the gauge group of that
bundle. Atiyah and Bott [1, Prop. 7.12] show that the map

PY
p=1

C(np; dp)
ss ! C�;

which sends a sequence of semistable bundles (F1; : : : ; FP ) to the direct sum
F1 � � � � � FP , induces an isomorphism

H�
G(C�;Q) �=

O
16p6P

H�
G(np;dp)

(C(np; dp)
ss;Q):

Thus we can find generatorsS
P

p=1
�
fapr j 1 6 r 6 npg [ fb

p;s
r j 1 6 r 6 np; 1 6 s 6 2gg

[ffpr j2 6 r 6 npg
� (12)

corresponding to the generators of H�
G(C

ss;Q) described earlier in (2). As before
we also define

�
p;q

i;j
=

gX
s=1

b
p;s

i
b
q;s+g
j

:

To explicitly describe the restriction map note that cr(V) restricts to cr(
L

P

p=1 Vp)
where Vp is the universal bundle on C(np; dp). The restrictions of the generators
of H�

G(C;Q) can be written in terms of the generators of H�
G(C�;Q) by taking the

appropriate coefficients in the Künneth decomposition.
One problem that we will be faced with in due course is how to calculate the

coefficients of
Q
s2S b

s
1 once we have restricted to a stratum. Suppose first that the

comp3877.tex; 27/08/1997; 10:33; v.7; p.11

https://doi.org/10.1023/A:1000101030261 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000101030261


24 RICHARD EARL

stratum concerned is of type � = (d1; : : : ; dn) 2 � and take � 2 H�
G(C;Q): We

can express � in terms of the generators

far j 1 6 r 6 ng [ fbsr j 1 6 r 6 n; 1 6 s 6 2gg [ ffrj2 6 r 6 ng;

but equally we could write � in terms of

far j 1 6 r 6 ng [ fnbsr � (n� r + 1)ar�1b
s

1 j 2 6 r 6 n; 1 6 s 6 2gg

[fn2fr � n(n� r + 1)(�r�1;1 + �1;r�1)

+ (n� r + 1)(n� r + 2)ar�2�1;1 j 2 6 r 6 ng; (13)

and fbs1 j 1 6 s 6 2gg:We shall take the coefficients of
Q
s2S b

s
1 when � is expressed

in this latter form. The reason for this is that the restrictions of the elements (13)
in H�

G(C�;Q) can then be written in terms of

far1 j 1 6 r 6 ng [ fbp;s1 � b
n;s

1 j 1 6 p 6 n� 1; 1 6 s 6 2gg; (14)

(see Remark 8.) We can uniquely write the restriction of � in terms of the elements
(14) and the restrictions of bs1; (1 6 s 6 2g). Hence we may calculate the restrictions
of the coefficients of

Q
s2S b

s
1 in � by taking the coefficients ofY

s2S

(b
1;s
1 + � � � + bn;s1 )

in the restriction of � .
We deal with a general type stratum in a similar way. Let�= (d1=n1; : : : ; dP =nP ).

We define formal symbols ap;k; bp;k;s and dp;k such that the rth Chern class cr(Vp)
is given by the rth elementary symmetric polynomial in

ap;k +

2gX
s=1

bp;k;s 
 �s + dp;k 
 ! (1 6 k 6 np); (15)

when 1 6 r 6 np and 1 6 p 6 P . In terms of ap;k; bp;k;s and dp;k the restriction
map to H�

G(C�;Q) is formally the same as the restriction map when � 2 �. Again
we may uniquely write the restriction of � in terms of

P[
p=1

np[
k=1

fap;k; dp;kg [
P�1[
p=1

np[
k=1

2g[
s=1

fbp;k;s � bP;nP ;sg

[
nP�1[
k=1

2g[
s=1

fbP;k;s � bP;nP ;sg (16)

and the restrictions of bs1; (1 6 s 6 2g), and we take the coefficients ofY
s2S

(b1;s
1 + � � � + bP;s1 )
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MODULI OF RANK THREE STABLE BUNDLES 25

as before.
So in our definitions of the Mumford and dual Mumford relations, (9) and (10),

we assume first that �kr and �kr have first been written in terms of the elements (13)
before taking the appropriate coefficient.

Remark 8. It is a trivial but tedious calculation to show that the restrictions of
the elements (13) in H�

G(C�;Q) for � 2 � can indeed be written in terms of the
elements (14). Let a�r denote the restriction of ar to H�

G(C�;Q); this equals the
rth elementary symmetric product in a1

1; : : : ; a
n
1 . The restrictions of bsr and fr in

H�
G(C�;Q) equal

nX
i=1

b
i;s

1
@a�r
@ai1

;
nX
i=1

di
@a�r
@ai1

+
nX
i=1

nX
j=1

�
i;j

1;1
@2a�r

@ai1@a
j

1

:

The restrictions of the elements (13) can then be seen to equal

a�r ;
n�1X
i=1

 
n
@a�r
@ai1

� (n� r + 1)a�
r�1

!
(b
i;s

1 � b
n;s

1 )

and

n2
nX
i=1

di
@a�r
@ai1

+
n�1X
i=1

n�1X
j=1

gX
s=1

(b
i;s

1 � b
n;s

1 )(b
j;s+g
1 � b

n;s+g
1 )

�

 
n2 @2a�r

@ai1@a
j

1

� n(n� r + 1)

 
@a�

r�1

@ai1
+
@a�

r�1

@aj1

!

+ (n� r + 1)(n� r + 2)a�
r�1

�
:

The remains of this section are given over to calculating the Mumford and dual
Mumford relations. Our first problem is to obtain their generating functions from
their respective Chern characters which we can evaluate using the Grothendieck–
Riemann–Roch theorem (GRR).

LEMMA 9. Suppose that

ch(E) =
MX
i=1

�ie
�i +

NX
i=1

�ie
"i ; (17)

where the �i; �i and the "i are formal degree two classes and the �i are formal
degree zero classes. Then as a formal power series

c(E)(t) =
1X
r=0

cr(E) � t
r =

MY
i=1

(1 + �it)
�i

NY
i=1

exp
�

�it

1+ �it

�
: (18)
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26 RICHARD EARL

Proof. The relationship between the Chern character and Chern polynomial is
as follows. If ch(E) = �K

i=1e

i where 
i are formal degree two classes then

c(E)(t) =
KY
i=1

(1 + 
it):

If ch(E) is in the form of (17) then by comparing degrees we find that

MX
i=1

�i(�i)
n +

NX
i=1

n�i("i)
n�1 =

KX
i=1

(
i)
n

for each n > 0. Thus on the level of formal power series log c(E)(t) equals

KX
i=1

1X
r=1

(�1)r+1 (
it)
r

r
=

MX
i=1

�i log(1 + �it) +
NX
i=1

�it

1 + "it
;

and hence the result (18). 2

Armed with the above lemma we are now in a position to determine the Chern
polynomials c(�!V)(t) and c(�!(V

�
��L))(�t). We can, and will, calculate these
Chern polynomials in terms of the generators ar; bsr and fr of H�

G(C;Q) (see (21)
and (22)). However the expressions obtained are somewhat cumbersome and for
ease of calculation we will find the formal expressions, (19) and (20), calculated
directly from the above lemma of more use.

Proposition 10. The Chern polynomial c(�!V)(t) equals


(t)��g
nY

k=1

(1 + �kt)
Wk exp

�
Xkt

1 + �kt

�
(19)

and c(�!(V
� 
 ��L))(�t) equals


(t)3�g+1
nY

k=1

(1 + �kt)
�Wk exp

�
�Xkt

1+ �kt

�
; (20)

where �1; : : : ; �n are formal degree two classes such that their rth elementary
symmetric polynomial equals ar; and


(t) =
nY

k=1

(1 + �kt) = 1+ a1t+ � � �+ ant
n; �i;j =

gX
s=1

bsi b
s+g
j

;

Wk =
nX
i=1

fi
@�k
@ai

+
nX
i=1

nX
j=1

�i;j
@2�k
@ai@aj

; Xk =
nX
i=1

nX
j=1

�i;j
@�k
@ai

@�k
@aj

:
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In terms of the generators ar; bsr and fr for H�
G(C; Q) then c(�!V)(t) equals


(t)��g exp

8<
:
Z

t

0

0
@d

u
�

nX
i=1

fiu
i�2


(u)
+

nX
i=1

nX
j=1

�i;ju
i+j�2


(u)2

1
A du

9=
; ; (21)

and c(�!(V
� 
 ��L))(�t) equals


(t)3�g+1 exp

8<
:
Z

t

0

0
@�d

u
+

nX
i=1

fiu
i�2


(u)
�

nX
i=1

nX
j=1

�i;ju
i+j�2


(u)2

1
A du

9=
; : (22)

Proof. Now ch(V) = e
1 + � � � + e
n where 
1; : : : ; 
n are formal degree two
classes such that their rth elementary symmetric polynomial equals

cr(V) = ar 
 1 +
2gX
s=1

bsr 
 �s + fr 
 ! (1 6 r 6 n):

For each k > 0 there exist coefficients �(k)r1;:::;rn such that

(
1)
k + � � �+ (
n)

k =
X

�(k)r1;:::;rn
(c1(V))

r1 � � � (cn(V))
rn ;

where the sum is taken over all nonnegative r1; : : : ; rn such that r1 + 2r2 + � � � +
nrn = k. Now0

@a1 
 1 +
2gX
s=1

bs1 
 �s + f1 
 !

1
A
r1

� � �

0
@an 
 1 +

2gX
s=1

bsn 
 �s + fn 
 !

1
A
rn

equals

(a1)
r1 � � � (an)

rn 
 1+
nX
i=1

2gX
s=1

bsi
@

@ai
(a1)

r1 � � � (an)
rn 
 �s

+
nX
i=1

fi
@

@ai
(a1)

r1 � � � (an)
rn 
 !

+
nX
i=1

nX
j=1

�i;j
@2

@ai@aj
(a1)

r1 � � � (an)
rn 
 !:

SinceX
�(k)r1;:::;rn

(a1)
r1 � � � (an)

rn = (�1)
k + � � �+ (�n)

k;

we find that ch(V) equals

nX
k=1

e�k 
 1+
nX
i=1

2gX
s=1

nX
k=1

bsi
@

@ai
e�k 
 �s
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28 RICHARD EARL

+
nX
i=1

nX
k=1

fi
@

@ai
e�k 
 !

+
nX
i=1

nX
j=1

nX
k=1

�i;j
@2

@ai@aj
e�k 
 !: (23)

From GRR we have ch(�!V) = ��(ch(V) �1
 (1� �g!)) and hence ch(�!V) equals

nX
i=1

nX
k=1

fi
@

@ai
e�k +

nX
i=1

nX
j=1

nX
k=1

�i;j
@2

@ai@aj
e�k � �g

nX
k=1

e�k

=
nX

k=1

(��g +Wk +Xk)e
�k :

Note that Wk has degree zero and Xk has degree two. Hence by Lemma 9 we see
that c(�!V)(t) equals

(
(t))��g
nY

k=1

(1 + �kt)
Wk exp

�
Xkt

1 + �kt

�

to give equation (19).
Now d

dt log (
(t)�gc(�!V)(t)) equals

nX
i=1

nX
k=1

fi
@�k
@ai

�k
1 + �kt

+
nX
i=1

nX
j=1

nX
k=1

�i;j

 
@2�k
@ai@aj

�k
1 + �kt

+
@�k
@ai

@�k
@aj

1
(1 + �kt)2

!

=
nX
i=1

nX
j=1

�i;j

t2

 
nX

k=1

t
@2�k
@ai@aj

�
nX

k=1

 
t

1+ �kt

@2�k
@ai@aj

�
t2

(1 + �kt)2

@�k
@ai

@�k
@aj

!!

+
nX
i=1

fi

t

 
nX

k=1

@�k
@ai

�
nX

k=1

@�k
@ai

1
1 + �kt

!
: (24)

Since

nX
k=1

@�k
@ai

=
@a1

@ai
; f1 = d; and

nX
k=1

@2�k
@ai@aj

=
@2a1

@ai@aj
= 0
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then (24) reduces to

d

t
�

nX
i=1

nX
k=1

fi
@

@ai

log (1 + �kt)

t2

�
nX
i=1

nX
j=1

nX
k=1

�i;j
@2

@ai@aj

log(1 + �kt)

t2

=
d

t
�

0
@ nX
i=1

fi
@

@ai
+

nX
i=1

nX
j=1

�i;j
@2

@ai@aj

1
A log
(t)

t2
;

to give equality (21).
The calculations for the dual case follow in a similar fashion. We have that

ch(V�) = e�
1 + � � � + e�
n with 
1; : : : ; 
n as before and arguing as in the
calculation of (23) we determine that ch(V�) equals

nX
k=1

e��k 
 1 +
nX
i=1

2gX
s=1

nX
k=1

bsi
@

@ai
e��k 
 �s

+
nX
i=1

nX
k=1

fi
@

@ai
e��k 
 ! +

nX
i=1

nX
j=1

nX
k=1

�i;j
@2

@ai@aj
e��k 
 !: (25)

We know that ch(��L) = ��(e(4�g+1)!) = 1 
 (1 + (4�g + 1)!) and GRR shows
that ch(�!(V

� 
 ��L)) equals

��(ch(V�) � ch(��L) � 1
 (1� �g!)) = ��(ch(V�) � 1
 (1 + (3�g + 1)!))

which gives

ch(�!(V
� 
 ��L)) =

nX
k=1

((3�g + 1)�Wk +Xk)e
��k : (26)

Applying Lemma 9 to expression (26) gives equation (20). Expression (22) is
arrived at by calculating d

dt log ((
(t))�3�g�1c(�!(V
�
��L))(t)) and grouping the

terms in a similar manner to expression (24). 2

Remark 11. Note that �k;Wk and Xk are not elements of H�
G(C;Q). However

the direct sum of the restriction maps

H�
G(C;Q)!

M
�2�

H�
G(C�;Q)

is injective and so we may consider �k;Wk andXk as elements of
L

�2�H�
G(C�;Q)

corresponding respectively to ak1 ; dk and �k;k1;1 in each summand H�
G(C�;Q):
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Remark 12. From (21) we can find an expression for

	0(t)

	(t)
=
d� n�g

t
�

c(�!V)
0(t�1)

t2c(�!V)(t�1)
:

In fact we may write 	0(t)=	(t) as a rational function with denominator (~
(t))2

and a numerator of degree at most 2n� 1. By multiplying by 	(t) and comparing
coefficients of tk(~
(t))r; (r 6 �g; 0 6 k < n) we may derive recurrence relations
amongst the Mumford relations which determine f�kr : 0 6 k < ng in terms
of f�k

r+1; �
k
r+2 : 0 6 k < ng. Similar recurrence relations exist among the dual

Mumford relations which determine f�kr : 0 6 k < ng in terms of f�k
r+1; �

k
r+2 :

0 6 k < ng.
The calculation of the restriction of c(�!V)(t) to H�

G(C�;Q)[[t]] follows easily
from the previous proposition. As in [8, Prop. 2] this restriction can be expressed
in terms of elementary functions of the generators of H�

G(C�;Q) when � 2 �.
However for a general type � this restriction cannot be expressed so easily and we
will find formal expressions similar to (19) of more use.

COROLLARY 13. Let � = (d1=n1; : : : ; dP =nP ). The restriction toH�
G(C�; Q)[[t]]

of c(�!V)(t) equals the formal power series


�(t)
��g

PY
p=1

npY
k=1

(1 + �p
k
t)W

p

k exp

(
Xp

k
t

1+ �
p

k
t

)
(27)

and similarly the restriction of c(�!(V
� 
 ��L))(�t) to H�

G(C�; Q)[[t]] equals


�(t)
3�g+1

PY
p=1

npY
k=1

(1 + �p
k
t)�W

p

k exp

(
�Xp

k
t

1 + �
p

k
t

)
; (28)

where �p1 ; : : : ; �
p
np

are formal degree two classes such that their rth elementary

symmetric polynomial equals apr , where 
�(t) =
Q
P

p=1
Qnp

k=1(1 + �
p

k
t) is the

restriction of 
(t) to H�
G(C�; Q)[t]; and where �p;p

i;j
;W

p

k
and Xp

k
correspond to the

expressions defined in the statement of Proposition 10.
Proof. Expression (27) is immediate from the previous proposition once we note

that the restriction of ch(�!V) to H�
G(C�;Q) equals

PX
p=1

��(ch(Vp) � 1
 (1� �g!))

and recall that the Chern polynomial is multiplicative. The dual expression (28)
follows in a similar fashion. 2
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COROLLARY 14. Let � = (d1; : : : ; dn) 2 �. Then the restriction of c(�!V)(t) to
H�
G(C�; Q)[[t]] equals

nY
p=1

(1 + a
p

1t)
dp��g exp

(
�
p;p

1;1 t

1 + a
p

1t

)
:

Also the restriction of c(�!(V
� 
 ��L))(�t) to H�

G(C�; Q)[[t]] equals
nY
p=1

(1 + a
p

1t)
3�g+1�dp exp

(
��p;p1;1 t

1 + a
p

1t

)
:

Proof. Simply note that in this case �p1 = a
p

1;W
p

1 = dp and Xp

1 = �
p;p

1;1 . 2

Remark 15. Let � = (d1=n1; : : : ; dP =nP ). From the calculation (23) and since
the Chern character is additive we know that the restriction of ch(V) to H�

G(C�;Q)
equals

PX
p=1

npX
k=1

exp

8<
:�pk +

2gX
s=1

 
npX
i=1

b
p;s

i

@�
p

k

@a
p

i

!

 �s +W

p

k

 !

9=
; :

Thus in terms of our earlier notation (15) we have

ap;k = �p
k
; bp;k;s =

npX
i=1

bp;s
i

@�
p

k

@ap
i

; dp;k =W p

k
:

We end this section with two further calculations, namely the Chern polynomials
of the normal bundle N� to the stratum C� in C (necessary to the completeness
criteria) and of the tangent bundle T to the moduli space M(n; d) (needed for
generalising the proof of the Newstead–Ramanan conjecture).

LEMMA 16. Let � = (d1=n1; : : : ; dP =nP ). Then the Chern polynomial c(N�)(t)
of the normal bundle in C to the stratum C� equals

P�(t)
�g
Y
I<J

nIY
k=1

nJY
l=1

(1 + (�Jl � �Ik)t)
W I

k
�WJ

l

� exp

8<
:

��I;J
k;l
t

1 + (�J
l
� �I

k
)t

9=
; ; (29)

where

�I;J
k;l

=

gX
s=1

0
@ nIX
i=1

bI;s
i

@�I
k

@aI
i

�
nJX
j=1

bJ;s
j

@�J
l

@aJ
j

1
A

�

0
@ nIX
i=1

bI;s+g
i

@�I
k

@aI
i

�
nJX
j=1

bJ;s+g
j

@�J
l

@aJ
j

1
A ;
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32 RICHARD EARL

and

P�(t) =
Y
I<J

nIY
k=1

nJY
l=1

(1 + (�Jl � �Ik)t):

Proof. Kirwan [8, Lemma 2] showed that the normal bundle N� to C� in C,
equals

��!

 M
I<J

V�I 
 VJ

!
:

From the proof of the Proposition 10 we can find expressions for ch(VJ) and ch(V�
I
)

corresponding to (23) and (25). The GRR implies that

ch(N�) =
X
I<J

��(ch(V�I ) � ch(VJ) � 1
 (�g! � 1)):

Substituting in these expressions for ch(VJ) and ch(V�
I
)we find that ch(N�) equals

X
I<J

(
nIX
k=1

nJX
l=1

(�g +W I

k �W J

l � �
I;J

k;l
)e�

J
l
��I

k

)
:

Applying Lemma 9 produces the required result (29). 2

LEMMA 17. The total Pontryagin class ofM(n; d) equalsY
16k<l6n

(1 + (�k � �l)
2)2�g:

In particular the Pontryagin ring ofM(n; d) is generated by the elementary sym-
metric polynomials in

f(�k � �l)
2 : 1 6 k < l 6 ng:

Proof. Let T denote the tangent bundle of M(n; d). From [1, p. 582] we know
that

T + T � � 2 = �!(EndV 
 (
1
M � 1)):

Applying GRR we find

chT + chT � � 2 = 2�gch(EndV jM(n; d));

which we know to equal

2�g

 
nX

k=1

e�k

! 
nX
l=1

e��l

!
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MODULI OF RANK THREE STABLE BUNDLES 33

from expressions (23) and (25).
Now let p(T )(t) =

P
r>0 pr(T )t

r denote the Pontryagin polynomial. The rela-
tionship between the Pontryagin classes and the Chern classes is given by

p(T )(�1) = c(T )(1) � c(T )(�1) [9;Cor: 15:5]:

Hence p(T )(�1) equalsY
k 6=l

(1 + �k � �l)
2�g =

Y
k<l

(1� (�k � �l)
2)2�g:

The total Pontryagin class ofM(n; d) then equals p(T )(1) and hence the result. 2

4. A complete set of relations

Whilst we observed in Remark 3 that neither the Mumford relations nor the dual
Mumford relations are in themselves a complete set of relations when the rank is
greater than two, it is still possible to put these relations into the context of the
completeness criteria. In terms of these criteria we will show how the Mumford
relations contain subsets corresponding to all strata of the form

� = (d1=n1; : : : ; dP =nP );

wherenP = 1:Similarly the dual Mumford relations contain subsets corresponding
to all those strata with n1 = 1: From this we shall deduce that in the rank three
case the Mumford and dual Mumford relations form a complete set.

Before we continue with the main proposition we need a lemma on the vanishing
of the Mumford and dual Mumford relations on restriction to a stratum.

LEMMA 18. Let � = (d1=n1; : : : ; dP =nP ). The image of the Mumford relation
�k
r;S

under the restriction map

H�
G(C; Q)! H�

G(C�; Q);

vanishes when r < dP =nP � 2g+ 1. The image of the dual Mumford relation �k
r;S

under the restriction map vanishes when r < 2�g � d1=n1.
Proof. Recall that the Mumford relations are given by �k

r;S
(r < 0; 0 6 k 6

n� 1; S � f1; : : : ; 2gg) when 	(t) = td�n�gc(�!V)(t
�1) is written in the form

�gX
r=�1

(�0
r + �1

rt+ � � �+ �n�1
r tn�1)(~
(t))r; �kr =

X
S�f1;:::;2gg

�kr;S
Y
s2S

bs1:

For 1 6 k 6 n and any fixed integer R the power t�k appears in

�gX
r=�1

(�0
r + �1

rt+ � � �+ �n�1
r tn�1)(~
(t))r�R�1
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34 RICHARD EARL

only when r = R. Let Ci
r denote the coefficient of t�i in 	(t)(~
(t))�r�1. Then

(�0
r + �1

rt+ � � � + �n�1
r tn�1) = (tn + a1t

n�1 + � � �+ an)
nX
i=1

Ci

rt
�i

modulo negative powers of t and hence

�n�kr =
kX
i=1

ak�iC
i

r (r < 0; 1 6 k 6 n): (30)

Now let K be a fixed line bundle over M of degree D where D is the smallest
integer such that

�(QP 
K) =
dP

nP
+D > 2�g;

whereQP = EP =EP�1: Since�(Qp
K) > �(QP
K) > 2�g then �!(Vp
�
�K)

is a bundle over C(np; dp)ss of rank dp+(D��g)np for each 1 6 p 6 P: In particular

	(�!(Vp 
 ��K))(t) = tdp+np(D��g)c(�!(Vp 
 ��K))(t�1)

is a polynomial modulo relations inH�
G(np;dp)

(C(np; dp)
ss;Q). From GRR we have

that ch(�!(Vp 
 ��K)) equals

ch(�!Vp) + ��(chVp � 1
D!) = ch(�!Vp) +D

npX
k=1

e�
p

k : (31)

In terms of Chern polynomials (31) gives

c(�!(Vp 
 ��K))(t) = (
p(t))
Dc(�!Vp)(t);

where 
p(t) =
Qnp

k=1(1 + �
p

k
t). Hence

PY
p=1

	(�!(Vp 
 ��K))(t) = (~
�(t))
D	�(t) (32)

is a polynomial modulo relations inH�
G(C�;Q)where	�(t); and ~
�(t) are respec-

tively the restrictions to H�
G(C�;Q) of 	(t) and ~
(t). Thus the coefficient of t�k

in 	�(t)~
�(t)
�r�1 is a relation when r 6 �1 �D. So by (30) the restriction of

�kr to H�
G(C�;Q) vanishes when r 6 dP =nP � 2g: The dual calculation follows by

a similar argument. 2

Thus finally we come to

PROPOSITION 19. Let � = (d1=n1; : : : ; dP =nP ) with nP = 1. Then there is a
subsetR� of the ideal generated by the Mumford relations such that the image of
the ideal generated by R� under the restriction map

H�
G(C; Q)! H�

G(C� ; Q) � = ( ~d1=~n1; : : : ; ~dT =~nT );
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MODULI OF RANK THREE STABLE BUNDLES 35

is zero when either

(i) ~dT =~nT > dP or (ii) ~nT = 1; ~dT = dP ; and � 6> �;

and contains the ideal of H�
G(C�; Q) generated by e� when � = �.

Let � = (d1=n1; : : : ; dP =nP ) with n1 = 1. Then there is a subset R� of the
ideal generated by the dual Mumford relations such that the image of the ideal
generated by R� under the restriction map

H�
G(C; Q)! H�

G(C� ; Q) � = ( ~d1=~n1; : : : ; ~dT =~nT )

is zero when either

(i) ~d1=~n1 < d1=n1 or (ii) ~n1 = 1; ~d1 = d1 and � 6> �;

and contains the ideal of H�
G(C�; Q) generated by e� when � = �.

Proof. Let 	(t) = td�n�gc(�!V)(t
�1) and let CR

K
; (R < 0; 1 6 K 6 n) denote

the coefficient of t�K in 	(t)(~
(t))�R�1. Let

� = (d1=n1; : : : ; dP�1=nP�1; dP )

so that nP = 1.
Since the Chern polynomial is multiplicative the restriction in H�

G(C�;Q) of

CK

R
, which we will write as CK;�

R
, equals the coefficient of t�1 in

tK�1
PY
p=1

	p(t)(~
p(t))
�R�1; (33)

where

	p(t) = tdp�np�gc(�!Vp)(t
�1); ~
p(t) = tnp + ap1t

np�1 + � � �+ apnp ;

for 1 6 p 6 P . Further from the previous lemma we know that CK;�

R
vanishes

when R < �D = dP � 2g + 1.
We facilitate the proof of Proposition 19 with the following lemma and corol-

laries

LEMMA 20. Let �(t) equal

td�ndP+(n�1)�g
P�1Y
p=1

npY
k=1

(1+(�p
k
�aP1 )=t)

W
p

k
+�g�dP exp

8<
:

�p;P
k;1

t+ �p
k
� aP1

9=
; : (34)

Then modulo relations in H�
G(C�; Q),

CK;�

�D
= (�aP1 )

K�1(�P;P1;1 )g�;

where � is the constant coefficient of �(t).
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36 RICHARD EARL

Proof. From Corollary 14 we know that

	P (t)(~
P (t))
D�1 = (t+ aP1 )

�g exp

8<
:

�
P;P

1;1

t+ aP1

9=
; ;

where �P;P1;1 =
Pg

s=1 b
P;s

1 b
P;s+g
1 . Also in a Laurent series the coefficient of t�1 is

invariant under transformations such as t 7! t� aP1 : So from (33) CK;�

�D
equals the

coefficient of t�1 in

(t� aP1 )
K�1t�g exp (�P;P1;1 =t)

P�1Y
p=1

	p(t� aP1 )(
~
p(t� aP1 ))

D�1: (35)

From the proof of Lemma 18 (32) we know that

	p(t)(~
p(t))
D�1 = 	(�!(Vp 
 ��L))(t);

where L is a fixed line bundle over M of degree D � 1: For each p 6= P , Qp 
 L
is a semistable bundle of slope

dp

np
� dP + 2�g > 2�g:

Hence�!(Vp
�
�L) is a bundle overC(np; dp)ss and	p(t)(~
p(t))

D�1 is a polyno-
mial modulo relations in H�

G(np;dp)
(C(np; dp)

ss;Q): As (�P:P1;1 )g+1 = 0 it follows

from (35) that CK;�

�D
equals the constant coefficient of

(�P;P1;1 )g(t� aP1 )
K�1

P�1Y
p=1

	p(t� aP1 )(
~
p(t� aP1 ))

D�1 (36)

modulo relations in H�
G(C�;Q).

Since �np

k=1W
p

k
= dp then we know from Corollary 13 that 	p(t� aP1 ) equals

(~
p(t� aP1 ))
��gtdp

npY
k=1

(1 + (�p
k
� aP1 )=t)

W
p

k exp

(
X

p

k

t+ �p
k
� aP1

)
:

Recall from Lemma 16 that

�p;P
k;1 =

gX
s=1

 
npX
i=1

bp;s
i

@�p
k

@ap
i

� bP;s1

! 
npX
i=1

bp;s+g
i

@�p
k

@ap
i

� bP;s+g1

!
;

and we also have that

Xp

k
=

gX
s=1

 
npX
i=1

bp;s
i

@�
p

k

@ap
i

! 
npX
i=1

bp;s+g
i

@�
p

k

@ap
i

!
:
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Since

(�
P;P

1;1 )g = (�1)g�g=2g!
2gY
s=1

b
P;s

1 ;

then

(�
P;P

1;1 )g(�
p;P

k;1 )
q = (�

P;P

1;1 )g(X
p

k
)q (q > 0):

Thus by (36) and the identity ~
p(t� aP1 ) = tnp
Qnp

k=1(1+ (�
p

k
� aP1 )=t); we have

that CK;�

�D equals the constant coefficient of

(�
P;P

1;1 )g(t� aP1 )
K�1�(t):

Since (�P;P1;1 )g�(t) is a polynomial modulo relations in H�
G(C�;Q) then the Lemma

follows. 2

COROLLARY 21. Define CK
R;S

(R < 0; 1 6 K 6 n; S � f1; : : : ; 2gg) by

CK

R =
X

S�f1;:::;2gg

CK

R;S

Y
s2S

bs1;

writing CK

R;S
in terms of the elements (13) and also define ~ar;~bsr and ~fr by

cr(
P�1M
p=1

Vp) = ~ar 
 1 +
2gX
s=1

~bsr 
 �s + ~fr 
 !:

Then the restriction of CK
�D;S to H�

G(C�; Q) equals a nonzero constant multiple of

(aP1 )
K�1

Y
s62S

(~bs1 � (n� 1)bP;s1 )� (37)

for any subset S � f1; : : : ; 2gg.
Proof. We know that (�P;P1;1 )g equals

(�1)g�g=2g!
2gY
s=1

bP;s1

= (�1)g�g=2n�2gg!
2gY
s=1

((~bs1 + b
P;s

1 )� (~bs1 � (n� 1)bP;s1 ));

and also that the restriction of bs1 in H�
G(C�;Q) equals ~bs1 + bP;s1 : Further

~bs1 � (n� 1)bP;s1 =
P�1X
p=1

npX
k=1

 
npX
i=1

bp;s1
@�p

k

@a
p

i

� bP;s1

!
:
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38 RICHARD EARL

So the corollary follows once we note from (34) that �(t), and hence �, can be
written in terms of the elements (16). 2

COROLLARY 22. Let � equal[
f�n�1

�D;S
; : : : ; �0

�D;Sg; (38)

where the union varies over all subsets S � f1; : : : ; 2gg. Then all elements of the
form

n�1Y
k=2

( ~fk)
mk

n�1Y
k=1

Y
s2Sk

~bsk

n�1Y
k=1

(~ak)
rk(aP1 )

r
Y
s2S

b
P;s

1 � (39)

lie in the restriction of the ideal generated by�, where r; r1; : : : ; rn�1;m2; : : : ;mn�1

are arbitrary nonnegative integers and S; S1; : : : ; Sn�1 are subsets of f1; : : : ; 2gg.
Proof. Let (�) denote the ideal of H�

G(C;Q) generated by �. Using induction
on (30) we know that the restriction of CK

�D;S lies in the image of (�). From (37)

and since bs1 restricts to ~bs1 + b
P;s

1 it follows that all elements of the form

(aP1 )
K�1

Y
s2S1

~bs1
Y
s2S2

bP;s1 �

for arbitrary S1; S2 � f1; : : : ; 2gg and 1 6 K 6 n, lie in the restriction of (�): The
restriction of ak in H�

G(C�;Q) equals ~ak + ~ak�1a
P
1 . By noting that (aP1 )

r equals

(~a1 + aP1 )(a
P
1 )

r�1 � (~a2 + ~a1a
P
1 )(a

P
1 )

r�2 + � � �

+(�1)n�1(~an�1a
P
1 )(a

P
1 )

r�n

for r > n, we see that all elements of the form

(aP1 )
r
Y
s2S1

~bs1
Y
s2S2

bP;s1 �� (r > 0)

lie in the restriction of (�). Finally working inductively on the variables r1; : : : ; rn�1;
S2; S3; : : : ; Sn�1 and m2;m3; : : : ;mn�1 in that order we find that all elements of
the form (39) lie in the image of (�) since under the restriction map H�

G(C;Q)!
H�
G(C�;Q)

ak 7! ~ak + ~ak�1a
P

1 ; bsk 7!
~bsk + aP1

~bsk�1 + ~ak�1b
P;s

1 ;

and

fk 7! ~fk+dP ~ak�1+a
P

1
~fk�1+

gX
s=1

(~bsk�1b
P;s+g
1 +bP;s1

~bs+g
k�1): 2(40)

comp3877.tex; 27/08/1997; 10:33; v.7; p.26

https://doi.org/10.1023/A:1000101030261 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000101030261


MODULI OF RANK THREE STABLE BUNDLES 39

We now continue with the proof of Proposition 19. Let C0 = C(n� 1; d� dP ) and
let G0 = G(n� 1; d � dP ): Let �0 = (d1=n1; : : : ; dP�1=nP�1) and let e�0 denote
the equivariant Euler class of the normal bundle to C0

�0
in C0: Let

U�0 = C0 �
[

�0>�0

C0�0 :

Then U�0 is an open subset of C0 which contains C0
�0

as a closed submanifold. So
we have the maps

H
��2d�0
G0

(C0
�0

;Q)! H�
G0
(U�0 ;Q)! H�

G0
(U�0 � C

0
�0

;Q)

H�
G0
(C0;Q)

H�
G0
(C0

�0
;Q).

?

?

H

H

H

H

H

H
Hj

multiplication by e�0

Let a0r; b
s
r

0 and f 0r denote the generators of H�
G0(C

0;Q). Also take � 0 6> �0 and let

âr; b̂
s
r; f̂r denote the restrictions of a0r; b

s
r

0; f 0r inH�
G0(C

0
�0

;Q). Since the stratification
is equivariantly perfect then the restriction map

H�
G0(C

0;Q)! H�
G0(U�0 ;Q)

is surjective [8, p. 859]. From the exactness of the Thom–Gysin sequence we
have that for every element of the form �e�0 in H�

G0(C
0
�0

;Q)e�0 there is some
�(a0r; b

s
r

0; f 0r) in H�
G0(C

0;Q) such that

�(~ar;~b
s

r;
~fr) = �e�0 and �(âr; b̂

s

r; f̂r) = 0:

Since every element of the form (39) lies in the restriction of (�) to H�
G(C�;Q)

then every element of the form

�(~ar;~b
s

r;
~fr)(a

P

1 )
r
Y
s2S

bP;s1 � (r > 0; S � f1; : : : ; 2gg) (41)

similarly lies in the restriction of (�). Now let � = (� 0; dP ) with � 0 6> �0. Note that
the restriction map

H�
G(C;Q)! H�

G(C� ;Q)

is formally the same as (40) but with âr; b̂sr; f̂r replacing ~ar;~bsr; ~fr. Thus there are
elements of (�) which restrict to (41) under (40) and have restriction

�(âr; b̂
s

r; f̂r)(a
P

1 )
r
Y
s2S

bP;s1 �̂ = 0
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in H�
G(C� ;Q).

Define R� to be all those elements of (�) which restrict to an element of the
form

�e�0(a
P

1 )
r
Y
s2S

b
P;s

1 � (r > 0; S � f1; : : : ; 2gg; � 2 H�
G0(C

0
�0 ;Q));

in H�
G(C�;Q) and which restrict to zero in H�

G(C� ;Q) for any � = (� 0; dP ) with
� 0 6> �0.

From the definition of � (34) we know that e�0� is the constant coefficient of

(�1)d�0 td�0 c(N�0)(�t
�1)�(t); (42)

where N�0 is the normal bundle to C0
�0

in C0 and d�0 is the codimension of C0
�0

in
C0. From Lemma 16 and the fact that

d�0 + d� ndP + (n� 1)�g = d�;

we know (42) equals

(�1)d�0 td�c(N�)(�t
�1);

which has constant coefficient (�1)d�0+d�e�: Hence the ideal

H�
G(C�;Q)e�

lies in the restriction of R� to H�
G(C�;Q).

Finally from Lemma 18 and the definition of � (38) we know that the image of
R� under the restriction map

H�
G(C;Q)! H�

G(C� ;Q) � = ( ~d1=~n1; : : : ; ~dT =~nT );

vanishes when ~dT =~nT > dP =nP proving the first half of Proposition 19.
The proof of the dual case follows in a similar fashion. 2

In the general rank case there are strata of types not covered in the previous
proposition. Moreover the strata on which the restrictions of the relations have
been demonstrated to vanish do not generally coincide with the strata mentioned in
the hypotheses of the completeness criteria. However in the rank two and rank three
cases all unstable strata are covered by the above proposition. In the rank two case
Proposition 19 shows that the Mumford relations and the dual Mumford relations
both form complete sets, simply duplicating Kirwan’s work [8] and Remark 2. In
the rank three case we have the following:

THEOREM 1. The Mumford and dual Mumford relations together with the relation
(3) due to the normalisation of the universal bundle V form a complete set of
relations for H�(M(3; d); Q):
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Proof. The unstable strata are now of types (2,1), (1,1,1) and (1,2). From the
previous proposition we may meet the completeness criteria for the (2,1) and (1,1,1)
strata using the Mumford relations. In these cases those strata where the restriction
of R� have been shown to vanish are those strata C� such that � � �. The criteria
for the (1,2) types may be met using the dual Mumford relations. In this case those
strata where the restriction ofR� vanishes (according to Proposition 19) are those
strata C� such that � 6> � which certainly includes those strata such that � � �. 2

Remark 23. As remarked earlier it was shown in [3, Th. 4] that the Mumford rela-
tions �1

�1;S for S � f1; : : : ; 2gg generate the relation ideal ofH�(M0(2; 1);Q) as
aQ[a2; f2]-module. Evidence for this theorem appears in the Poincaré polynomial
of the relation ideal which equals [1, p. 593]

t2g(1 + t)2g

(1� t2)(1� t4)
:

Similarly in the rank three case the Poincaré polynomial of the ideal of relations
among our generators for H�(M0(3; 1);Q) equals

(1 + t2)2t4g�2(1 + t)2g(1 + t3)2g � (1 + t2 + t4)t6g�2(1 + t)4g

(1� t2)(1� t4)2(1� t6)
:

The first Mumford relation�2
�1;f1;:::;2gg has degree 4g�2 and the first dual Mumford

relation �2
�1;f1;:::;2gg has degree 4g. This strongly suggests that the relations

f�i�1;S ; �
i

�1;S : i = 1; 2; S � f1; : : : ; 2ggg;

generate the relation ideal of H�(M0(3; 1);Q) as a

Q[a2; a3; f2; f3]
 ��fb1
2; : : : ; b

2g
2 g

module.

5. On the vanishing of the Pontryagin ring

We now move on to discuss the Pontryagin ring of the moduli space in the rank
three case. For each S � f1; : : : ; 2gg we define 	S(t) and 	�

S
(t) by writing

	(t) =
X

S�f1;:::;2gg

	S(t)
Y
s2S

bs1; 	�(t) =
X

S�f1;:::;2gg

	�S(t)
Y
s2S

bs1:

Kirwan proved the Newstead–Ramanan conjecture [8, Sect. 4] by considering
relations derived from the expression

	f1;:::;2gg(t)	f1;:::;2gg(�t� a1):
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Arguing along similar lines but now considering the expression

�(t) = 	f1;:::;2gg(t)	
�
f1;:::;2gg(t);

we will show that in the rank three case the Pontryagin ring vanishes in degree
12g � 8 and above – Theorem 2 below.

LEMMA 24. Let � = (d1; d2; : : : ; dn) 2 �. The restriction of �(t) to H�
G(C�; Q)

equals

(�1)g
A(t)2g

n4g ~
�(t)
;

where

~
�(t) =
nY
p=1

(t+ a
p

1); A(t) =
nX
p=1

Y
q 6=p

(t+ a
q

1):

Proof. From Corollary 14 we know that the restriction of 	(t) to H�
G(C�;Q)

equals
nY
p=1

(t+ ap1)
dp��g exp

(
�p

t+ a
p

1

)
;

where �p = �
p;p

1;1 = �
g

s=1b
p;s

1 b
p;s+g
1 . Let vs = b

1;s
1 + � � �+ b

n;s

1 denote the restriction

of bs1 to H�
G(C�;Q) and letws

i;j
= b

i;s

1 �bj;s1 (see (14)). Then nbi;s1 = vs+�
n
j=1w

s
i;j

and hence

n2�i =

gX
s=1

vsvs+g +

gX
s=1

0
@vs nX

j=1

w
s+g
i;j

+
nX
j=1

ws

i;jvs+g

1
A

+

gX
s=1

nX
j=1

nX
k=1

ws

i;jw
s+g
i;k

:

Note that
nX
p=1

�p
t+ ap1

=
1

~
�(t)

nX
i=1

X
q 6=i

�i(t+ aq1): (43)

Thus (43) equals

1

n2 ~
�(t)

(
A(t)

gX
s=1

vsvs+g +

gX
s=1

(Bs(t)vs+g + vsBs+g(t)) + �(t)

)
;

where

A(t) =
nX
i=1

Y
q 6=i

(t+ aq1); Bs(t) =
nX
i=1

nX
j=1

ws

i;j

Y
q 6=i

(t+ aq1);
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�(t) =
nX
i=1

nX
j=1

nX
k=1

gX
s=1

ws

i;jw
s+g
i;k

Y
q 6=i

(t+ a
q

1):

The exponential of (43) equals

exp

(
�(t)

n2 ~
�(t)

)
gY

s=1

"
1 +

Bs(t)vs+g + vsBs+g

n2 ~
�(t)

+

 
A(t)

n2 ~
�(t)
�

BsBs+g

n4 ~
�(t)2

!
vsvs+g

#
:

The coefficient of
Q2g
s=1 vs in the above then equals

(�1)g�g=2 exp

(
�(t)

n2 ~
�(t)

)
gY

s=1

 
A(t)

n2 ~
�(t)
�

BsBs+g

n4 ~
�(t)2

!
;

or equivalently

(�1)g�g=2 exp

(
�(t)

n2 ~
�(t)

) 
A(t)

n2 ~
�(t)

!g
exp

(
��(t)

n2A(t)~
�(t)

)
;

where �(t) = �g

s=1Bs(t)Bs+g(t). Thus the restriction of	f1;:::;2gg(t) toH�
G(C�;Q)

equals

(�1)g�g=2

0
@ nY
p=1

(t+ ap1)
dp��g

1
A exp

(
�(t)

n2 ~
�(t)

) 
A(t)

n2 ~
�(t)

!g

exp

(
��(t)

n2A(t)~
�(t)

)
;

and similarly the restriction of 	�
f1;:::;2gg(t) to H�

G(C�;Q) equals

(�1)g�g=2

0
@ nY
p=1

(t+ ap1)
3�g+1�dp

1
A exp

(
��(t)

n2 ~
�(t)

) 
�A(t)

n2 ~
�(t)

!g

exp

(
�(t)

n2A(t)~
�(t)

)
:

The result then follows. 2

Now if we write �(t) in the form

2g�1X
r=�1

(�0
r + �1

rt+ � � � + �n�1
r tn�1)(~
(t))r;
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where ~
(t) = tn + a1t
n�1 + � � � + an then we know that the elements �kr ; (r <

0; 0 6 k 6 n� 1) lie in the kernel of the restriction map

H�
G(C;Q)! H�

G(C
ss;Q):

From Lemma 24 we know that the restriction of �(t) to H�
G(C�;Q) equals

(�1)g
A(t)2g

n4g ~
�(t)
;

for any � 2 �: Let �k;�r denote the restriction of �kr in H�
G(C�;Q): Thus we have

that

(�1)g

n4g A(t)2g =
n�1X
k=0

�
k;�

�1 t
k mod ~
�(t):

Hence by substituting t = �ai1 for each i we obtain

(�1)g

n4g

0
@ nY
p=1;p 6=i

(ai1 � a
p

1)

1
A

2g

=
n�1X
k=0

�
k;�

�1 (�a
i

1)
k:

Since the direct sum of restriction maps

H�
G(C;Q)!

M
�2�

H�
G(C�;Q)

is injective [8, Prop. 3] we have that

(�1)g

n4g

0
@ nY
p=1;p 6=i

(�i � �p)

1
A

2g

=
n�1X
k=0

�k�1(��i)
k: (44)

Solving the equations (44) we obtain

�k�1 =
(�1)g+n

n4g

nX
i=1

Ski

0
@ nY
p=1;p6=i

(�i � �p)

1
A

2g�1

; (45)

where Sk
i

equals the kth elementary symmetric polynomial in f�p : p 6= ig.
We will show later, in Proposition 27, that the relations �k�1 above are insufficient

to prove any vanishing of the Pontryagin ring in ranks greater than three. For now
consider the rank three case. We write

� = �1 � �2; � = �2 � �3; 
 = �3 � �1:

We know from Lemma 17 that the Pontryagin ring is generated by the elementary
symmetric polynomials in �2; �2 and 
2: The relations �0

�1; �
1
�1; �

2
�1 read as

(��)2g�1 + (�
)2g�1 + (
�)2g�1 = 0; (46)
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(�1 + �3)(��)
2g�1 + (�2 + �1)(�
)

2g�1 + (�3 + �2)(
�)
2g�1 = 0; (47)

(�1�3)(��)
2g�1 + (�2�1)(�
)

2g�1 + (�3�2)(
�)
2g�1 = 0: (48)

The equations (46), a1� (46) � (47), and (48) +a1� (47) �a2� (46) then show

(�2)
k(��)2g�1 + (�3)

k(�
)2g�1 + (�1)
k(
�)2g�1 = 0; (49)

for k = 0; 1; 2. Note that

(�i)
r+3 = a1(�i)

r+2 � a2(�i)
r+1 + a3(�i)

r;

and hence equation (49) holds for all nonnegative k. Further note that


2 = (a1)
2 � 4a2 + 2a1�2 � 3(�2)

2; (50)

and so combining equation (49) with equation (50) and two similar equations for
�2 and �2 we see that


2l(�2)
k(��)2g�1 + �2l(�3)

k(�
)2g�1 + �2l(�1)
k(
�)2g�1 = 0;

for any nonnegative k; l. Let r; s; t be three nonnegative integers with an even sum.
Note

2� = (a1 � 3�2)� 
; 2� = (3�2 � a1)� 
;

and hence (�r�s + �s�r)
t; when written in terms of a1; �2 and 
 is an even
function in 
.

Now any element of the Pontryagin ring can be written as a sum of elements of
the form

F (u; v; w) = �u�v
w + �v�w
u + �w�u
v + �u�w
v

+�v�u
w + �w�v
u;

where u+ v + w is even. From the argument above we know that

F (2g � 1 + r; 2g � 1 + s; t) = 0; (51)

for r; s; t > 0 and r + s+ t even. If u > 1 then we have

F (u; v; w) = �F (u� 1; v; w + 1)� F (u� 1; v + 1; w); (52)

since �+ � + 
 = 0.
Suppose now that u > v > w. We claim F (u; v; w) = 0 if u+ v+w > 6g� 4:

Note that

maxfu; v; wg > maxfu� 1; v + 1; w + 1g;

unless u � v equals zero or one. In either case we find that u > v > 2g � 1 and
hence F (u; v; w) = 0 by (51). Hence by repeated applications of identity (52) we
see that F (u; v; w) = 0 when u+ v + w > 6g � 4 and so we have:
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THEOREM 2. The Pontryagin ring of the moduli space M(3; d) vanishes in
degrees 12g � 8 and above.

Remark 25. Theorem 2 falls short of Neeman’s conjecture [10] which states that
the Pontryagin ring ofM(n; d) should vanish in degrees above 2gn2�4g(n�1)+2.
When n = 3 this gives 10g + 2.

Remark 26. In the rank two case the relations (45) show that

((a1)
2 � 4a2)

g = 0

and that the Pontryagin ring of M(2; d) vanishes in degrees greater than or equal
to 4g, duplicating Kirwan’s proof of the Newstead–Ramanan conjecture.

To conclude we show now that the relations �k�1 are inadequate to show any
vanishing of the Pontryagin ring when n > 4. From equation (45) we see that
the ideal of the Pontryagin ring is contained in the ideal generated by the formal
expressions

0
@ nY
p=1;p 6=i

(�i � �p)

1
A

2g�1

: (53)

Let I denote the ideal generated by the relations (53) and consider this as an
ideal of C[�1; : : : ; �n]. By Hilbert’s Nullstellensatz the radical

p
I of I consists

of those elements of the Pontryagin ring which vanish on the intersection of the
subspaces given byY

p6=i

(�i � �p) = 0; i = 1; : : : ; n: (54)

We shall consider the even and odd cases for n separately.
(i) n is even – write n = 2m: The intersection of the subspaces (54) consists of

(2m)!=(2mm!) distinct m-dimensional subspaces of Cn: One of these subspaces
is given by the equations

�2k�1 = �2k; k = 1; : : : ;m: (55)

We know from Lemma 17 that the total Pontryagin class p(T ) of M(n; d) equalsY
16k<l6n

(1 + (�k � �l)
2)2�g;

and in the subspace (55) p(T ) then equalsY
16<l6m

(1 + (�2k�1 � �2l�1)
2)8�g:

In particular we see that none of the Pontryagin classes of M(n; d) vanish on the
subspace (55).
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(ii) n is odd – write n = 2m+1. The intersection of the subspaces (54) consists
of (2k+1)!=(3 �2k(k�1)!) distinct k-dimensional subspaces ofCn. One of these
subspaces is given by the equations

�1 = �2 = �3; �2k = �2k+1; k = 2; : : : ;m: (56)

In the subspace (56) the total Pontryagin class of M(n; d) equals0
@ Y

26k6m

(1 + (�1 � �2k)
2)12�g

1
A
0
@ Y

26k<l6m

(1 + (�2k � �2l)
2)8�g

1
A :

In particular we see that none of the Pontryagin classes of M(n; d) vanish on the
subspace (56).

Thus we see that none of the Pontryagin classes pr(T ) are nilpotent modulo the
formal relations (53). Hence:

PROPOSITION 27. For n > 4 the Pontryagin classes pr(T ) 2 H4r(M(n; d); Q)
are not nilpotent modulo �k�1 for 0 6 k 6 n� 1. In particular these relations are
inadequate to prove any non-trivial vanishing of the Pontryagin ring.
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