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Abstract. The cohomology ring of the moduli space M (n, d) of semistable bundles of coprime rank
n and degree d over a Riemann surface M of genus g > 2 has again proven arich source of interest
in recent years. The rank two, odd degree case is now largely understood. In 1991 Kirwan [8] proved
two long standing conjectures due to Mumford and to Newstead and Ramanan. Mumford conjectured
that a certain set of relations form a complete set; the Newstead-Ramanan conjecture involved the
vanishing of the Pontryagin ring. The Newstead—Ramanan conjecture was independently proven by
Thaddeus [15] as a corollary to determining the intersection pairings. As yet though, little work has
been done on the cohomology ringin higher rank cases. A simplenumerical calculation showsthat the
Mumford relations themselves are not generally complete when n > 2. However by generalising the
methods of [8] and by introducing new relations, in a sense dua to the original relations conjectured
by Mumford, we prove results corresponding to the Mumford and Newstead-Ramanan conjecturesin
therank three case. Namely we show (Sect. 4) that the Mumford relations and these ‘ dual’ Mumford
relations form a complete set for the rational cohomology ring of M (3, d) and show (Sect. 5) that
the Pontryagin ring vanishes in degree 12¢g — 8 and above.
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1. Introduction

Let M(n,d) denote the moduli space of semistable holomorphic vector bundles
of coprime rank n and degree d over a Riemann surface M of genus g > 2.
Throughout this article we will write

g=g-1

Recall that a holomorphic vector bundle £ over M is said to be semistable (resp.
stable) if every proper subbundle F' of E satisfies

p(F) < p(E)  (resp. u(F) < p(E)),

where 1 (F') = degree(F') /rank(F') is the slope of F'. Nonsemistable bundles are
said to be unstable. When n and d are coprime the stable and semistable bundles
coincide.

Let £ beafixed C°° complex vector bundle of rank » and degreed over M. Let
C bethe space of all holomorphic structureson £ and let G, denote the group of all
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C'*° complex automorphisms of £. Atiyah and Bott [1] identify the moduli space
M(n,d) with the quotient C**/G,. where C** is the open subset of C consisting
of all semistable holomorphic structures on £. In this construction both C and G,
are infinite dimensional; there exist other constructions [7] of the moduli space
M(n,d) as genuine geometric invariant theoretic quotients which are in a sense
finite dimensional approximations of Atiyah and Bott’s construction.

Thereis aknown set of generators [12, 1] for the rational cohomology ring of
M(n,d) asfollows. Let V' denote a universal bundle over M(n,d) x M. Atiyah
and Bott then define elements

ar € H¥(M(n,d);Q), b € H" 1(M(n,d); Q),

fr € H"72(M(n,d); Q), L)
wherel < r < n,1 < s < 2g by writing
29
CT(V):ar®1+Zbﬁ®as+fr®w 1<r<n, 2
s=1

where w is the standard generator of H?(M; Q) and ay, ..., az, form a fixed
canonical cohomology basis for H(M; Q). Thering H*(M (n, d); Q) is freely
generated asagraded algebraover Q by theelements(1). Noticefrom the definition
that f1 = d. We further introduce the notation

g9
o s+g
Eij = bibiTo.
s=1

The universal bundle V' is not unique, athough its projective class is. We may
tensor V' by the pullback to M (n, d) x M of any holomorphic line bundle K over
M(n,d) to give another bundle with the same universal property. This process
changesthe generators of H* (M (n,d); Q). In particular it changesa by ne1 (K)
and c1(m V') by (d — ng)c1(K) where n: M(n,d) x M — M(n,d) isthefirst
projection and m is the direct image map from K -theory [5, p. 436]. Since n and
d are coprime there exist integers « and v such that

un +v(d —ng) = 1.
Thusif wetake K to be
det(V] yy.q))" ® (detmV)”
then V @ n*(K ~1) isanew universa bundle such that
uay +ver(mV) = 0. (3)

Following Atiyah and Bott [1, p. 582] we replace V' by this normalised universal
bundle.
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Thenormalised bundle V isuniversal inthesensethat itsrestrictionto {[E]} x M
isisomorphic to E for each semistable holomorphic bundle £ over M of rank n
and degree d and where [E] isthe classof £ in M(n,d). Then the stalk of the ith
higher direct image sheaf Riw.V (see[5, Sect. 3.8]) at [F] is

H'(n N[E]), Vig-1qm)) = H (M, Viigjxn) = H' (M, E).

Tensoring E with a holomorphic line bundle over M of degree D gives an
isomorphism between M(n, d) and M(n,d+nD). Sincen and d are coprime we
may assume without any loss of generality that 2gn < d < (2g + 1)n and so we
will write

d=2ng+6 (0<d<n),

from now on. From [11, Lemma 5.2] we know that H*(M,E) = O for any
semistable holomorphic bundle E of slope greater than 2g. Thus m V' isin fact a
vector bundle over M(n, d) with fibre HO(M, E) over [E] € M (n, d) and, by the
Riemann—Roch theorem, of rank d — ng = ng + 4.

In particular if we expressthe Chern classes ¢, (m V') in terms of the generators
ar, by and f, of H*(M(n,d); Q) then knowing theimages of the rth Chern classes
in H*(M(n,d); Q) vanishfor r > ng+ J givesusrelationsin terms of the images
of the generatorsin H* (M (n,d); Q). Now from [1, Prop. 9.7] we know that

H*(M(n,d); Q) = H"(Mo(n,d); Q) ® H" (Jac(M); Q), (4)

where Jac(M ) is the Jacobian of the Riemann surface M and Mog(n,d) is the
moduli space of rank n bundles with degree d and fixed determinant line bun-
dle. H*(Jac(M); Q) isan exterior algebraon 2g generators and we can choose the
isomorphism (4) so that these generatorscorrespondto b, . . . , bfg and theelements
a2y, an, b3, ... b2, fa, ..., f, correspondtothegeneratorsof H*(Mo(n,d); Q).
Sowecanfindrelationsintermsof ax, . .. , a,, b3, ..., b2, and f>, ..., f, by equat-
ing to zero the coefficientsof [],. ¢ b3 inthe Chernclassesc, (m V) forr > ng + 0
andfor every subset S C {1,...,2g}.

Mumford's conjecture, as proven by Kirwan [8, Sect. 2], was that when the
rank n is two then these relations together with the relation (3) from normalising
the universal bundle V' provide a complete set of relations in H*(Mg(2,d); Q).
Subsequently a stronger version of Mumford's conjecture has been proven [3]
showing therelationscoming fromthefirst vanishing Chern classcp,(m V') generate
the relation ideal of H*(Mo(2,d)) asaQlaz, f2]-module.

Remark 1. In the rank two case the Mumford relations above differ somewhat
from the relations &, introduced by Zagier and studied in [2, 6, 14, 17]. In the
notation of [17]

—t—ap (—1)99/2t9 1
Wy 2g}< 5 >= 21t Fo(t),
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where Ty 5.1(z) denotes the coefficient of [122, b in T(z) = S,50 ¢ (mV)
229717 and Fo(t) = 2%, &,+t". In the notation of [6] &, appearsas ¢,./r! andin
[14] as ®(") /1.

We will demonstrate later (Remark 3) that the Mumford relations are not com-
pletewhentherank n isgreater than two. For now weintoduce anew set of relations.
Let L beafixedlinebundleover M of degree4g+1andlet¢: M(n,d)x M — M
be the second projection. Then m (V* ® ¢* L) isavector bundle over M(n,d) of
rank (3g + 1)n — d = ng — & with fibore H°(M, E* ® L) over [E]. By equating
to zero the coefficients of [] ¢ b3 in the Chern classes ¢, (m (V* ® ¢*L)) for
r > ng — ¢ and for every subset S C {1,...,2¢} we may find relations in terms
of thegeneratorsay, . . ., an, b3, ..., 029, and fo, . . . , f,.. Wewill refer to these new
relations as the dual Mumford relations.

Remark2. Themap £ — E*® L inducesan automorphismof H*(M(2,d); Q)
mapping the Mumford relations to the dual Mumford relations and vice versa.
Hence we can deduce that the dual Mumford relations are complete when the rank
istwo from Kirwan's proof of Mumford's conjecture [8, Sect. 2].

Our first result (to be proved in Section 4) now reads as:

THEOREM 1. The Mumford and dual Mumford relationstogether with therelation
(3) due to the normalisation of the universal bundle V' form a complete set of
relationsfor H*(M (3,d); Q).

The Newstead—Ramanan conjecturestates[12, Sect. 5a] that the Pontryaginring
of the tangent bundleto M (2, d) vanishesin degrees4g and higher. The conjecture
was proven independently by Thaddeus[15] and Kirwan [8, Sect. 4], and has been
proven more recently by King and Newstead [6] and Weitsman [16]. In Section 5
wewill useasimilar method to Kirwan’s but now also involving the dual Mumford
relationsto prove:

THEOREM 2. The Pontryagin ring of the moduli space M (3,d) vanishes in
degrees 12¢ — 8 and above.

2. Kirwan’'sapproach

The group G. isthe complexification of the gauge group G of all smooth automor-
phisms of £ which are unitary with respect to a fixed Hermitian structureon & [1,
p. 570]. We shall write G for the quotient of G by its U (1)—centre and G.. for the
guotient of G, by its C*-centre.

There are natural isomorphisms|[1, 9.1]

H(C"/G6; Q) = H*(C"'/Gei Q) = Hy (C"1Q) = H3(C™; Q)

since the C*-centre of G, acts trivially on C**, G, acts freely on C** and G, isthe
complexification of G. Atiyah and Bott [1, Th. 7.14] show that the restriction map
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Hg(c; Q) — Hé(css; Q) is surjective. Further Hé(c; Q) & H*(BG; Q) sinceC
isan affine space[1, p. 565]. So putting this all together we have

H*(BG;Q) = HZ(C; Q) — HZ(C*; Q) = H*(M(n,d); Q) ®)

isasurjection.

As shown in [1, Prop. 2.4] the classifying space BG can be identified with
the space Map, (M, BU (n)) of al smooth maps f: M — BU(n) such that the
pullback to M of the universal vector bundle over BU (n) has degreed. If we pull
back this universal bundle using the evaluation map

Map,(M,BU(n)) x M — BU(n): (f,m) — f(m),

then we obtain arank n vector bundle V over BG x M. If werestrict the pullback
bundleinduced by the maps

C¥xEGXxM —CxEGxM—CxgEGxMZ= BGxM

to C** x {e} x M for somee € EG then we obtain a G—equivariant holomorphic
bundleonC** x M. TheU (1)—centreof G actsasscalar multiplication on thefibres,
and the associated projective bundle descends to a holomorphic projective bundle
over M(n,d) x M whichisin fact the projective bundle of V' [1, pp. 579-580].
By a slight abuse of notation we define elements a,., b%, f, in H*(BG; Q) by
writing
2g
V) =a,01+) BRa,+f®w 1<r<n.
s=1
Atiyah and Bott show [1, Prop. 2.20] that the ring H*(BG; Q) is freely generated
as agraded algebraover Q by the elements a,, b}, f,. The only relations amongst
these generators are that the a,. and f,, commute with everything else and that the
b; anticommute with each other.
Thefibration BU (1) — BG — BG induces an isomorphism [1, p. 577]

H*(BG;Q) = H*(BG;Q) ® H"(BU(1); Q).

Thegeneratorsa,, b2 and f, of H*(BG; Q) can be pulled back viaa section of this
fibration to give rational generators of the cohomology ring of BG. We may if we
wish omit a; sinceitsimagein H*(Bg; Q) can be expressed in terms of the other
generators. The only other relations are again the commuting of the «, and f;,
and the anticommuting of the b7. We may then normalise V suitably so that these
generatorsfor H*(BG; Q) restrict to the generatorsa,., be, f, for H*(M(n,d); Q)
under the surjection (5).

The relations amongst these generators for H* (M (n, d); Q) are then given by
the kernel of the restriction map (5) which in turn is determined by the map

H5(C;Q) = HE(C;Q) ® H*(BU(1); Q)
— HZ(C*;Q) ® H*(BU(1); Q) = Hg(C*; Q).
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In order to describe this kernel we consider Shatz’s stratification of C, the space of
holomorphic structures on £ [13]. The stratification {C,, : n € M} isindexed by
the partially ordered set M, consisting of all the types of holomorphic bundles of
rank n and degree d, as follows.

Any holomorphic bundle E over M of rank n and degree d has a canonical
filtration (or flag) [4, p. 221]

O=EyCE1C---CEp=FE

of sub-bundles such that the quotient bundles @, = E,/E,_1 are semi-stable and
w(Qp) > 1(Qp+1). We will write d,, and n,, respectively for the degree and rank
of @,. Given such afiltration we define the type of E to be

p=(u(Qa), .., u(Qp)) € Q",

wheretheentry 1.(Q,,) isrepeated n,, times. When there is no chance of confusion
wewill alsorefer collectively to the strata of type (n1, . . ., ng) and wewill write A
for the collection of stratawithn, = 1 for each p. The semistablebundleshavetype
wo = (d/n, ..., d/n) and form the unique open stratum. The set M of all possible
typesof holomorphic vector bundlesover M will provideour indexing set. A partial
order on M is defined asfollows. Let 0 = (01,...,0,,) and 7 = (11,...,7,) be
two types, we say that o > 7 if and only if

Zoj ZZT]‘ for1<ig<n—1
J<i J<i
ThesetC, C C, n € M, isdefined to be the set of all holomorphic vector bundles
of type u.
The stratification also has the following properties:

(1) The dtratification is smooth. That is each stratum C,, is a locally closed G-
invariant submanifold. Further for any yu € M [1, 7.8]

c.c e (6)
Vi

(if) Each stratum C,, is connected and has finite (complex) codimension d,, in C.
Moreover given any integer N there are only finitely many u € M such that
d, < N.Further d, isgiven by theformula[1, 7.16]

dlL = Z(nld] — njdi + nﬂljg) (7)
i>j
where d, and n;, are the degree and rank, respectively, of Q.
(i) Thegaugegroup G actsonC preserving the stratification whichiseguivariantly

perfect with respect to this action [1, Th. 7.14]. In particular there is an
isomorphism of vector spaces
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HEC;Q) = @ HE(CiQ) = HEC™: Q@ @ HY (€ Q).
peM Ko

Therestriction map H;(C; Q) — H(C**; Q) isthe projection onto the sum-
mand H(C**; Q) and so the kernel isisomorphic as a vector space to

D D Hs *(Cu Q. ®)

k>0 p#uo

Remark 3. We can at this point use a dimension argument to show that the
Mumford relations are generally not complete when the rank n is greater than
two. From the isomorphism (8) we can see that for the Mumford relations to be
complete it is necessary that the least degree of a Mumford relation must be less
than or equal to the smallest real codimension of an unstable stratum. The degree
of 0¥ ¢ equals2(ng+d —nr—k) —|S| whichisleastwhenr = -1k = n—1,and
S =11,...,2¢}. Sothe smallest degree of aMumford relationis 2(5 + (n — 1)g).
However a simple calculation minimising the codimension formula (7) shows that
the least real codimension of an unstable stratumis2(6 + (n —1)g) whend < n/2
andis 2(n — § + (n — 1)g) when 6 > n/2. Hence the Mumford relations are
not completewhenn > 3and § > n/2. A similar argument shows that the dual
Mumford relations are not complete when § < n/2 since the smallest degree of
a dual Mumford relation is 2(n — 0 + (n — 1)g). Clearly however this simple
argument does not tell us anything concerning the union of the Mumford and dual
Mumford relations.

To conclude this section we will describe a set of criteria for the completeness
of aset of relationsin H*(M(n,d); Q) and reformulate the Mumford and dual
Mumford relations in a way more suited to these criteria. Consider the formal
power series

(V) (t) = Y er(mV) -t € HE(C Q[T

r>0
The vanishing of the image of ¢, (mV) in H*(M(n,d); Q) for r > ng + 4§ is
equivalent to the image of ¢(mV)(t) being a polynomial of degree at most ng + ¢
or equally to the image of
U(t) = " 0c(mV) (¢
being a polynomial of degree at most ng + ¢ in H*(M(n,d); Q)[t]. If we write

U(t) asthe series

g
U(t)= > (o2+ort+- - +ol " H QL)
r=-—00
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where Q(t) = t" + a1t" 1 + - - - + a,, then the Mumford relations are equivalent
to the vanishing of thelmagesof orS(r <0,0<kg<n—15C{1,...,2})in
H*(Mo(n,d); Q) when we write

of= Y  ors][b )

SC{1,....29} s€S

We will refer to o) g(r < 0,0 < k <n—1,5 C {1,...,2¢}) asthe Mumford
relations.
Similarly we know that the restriction of

T*(t) = " 0c(m(V* @ ¢*L))(—t71)
to H*(M(n,d); Q) isapolynomial. As before we may put ¥*(¢) in the form
g

V()= D (Rt Q)

r=—00

where Q(t) = t" + agt" 1 + - - + a,, and similarly we write

Trk = Z Tf, g H bi. (20)

SC{1,....29} s€S

Wewill refer to 7; S(r <0,0<k<n—1,5C{1,...,29}) asthedual Mumford
relations.

The motivation for this is that the restrictions of o* r,s and T+ s tothestrataC,
are easier to calculate in thisform. Thisisacrucial step in apply| ng the following
completeness criteria.

Givenp = (1, .-y pon), v = (11,...,v,) € M thenwewriterv < p if there
existsT, 1 < T < n, such that

vi=u; forT <i<n and vy > pur.

Wewriter < pif v < porv = pu. A few easy calculations verify that < is atotal
order on M with minimal element 1., the semistable type. For an unstable type
we will write 4 — 1 for the type previousto x with respect to < .

PROPOSITION 4 (Completeness criteria). Let R be a subset of the kernel of the
restriction map

Hg(C;Q) — Hg(C™;Q).

Suppose that for each unstable type 1. there is a subset R, of the ideal generated
by R such that the image of R, under the restriction map

Hg(C;Q) — Hg(Cu: Q)
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iszerowhenv < . and when v = p containstheideal of Hf(C,,; Q) generated by
ey, the equivariant Euler class of V,,, the normal bundle to the stratumC,, in C.
Then R generatesthe kernel of the restriction map

Hg(C;Q) — Hg(C*; Q)
asanideal of H;(C; Q).

Remark 5. The proof of Proposition 4 below follows similar lines to the proof
of [8, Prop. 1]. However there are some differences-the order < doesnot generally
coincide with < — and further the proof of [8, p. 867] as given is true only for
the rank two case. For these reasons we include a proof of Proposition 4 below
although it clearly owes many of its originsto [8].

Proof. Let 1 € M and define

V.= ¢

vp

We will firstly show that V), is an open subset of C containing C,, as a closed
submanifold. Note that if v < u then v < 1 and thus by property (6) if v > p then
C, C C —V,. Thestratification is locally finite and hence V, is open. Further note
that the closure of C,, in V}, equals

vanlJc =¢,

veu

as required.
Recall now that the composition of the Thom-Gysin map

HG (i Q) = H3 (Vi Q)
with the restriction map
Hg(Vii: Q) — Hg(Cus Q)

is given by multiplication by the Euler class ¢, which is not a zero-divisor in
H(Cu: Q) [1, p. 569)]. It follows from the exactness of the Thom-Gysin sequence

= HY (i Q) = HE(Vi Q) — HE (V- 1,Q) — -+

that the direct sum of the restriction maps
Hé(vu; Q) - Hé(cu; Q) S H(;(Vu—l; Q)
isinjective. Hence inductively the direct sum of restriction maps

Hy(V1: Q) = €D H3(Ci Q)

v<p
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isinjective and in particular the image of any element of =, under the restriction
map

Hg(C;Q) = Hg(Vu-1:Q)
is zero.

For any given i > 0O there are only finitely many v € M such that 2d,, < ¢ and
so for each i > O there exists some 1 such that

HE(C;Q) = HE (Vi Q).

Hence it is enough to show that for each . the image in H;;(V,; Q) of the ideal
generated by R contains the image in H;(V,,; Q) of the kernel of the restriction

map

Hg(C:Q) — Hg(C™; Q). (11)
Note that the above is clearly true for i = p0 asV,, = C**. We will proceed by
induction with respect to <.

Assume now that 1 # po and that o € Hj(C; Q) lies in the kernel of (11).
Supposethat theimage of ain H(V,—1; Q) isintheimage of theideal generated
by R. We may, without any loss of generality, assume that the image of « in
HE(Vy-1; Q) is zero. Thus by the exactness of the Thom-Gysin sequence there

exists an element § € Hg’z‘i“ (Cyu; Q) which is mapped to the image of « in
HE(V,; Q) by the Thom-Gysin map
*—2d % .
Hg #(Cu;Q) %HQ(V/MQ)'
Hence theimage of « under the restriction map
H5(C;Q) — Hg(Cu: Q)

is Be,, and by hypothesis there is an element v of R, which maps under the
restriction map

H;(V: Q) — Hg(Cui Q)

to Be,. Now the images of v and a in HE(V,—1; Q) are both zero and we aso
know the direct sum of the restriction maps

Hy(V,;Q) — Hi(Cui Q) ® H5(Vu—1; Q)

to beinjective. Thustheimages of v and v in H(V,; Q) are the same, completing
the proof. O

Remark 6. Kirwan's completeness criteria follow from the above criteria since
for each

Viicc- G

v
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So if the restriction of a relation to HE(C,; Q) vanishes for every v ¥ p then
certainly the same relation restricts to zero in Hj(C,; Q) forany v < p.

Remark 7. Kirwan's proof of Mumford’s conjecture [8, Sect. 2] amounts to
showing that for each unstable type i = (d1, d2) the set

0 1
Ry = {02, 2911.5:0d, 20115}

where the union is taken over all subsets S C {1,...,2¢}, satisfies the above
criteria. In the rank two case the criteria of proposition 4 are in fact equivalent to
Kirwan's completeness criteria since < and < coincide.

3. Chern class computations

We first describe the restriction maps HG(C; Q) — H((C,; Q) and our preferred
generators for H;(C,; Q). Let p = (di/na,...,dp/np). Let C(ny,,d,)** denote
the space of al semistable holomorphic structures on a fixed Hermitian vector
bundle of rank n, and degree d,, and let G(n,,d,) be the gauge group of that
bundle. Atiyah and Bott [1, Prop. 7.12] show that the map

P
H C(np,dp)* — C,,
=1

which sends a sequence of semistable bundles (Fi,..., Fp) to the direct sum
F1 & --- @ Fp, induces an isomorphism

HQ CH’Q ® H(J np,dp npvd )SS;Q)'
1<p<P

Thuswe can find generators
Upes ({a |1 <r <mp} U005 | 1< <y, 1< s < 29)
U{frl2<r <np}) (12)

corresponding to the generators of H;(C**; Q) described earlier in (2). As before
we a so define

pyq Z bpasbq75+g

To explicitly describe the restriction map note that ¢,.(V) restricts to cr(eaf;:l V)
where V, is the universal bundle on C(n,,d,). The restrictions of the generators
of H;(C; Q) can bewritten in terms of the generators of H¢;(C,,; Q) by taking the
appropriate coefficientsin the Kinneth decomposition.

One problem that we will be faced with in due course is how to calculate the
coefficients of [], . 5 b3 once we have restricted to a stratum. Supposefirst that the
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stratum concerned is of type 4 = (da,...,d,) € Aandtake( € H;(C; Q). We
can express ¢ in terms of the generators

{ar | 1<r<nfU{bi|1<r<n,1<s< 2 U{fr|2<r < n},
but equally we could write ¢ in terms of

{ar 1< r<npU{nb) —(n—r+1a,_1b7|2<r < n,1<s < 29}

U{n?f, —n(n—r+1)(&-11+ &1,0-1)
+(n—r+1)(n—r+2a 2611|2<r <n}, (13)

and {b3 | 1 < s < 2g}. Weshall takethecoefficientsof [, ¢ b3 when ¢ isexpressed
in this latter form. The reason for thisis that the restrictions of the elements (13)
in H5(Cy; Q) can then be written in terms of

{af|1<r <n}U{B)” —b)"°

(see Remark 8.) We can uniquely write the restriction of ¢ in terms of the elements
(14) andtherestrictionsof b3, (1 < s < 2¢g). Hencewemay calculatetherestrictions
of the coefficients of [T, b7 in ¢ by taking the coefficients of

[1(b2" -+ 01)
sES
in the restriction of ¢.

Wedea withageneral typestratuminasimilarway. Let u = (d1/n1,...,dp/np).
We define formal symbols a?*, b7-%:¢ and dP** such that the rth Chern classc, (V)
is given by the rth elementary symmetric polynomial in

29
A"+ P Qo+ dFew (1<k < ny), (15)
s=1

1<p<n—11<s<2g}, (14)

whenl<r <nyand1 < p < P.Intermsof a?* 6% and dPF the restriction
map to Hj;(Cy; Q) isformally the same asthe restriction map when i € A. Again
we may uniquely write the restriction of ¢ in terms of

P mp P-1mnp 2
U U {ap,kjdp,k} U U U U{bp,k,s o bP,TLP,S}
p=1k=1 p=1k=1s=1
np—1 29
U U U {bP,k,s _ bP,np,S} (16)
k=1 s=1

and therestrictions of b5, (1 < s < 2¢), and we take the coefficients of

[+ 400
seS
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as before.

So in our definitions of the Mumford and dual Mumford relations, (9) and (10),
we assumefirst that o* and 7% have first been written in terms of the elements (13)
before taking the appropriate coefficient.

Remark 8. It isatrivial but tedious calculation to show that the restrictions of
the elements (13) in H;(C,; Q) for 1 € A can indeed be written in terms of the
elements (14). Let o) denote the restriction of a, to H;(C,; Q); this equals the
rth elementary symmetric product in a, . .., a}. The restrictions of b5 and f, in
H(Cui Q) equal

n n
Z 2_’ Z z

=1 zl]l l

Therestrictions of the elements (13) can then be seen to equal

I = 80’” 7,8 7,8
al', Z aal (n—r+1)a 1) (b7 = b77)

i=1
and
n—1n-1 ¢
Z + ZZZ b?l_s_ ns b] ,5+¢g bg-z,s+g)
=1 i=1j=1s=1
2 1 bl I o ©
X 28—a n(n—r+1) afl—{— 1
8@18@1 8(]/1 8@{

+ (n—r+1)(n—r+2)aff_1).

The remains of this section are given over to calculating the Mumford and dual
Mumford relations. Our first problem is to obtain their generating functions from
their respective Chern characters which we can evaluate using the Grothendieck—
Riemann—-Roch theorem (GRR).

LEMMA 9. Suppose that

M N
= Z ;e + Z Giett, (17)
=1 =1

where the 3;, §; and the ¢; are formal degree two classes and the «; are formal
degree zero classes. Then as a formal power series

00 M
t)=)> c(E (14 6;1)“ ex 18
)= am v =1 Hp{1+zt} (19
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Proof. The relationship between the Chern character and Chern polynomial is
asfollows. If ch(E) = ©X ,¢7 wherey; areformal degree two classes then

K

c(B)(t) = [T+ 7t).

i=1

If ch(E) isinthe form of (17) then by comparing degrees we find that

M N K
D ai(6:)" + D nBi(e)" = ()"
=1 =1 =1

for eachn > 0. Thus on the level of formal power serieslogc(£)(t) equals

K oo
_ r+1 7l
S 3 (-1 Zazlogl—i—ét +Zl+€z

1=1r=1

and hence the result (18). O

Armed with the above lemma we are now in a position to determine the Chern
polynomiasc(mV)(t) and c(m (V* ® ¢*L))(—t). Wecan, and will, calcul ate these
Chern polynomialsin terms of the generators a,, b; and f,. of H(C; Q) (see (21)
and (22)). However the expressions obtained are somewhat cumbersome and for
ease of calculation we will find the formal expressions, (19) and (20), calculated
directly from the above lemma of more use.

Proposition 10. The Chern polynomial ¢(mV)(t) equals

H 14 6,t) Wkexp{%} (19)
Pt k

and ¢(m (V* ® ¢*L))(—t) equals

e — Xt
Q)3 TT (1 + 6,t) ="k ex { i } 20
where 64, ...,4d, are formal degree two classes such that their rth elementary

symmetric polynomial equalsa,., and

n
Q) = [[(A+0kt) = L+ ast +---+ant®, &= Zb%”g,
k=1

Wy —'jz:j%

85k G 026y, ° - 9oy, 00

ZZ&:J Oa;0a;’ Xe = ZZ&J oda; aa '

i=1j=1 [t i=1j=1
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In terms of the generatorsa,, b} and f, for H(C; Q) then ¢(mV)(t) equals

t U 2
Q(t)_-"exp{/ (g_zfz +szz,3 +i- ) u}, (21)

=1 =1

and ¢(m(V* ® ¢*L))(—t) equals
g t d = fzuZ = gz utt
Q) ¥ exp -+ J du (22)
e[ (BT EE5) )

Proof. Now ch(V) = e + .-« + €7 where~, ..., , are forma degree two
classes such that their »th elementary symmetric polynomial equals

29
V) =a,01+) BRa;+ f®w (1<r<n).
s=1

For each k > 0O there exist coefficients p,(a’f,),,,,,nn such that

() + -+ () =28 L (caW) (V)™

where the sum is taken over al nonnegativery, ..., r, suchthatry + 2rp + -+ +
nr, = k. Now

29 T1 29 Tn
(a1®1+2bi®as+f1®w> (an®1+zbi®as+fn®w)

s=1 s=1
equals
n 29
(al)rl . rn ®1+ Zzb . (an)Tn R a
i=1s=1
- 8 T T
+Zfif(a1) Lo (an)™ Qw
+ZZ§ZJ 9a (90/] s (an)rn R w.
i=15=1
Since

S o) (@) (@)™ = (00)F 4 -+ (B0),
we find that ch(V) equals

n
DIETES 3 op ol P

i=1s=1k=1
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+22f1—66’“ Quw

i=1k=1 @i

S PIE

1=1j=1k=1 88

ek @w. (23)

From GRR we havech(mV) = m,(ch(V)-1® (1— gw)) and hencech(m V) equals

ZZfz—e‘s’“ 2.2 D6

n
o _ = O
— e
a; ’Jaalaa gZ
i=1k=1 i=1j=1k=1 J

Note that W}, has degree zero and X has degree two. Hence by Lemma 9 we see
that ¢(mV)(t) equals

H (1+ 0,t)"* exp {%}
P} k

to glve equatlon (29).
4109 (Q(t)7c(m V) (t)) equals

szz k k;
1=1k=1

Oa; 1+ ot

n o n n 2
+2225z‘,j<85k Sk +05ka5k 1 )
i=1j=1k=1

8ai8aj 140t Oa; 8—% (1 + 5kt)2

555 (S

i=1j=1 =1 0aida;

st Pa B onon

o1 1+ 6it 8aiaaj (1 + 5kt)2 da; 8aj
fi 00y, 00, 1

+; (Z das Z < Da; 1+ o5t ) @

Since
n 2 2
Z 00}, 8@1, fi=d. and 040y, 0%ay
Bal Oda;

=1 Baiaaj B 8a¢8aj =0
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then (24) reducesto

n n

__sz 0 log 1+5kt)

iTiemy Oai

& 0% log(1+ 6xt)

B Z Z Z i da;0a; 12

i=1j=1k=1

d - 0? log Q(¢
=%" (Zfz +ZZ@J8M3G> .

i=1j5=1

to give equality (21).

The calculations for the dual case follow in a similar fashion. We have that
ch(V*) = e + ... + e 7 with v1,...,7, as before and arguing as in the
calculation of (23) we determine that ch(V*) equals

S 1614333 0L g,

i=1s=1k=1 @i

+ZZfz—e 6k®w+2225”3 5a° e~ @ w. (25)

i=1k=1 @i i=1j=1k=1

We know that ch(¢*L) = ¢*(e®TD) = 1® (1 + (49 + 1)w) and GRR shows
that ch(m (V* ® ¢*L)) equals

mo(ch(V*) - ch(¢*L) - 1® (1 — gw)) = m,(ch(V*) - 1® (1 + (3§ + L)w))

which gives

n

ch(m(V* @ ¢*L)) = Y _((35+ 1) — W, + Xp)e %, (26)
k=1

Applying Lemma 9 to expression (26) gives equation (20). Expression (22) is
arrived at by calculating & log ((€2(t)) ~%9~c(m (V* ® ¢*L))(t)) and grouping the
termsin asimilar manner to expression (24). O

Remark 11. Note that 65, W}, and X, are not elements of H}(C; Q). However
the direct sum of the restriction maps

H(C:Q) — P H5(Cui Q)

HEA

isinjectiveand sowemay consider d;, Wy and X aselementsof @ ,ca H(Cp; Q)
corresponding respectively to a¥, d;, and ¢1°f in each summand H(Cyi; Q).
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Remark 12. From (21) we can find an expression for

() _d—ng  c(mV)'(th)
Ut) ot t2e(mV) (1)

In fact we may write U’(t) /¥ (t) asarational function with denominator (€2(t))?
and a numerator of degree at most 2n — 1. By multiplying by ¥(z) and comparing
coefficients of t*(Q(¢))", (r < g,0 < k < n) we may derive recurrence relations
amongst the Mumford relations which determine {o¥ : 0 < k < n} in terms
of {oF 1,0F 510 < k < n}. Similar recurrence relations exist among the dual
Mumford relations which determine {7 : 0 < k < n} interms of {7} ,,7F ,:
0<k <n}.

The calculation of the restriction of ¢(mV)(t) to H(C,; Q)[[t]] follows easily
from the previous proposition. Asin [8, Prop. 2] this restriction can be expressed
in terms of elementary functions of the generators of Hj(C,; Q) when o € A.
However for ageneral type y this restriction cannot be expressed so easily and we
will find formal expressionssimilar to (19) of more use.

COROLLARY 13.Leétpu = (d1/n1,...,dp/np). Therestrictionto H; (C,; Q)([[t]]
of ¢(mV)(t) equals the formal power series

= - np D WP X]IC)t
-9
Qu(t) pl;[lkHl(lJr ort)e exp {1+ 5£t} (27)

and similarly the restriction of c(m (V* ® ¢* L))(—t) to H;(C,,; Q)[[t]] equals

3g+1 T D\-WP —X,’;t
207 ] [T+ " e {Hégt}, (28)
p=1k=1
where 67, .. ,0F  are formal degree two classes such that their rth elementary

symmetric polynomial equals a?, where ,(t) = H;;D:l 1,7 ,(1 + &%t) is the
restriction of Q(t) to Hg(Cy; Q)[t], and where £, W and X correspond to the
expressions defined in the statement of Proposition 10.

Proof. Expression (27) isimmediate from the previous proposition once we note

that the restriction of ch(m V) to H;(C,; Q) equals

P
> m(ch(Vy) - 1® (1 — gw))
p=1

and recall that the Chern polynomial is multiplicative. The dual expression (28)
followsin asimilar fashion. i
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COROLLARY 14. Let u = (d1,...,dy,) € A. Thentherestriction of ¢(mV)(t) to
H}(C,i: Q)[[t]] equals
n J éfp;p
Pydp—g
1:[(1+a1t) exp{lJra,l,t}.
p=1

Also therestriction of ¢(m (V* ® ¢*L))(—t) to H;(Cy; Q)[[t]] equals

n p,p

[T @+ a7 % exp Ikl .
- ! 1+—a§t
p=1

Proof. Simply note that in this case f = af, W{ = d, and X7 = &7 ]

Remark 15. Let 4 = (d1/na,...,dp/np). Fromthe calculation (23) and since
the Chern character is additive we know that the restriction of ch(V) to H;(Cy; Q)
equals

P np Np
D exp {5P+Z (pr’sg p> ®as + WP ®w}

p=1k=1 s=1
Thusin terms of our earlier notation (15) we have

pk _ P bp,k s bp ,8 851) .k __ 14

a = 5k, Z da pa d - Wk :

We end this section with two further calculations, namely the Chern polynomials
of the normal bundle \V,, to the stratum C,, in C (necessary to the completeness
criteria) and of the tangent bundle 7' to the moduli space M (n, d) (needed for
generalising the proof of the Newstead—Ramanan conjecture).

LEMMA 16. Let pp = (d1/n1, . ..,dp/np). Then the Chern polynomial ¢(N,,)(¢)
of the normal bundlein C to the stratumC,, equals

ny mng
P07 TT T TT+ o — abye)e =
I<J k=11=1
_’:I’Jt
xexp{ —Ft (29)
1+ (6] —=éhye |’
where
J o ol 15))
—I,J I,s Y0 J,5 YY1
=2 = b’ — b
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and
nr ng
Pu(t) =TT TT ITC+ (67 = 60)0).
I<Jk=1I=1
Proof. Kirwan [8, Lemma 2] showed that the normal bundle NV, to C,, in C,
equals
— (GB 1% ®VJ> .
1<J

Fromthe proof of the Proposition 10 we can find expressionsfor ch(V ;) and ch(Vy)
corresponding to (23) and (25). The GRR implies that

ch(V,) = > m(ch(V}) - ch(V)) - 1® (gw — 1)).
I<J

Substituting in these expressionsfor ch(Vy) and ch(V;) wefind that ch(N),) equals

ny ng
G+ W, =W/ —E.77)e’t "% 3.
z{zz [y -l }

I<J \k=1l=1

Applying Lemma9 produces the required result (29). O
LEMMA 17. The total Pontryagin class of M(n, d) equals
II @+ @6k —a)?%.

1<k<I<n

In particular the Pontryagin ring of M(n, d) is generated by the elementary sym-
metric polynomialsin

{0 — )% 1< k <1< n}.

Proof. Let 7" denote the tangent bundle of M(n, d). From [1, p. 582] we know
that

T+T—2=m(EndV @ (2}, — 1)).
Applying GRR we find
chT +chT* — 2 = 2gch(End V| M(n,d)),

which we know to equal

5 (%) (5)
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from expressions (23) and (25).
Now let p(T')(t) = >, ~op-(T)t" denote the Pontryagin polynomial. Therela-
tionship between the Pontryagin classes and the Chern classesis given by

p(T)(—1) = ¢(T)(1) - ¢(T)(-1) [9, Cor. 15.5].
Hencep(T)(—1) equals

[T+ —a)% =TT — (6 — 6)>).

k£l k<l

Thetotal Pontryagin class of M (n, d) then equalsp(7")(1) and hencethe result. O

4. A complete set of relations

Whilst we observed in Remark 3 that neither the Mumford relations nor the dual
Mumford relations are in themselves a complete set of relations when the rank is
greater than two, it is still possible to put these relations into the context of the
completeness criteria. In terms of these criteria we will show how the Mumford
relations contain subsets corresponding to all strata of the form

w= (dl/nla"' adP/nP)a

wherenp = 1. Similarly thedual Mumford relations contai n subsets corresponding
to all those strata with n; = 1. From this we shall deduce that in the rank three
case the Mumford and dual Mumford relations form a complete set.

Beforewe continuewith the main proposition we need alemmaon the vanishing
of the Mumford and dual Mumford relations on restriction to a stratum.

LEMMA 18. Let i = (d1/na,...,dp/np). The image of the Mumford relation
oy ¢ under the restriction map

HG(C;Q) — H5(Cus Q),

vanisheswhenr < dp/np — 2g + 1. Theimage of the dual Mumford relation r,ffs
under therestriction map vanisheswhenr < 2g — di/n1.
Proof. Recall that the Mumford relations are given by Uf,s(r < 00<kL

n—1,8C{1,...,2g}) when ¥(t) = ¥ c(mV)(¢t~1) iswritten in the form

M

@+ ott+- ol Q@)  oF= Y ohg ] b
S SC{1,...,29} s€S

r=

For 1 < k < n and any fixed integer R the power ¢ % appearsin

(00 + b+ -+ o M (@)

M

o0

https://doi.org/10.1023/A:1000101030261 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000101030261

34 RICHARD EARL

only when~ = R. Let C? denote the coefficient of ¢ in W(#)(Q(¢))~"~*. Then

n
(oY +ort+-+ ol M) = (" +art" T+ tan) > Ot

=1
modulo negative powers of ¢ and hence
k
or F =3 "apiCl (r<0,1<k<n). (30)
=1

Now let K be afixed line bundle over M of degree D where D isthe smallest
integer such that

d
wQp ® K) = —— + D > 23,
np

whereQp = Ep/Ep_1.Sinceu(Q,@K) > p(Qp®K) > 2gthenm (V,®¢* K)
isabundleover C(n,, d,)*® of rank d,+- (D —g)n,, foreach1 < p < P. Inparticular

U(m(Vp ® ¢°K))(t) = t2 TP e(m(V, © ¢"K)) (1)
isapolynomia modulorelationsin Hé(np,dp) (C(np,dp)**; Q). From GRRwehave
that ch(m (V, ® ¢*K)) equals
ch(mV,) + m(chV, - 1® Dw) = ch(mV,) + D Y e%. (31)
k=1

In terms of Chern polynomials (31) gives

c(m(Vp ® ¢"K))(t) = (Q(1)Pe(mVp) (1),
where ,(¢) = [1,7,(1 + 6bt). Hence

P
I ¥(m(v, ® 6"K))(t) = (2u(1)) 7 L,(t) (32)

p=1
isapolynomial modulorelationsin Hg(C,,; Q) where ¥, (), and Q,(t) arerespec-
tively the restrictions to H;(C,,; Q) of ¥(¢) and Q(t). Thus the coefficient of ¢ —*
in ¥, (t)Q,(t)"""tisarelation when r < —1 — D. So by (30) the restriction of
of to H(C,; Q) vanisheswhenr < dp /np — 2g. Thedual calculation follows by
asimilar argument. O

Thusfinally we cometo

PROPOSITION 19. Let 4 = (d1/na,...,dp/np) Withnp = 1. Then thereis a
subset R, of the ideal generated by the Mumford relations such that the image of
the ideal generated by R, under the restriction map

Hé(C1Q) - Hé(CVaQ) v= (Jl/ﬁla' e aJT/ﬁT)a
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is zero when either
(i) dr/ir>dp or (i) #ip=1dr=dp, andv ¥y,

and containsthe ideal of H(C,,; Q) generated by e, whenv = .

Let u = (di/n1,...,dp/np) With ny = 1. Then there is a subset R, of the
ideal generated by the dual Mumford relations such that the image of the ideal
generated by R, under the restriction map

HA(C,Q) = Hi(ChiQ) v = (difna,... dp/[fur)
is zero when either
(i)di/fy <difmy or (i) mu=1Ldi=d ad v¥upu,

and containsthe ideal of H(C,,; Q) generated by e, whenv = .
Proof. Let ¥(t) = ¢t "Ic(mV) (¢ 1) and let CE, (R < 0,1 < K < n) denote
the coefficient of ¢t in W (¢)(Q(¢)) 1. Let

K= (dl/nla s adP—l/nP—la dP)

Since the Chern polynomial is multiplicative the restriction in Hg(C,; Q) of

CK, which we will write as ' *, equals the coefficient of ¢~ in

¢t ﬁ W, ()(Qp(2) 7, (33)
p=1

where
y(t) = tdp_npgc(mvp)(t_l)a Qp(t) =1" + alitnp_l tooet agpa

for 1 < p < P. Further from the previous lemma we know that Cg’“ vanishes
whenR < —D =dp — 29 + 1.

We facilitate the proof of Proposition 19 with the following lemma and corol-
laries

LEMMA 20. Let 6(¢) equal

B P—-1 np P = EZ’f
7fdfndp+(nfl)g H H (1+(5Z_af)/t)wk +g—dp exp m . (34)
p=1k=1

Then modulo relationsin H(Cy; Q),
Ol = (—a))* M i)ve,

where © is the constant coefficient of 0(t).
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Proof. From Corollary 14 we know that

Up(8)(Qp ()P~ = (¢ +ap)? exp it
t+al [’
where &5 = S°7_, b17°b1* . Also in a Laurent series the coefficient of ¢~ is

invariant under transformatl onssuchast — t — al’. Sofrom (33) ck ) equalsthe
coefficient of t—1in

P-1
(t—ap) M exp(ely /1) [] Tplt — af ) (Qp(t — af)) P72, (35)
p=1

From the proof of Lemma 18 (32) we know that

Up(8) (2 ()77 = U(m(V, ® ¢*L)) (1),

where L is afixed line bundle over M of degree D — 1. Foreachp # P, Q, ® L
is asemistable bundle of slope

d
£ _dp + 2g > 2g.

Tp
Hencem (V,®$*L) isabundieover C(n,,d,)* and ¥, () (€, (t)) Pt isapolyno-
mial modulo relationsin Hg,, ;(C(ny,dp)**; Q). As &)+t = ot follows

from (35) that C’f(b“ equal s the constant coefficient of

(&17)0(t—af)k H Uyt — al)(Qp(t — af)) P2 (36)
p=1

modulo relationsin Hg(C,; Q).
Since ;7 ,W} = d,, then we know from Corollary 13 that ¥,,(¢t — af’) equals

- . Xxb
(Qp(t —af)) 9% [T (1 + (67 — af)/t)"VE exp {7t+5p’“_ap}-
k=1 ke
Recall from Lemma 16 that

2 -2 (e

s=1

Ps> (Z bp s—l—g 85 Ps+g> ’

and we also have that

4 Tip
ek Bt )

s=1

https://doi.org/10.1023/A:1000101030261 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000101030261

MODULI OF RANK THREE STABLE BUNDLES 37

Since

2g
(&7 = (—1)972g1 T] b1,
s=1
then

(11 ERDT = (1) (XD (¢>0).
Thus by (36) and theidentity Q,(t — o) = t" [[,2,(1+ (67 — af)/t), we have
that C* 1 equals the constant coefficient of

(€1)?(t — af)7H(0).
Since (¢13)960(t) isapolynomial modulo relationsin Hg(C,; Q) thenthe Lemma

follows. O

COROLLARY 21. Define C£ 4(R < 0,1< K <n,5 C {1,...,2¢}) by

SC{1,....29} s€S

writing C’  in terms of the elements (13) and also define d,., b; and f;. by

P-1 29
(P =a01+) oo+ fr Qw.
p:l s=1

Then the restriction of C%, p,s 10 H5(Cy; Q) equals a nonzero constant multiple of
(@)K T4 — (n— 1)b>*)0 (37)
S¢S

for any subset S C {1,...,2¢g}.
Proof. We know that (ff ’lP )9 equals

29
g P,s
(~1)99/2g1 T b}

s=1
29 ~ ~
= (=192 20g [T (B +017") = (0 — (n — 1)by)),
s=1
and also that the restriction of b] in H;(C,; Q) equals b5 + bf’s. Further
P-1 np

by — (n — 1)by* = ZZ(Zl’saa bf5>.

p=1k=1
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So the corollary follows once we note from (34) that 6(¢), and hence ©, can be
written in terms of the elements (16). O

COROLLARY 22. Let A equal

U{UEB%57 v 70'9D,S}7 (38)
where the union varies over all subsets S C {1, ..., 2g}. Then all elements of the
form

n—1 B n—1 B n—1 P

[T o™ IT IT o I @e)™ (@) [T 017° (39)

k=2 k=1s€Sy k=1 seS

lieintherestriction of theideal generatedby A, wherer, r1, ..., 71, m2, ..., Mpy_1

arearbitrary nonnegativeintegersand S, S1, ..., S,—1 aresubsetsof {1,. .., 2g}.
Proof. Let (A) denote the ideal of H;;(C; Q) generated by A. Using induction

on (30) we know that the restriction of Oﬁ(D, g liesintheimage of (A). From (37)

and since b; restrictsto b5 + b1"* it follows that all elements of the form
() TL 05 I 0170
SEST SES?
for arbitrary S1, 52 C {1,...,2¢} and1 < K < n,lieintherestrictionof (A). The
restriction of ay in H(C,; Q) equalsay + ax_1a} . By noting that (af’)" equals
(a1 +ag)(ag) ™ = (a2 + daaq)(ag) "2+ -+
+(=1)" Hap-1a{)(af)" "

for r > n, we seethat all e ements of the form

@) 1o []or°-© (r=0)
s€ST SES?

lieintherestrictionof (A). Finally workinginductively onthevariablesry, . . ., r,_1,
S2,83,...,S,_1and my, m3, ..., my_1 in that order we find that all elements of
the form (39) liein theimage of (A) since under the restriction map HG(C; Q) —

H;(Cuw Q)
ap — ag + dk_laf, bz — EZ + afi)fc,l + &k_lbf’s,
and
~ ~ g ~ P P ~
fror> fotdpag_itaf fort D (bi_1by T +b7 b 9). 0(40)

s=1
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We now continue with the proof of Proposition 19. LetC' = C(n — 1,d — dp) and
let g’ = G(n—1,d—dp). Let u = (dl/nl, . ,dp_l/np_l) and let ey denote
the equivariant Euler class of the normal bundle to CL, inC'. Let

U;U/ :C, - U CI,//
V>

Then U}, is an open subset of C’ which contains C;, as a closed submanifold. So
we have the maps

H5(ChQ)

Hy, 2 (€l Q) = Hy (U Q) = Hi(Uy — Clyi Q)

multiplication by e,

H(Crs Q)
LetAa;,b"”’ and f; denote the generators of H¢, (C'; Q). Also take ' # p' and let
ar, by, fr denotetherestrictionsof ay., by, f/ in Hj, (C,,; Q). Sincethestratification

ryYr )

is equivariantly perfect then the restriction map
HLH(C, Q) = Hy(Uy; Q)

is surjective [8, p. 859]. From the exactness of the Thom-Gysin sequence we
have that for every element of the form ae, in HE (C,/; Qe there is some

Blal,bs', f1) in H; (C'; Q) such that

B(arugfﬂufr) = aey and Ig(dT'Jl;’f‘JfT) =0.

Since every element of the form (39) lies in the restriction of (A) to H;(Cy; Q)
then every element of the form

Blar, 0, fr) (@) T[01°0 (r>0,8 C{1,...,29}) (42)
seS

similarly liesintherestriction of (A). Now let v = (v, dp) with " ¥ p'. Notethat
the restriction map

Hg(C;Q) — Hg(C; Q)

is formally the same as (40) but with a,., b, f, replacing @, b5, f,.. Thus there are
elements of (A) which restrict to (41) under (40) and have restriction

Blar, b2, fr)(ad)" T] 01°6 =0

seS
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inHE(Cu; Q).
Define R, to be al those elements of (A) which restrict to an element of the
form
aey(af) [[ 6170 (r>0,SC{L,...,29}, € Hy(Cl3 Q)),

seS
in H;(C,; Q) and which restrict to zero in Hj;(C,; Q) for any v = (v, dp) with
VA
From the definition of © (34) we know that ¢, © isthe constant coefficient of
(=1)% %" (N ) (—t )0 (), (42)

where NV, is the normal bundleto C;, in C" and d,, is the codimension of C}, in
C'. From Lemma 16 and the fact that

dy +d —ndp + (n — 1)g = d,,

we know (42) equals
(D)%t (M) (=),

which has constant coefficient (—1)% T ¢,,. Hence the ideal
Hg(Cus Q)ey

liesin therestriction of R, to H5(Cy; Q).
Finally from Lemma 18 and the definition of A (38) we know that the image of
R, under the restriction map

H5(CQ) = H5(Ci Q) v = (di/fia,. .., dr/fr),

vanisheswhen d; /i > dp /np proving the first half of Proposition 19.
The proof of the dual casefollowsin a similar fashion. O

In the general rank case there are strata of types not covered in the previous
proposition. Moreover the strata on which the restrictions of the relations have
been demonstrated to vanish do not generally coincide with the strata mentioned in
the hypothesesof the compl eteness criteria. However in therank two and rank three
cases all unstable strata are covered by the above proposition. In the rank two case
Proposition 19 shows that the Mumford relations and the dual Mumford relations
both form complete sets, simply duplicating Kirwan's work [8] and Remark 2. In
the rank three case we have the following:

THEOREM 1. The Mumford and dual Mumford relationstogether with therelation
(3) due to the normalisation of the universal bundle V' form a complete set of
relationsfor H*(M(3,d); Q).
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Proof. The unstable strata are now of types (2,1), (1,1,1) and (1,2). From the
previous proposition we may meet the completenesscriteriafor the(2,1) and (1,1,1)
strata using the Mumford relations. In these casesthose strata where the restriction
of R,, have been shown to vanish are those strata C,, such that v < .. The criteria
for the (1,2) types may be met using the dual Mumford relations. In this case those
strata where the restriction of R, vanishes (according to Proposition 19) are those
strataC, suchthat v ¥ u which certainly includes those strata such that v < p. O

Remark 23. Asremarked earlier it wasshownin[3, Th. 4] that theMumfordrela-
tionsol, ¢ for S C {1,...,29} generatetherelation ideal of H*(Mo(2,1); Q) as
aQ[az, f2]-module. Evidence for this theorem appearsin the Poincaré polynomial
of the relation ideal which equals[1, p. 593]

t29(1+t)%
(1-t2)(1—t4"
Similarly in the rank three case the Poincaré polynomial of theideal of relations
among our generatorsfor H*(Mp(3,1); Q) equals
(L+ )29 2(1+ £)%9(14 1329 — (14 12 + 14159 2(1 4 t)%
(1— )1~ 21— 15) '

Thefirst Mumfordrelationo? (1,....2¢} hasdegree4g—2andthefirst dual Mumford
relation 72 (1.2} Nas degree 4g. This strongly suggeststhat the relations

{ol16 511 =1,25C{1,...,29}},
generate the relation ideal of H*(Mog(3,1); Q) asa

Qlaz, g, f2, fa] ® A*{b3, ..., b5}

module.

5. On thevanishing of the Pontryagin ring

We now move on to discuss the Pontryagin ring of the moduli space in the rank
three case. For each S C {1,...,2g} wedefine ¥ 5(¢) and ¥ (t) by writing

v = > ws@ [, wm= Y w4

SC{1,...,2¢9} ses SC{1,...,2¢} ses

Kirwan proved the Newstead—Ramanan conjecture [8, Sect. 4] by considering
relations derived from the expression

\Ij{l,---,Zg}(t)‘l’{l,...,zg}(—t —a1).
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Arguing along similar lines but now considering the expression

(1) = Uya,...201 () V11, 23 (1),

we will show that in the rank three case the Pontryagin ring vanishes in degree
12¢g — 8 and above— Theorem 2 below.

LEMMA 24. Let pu = (dy,d2,...,d,) € A. Therestriction of ®(t) to H;(C,.; Q)

equals
A(t)%
ol
"
where
. n n
Gut) =TTt +ad), A =Y [L(t+ad.
p=1 p=1lq#p
Proof. From Corollary 14 we know that the restriction of W(t) to H(Cy; Q)
equals
4 §
P\dp—g p
H(t+al)p exp{t+a€}a
p=1

where ¢, = €07 = B9_, 000" Letv, = by + - + by”* denote therestriction

of b to H;(Cu; Q) andletwiyj = bll"” b“(see(14)) Thennbl —vs—i-Z] W5
and hence

n
n?; = szvs+g + Z (vs Zws+g + waijﬁg)
Jj= Jj=1

g n n
+2 2. D wiw
s=1j=1k=1

Note that
n 1 n
= &t +ad). (43)
Z ‘t + Q) ; gl !
Thus (43) equals

g9 g9
S {A(t) 3" 0tk + 3 (Ba(B)vsg + v Brg (1) + r(t>} ,
n Qu(t) s=1 s=1

where

=S Tl +a)), Bst)=33 wi; [[(t+a)),
=1

i=1q#i =1j=1  q#i
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sty q
Y Y Y utul [T+ el
i=1j=1k=1s=1 qFi

The exponential of (43) equals
exp { L(t) }12[ [1+ By (t)vs g + vsBs g

n?Q,(t) | 53 n2Y, (1)
A(t) BsBs-I-g
+ ~ - ~ sUs .
(nza ) nAQ,2)
The coefficient of Hs 1 U, in the above then equals

- I'(t) g A(t) ByB,
—1)99/2 e _ _ Bt n s I
= P {nzgu(t) } 51;11 <n29u(t) n4Q, (t)2

or equivalently

193/ I'(1) A 1\’ —(t)
( 1)9928Xp{n2(zu(t)}(nZQu(t)> P\ zawa, )

where{ (t) = X9_ B, () Bsy4(t). Thustherestrictionof Wy 501 (1) 0 HE(Cus Q)
equals

A r(t) A)
(—1)99/2 (H(t—l— ay)® g) exp {nzflu(t)} (nzflu(t)>

p=1

¢
=P {nZAu)ﬂ 0 } |

and similarly the restriction of iy }( ) to H5(Cy; Q) equals

o ) I | (=Aw®) \’
(—1)99/2 (Hl (1 + a)> i ) =P {nzmt)} (nzﬁu(w)

(1)
=P {nZAu)ﬁu(t) } |

The result then follows. O

Now if we write ®(¢) in the form

29—1
S (24 prt 4+ e H Q)

r=—oo
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where Q(t) = t" 4 agt"~* + - -- + a,, then we know that the elements p¥, (r <
0,0 < k < n—1)lieinthekernel of the restriction map
Hg(C;Q) — Hg(C™; Q).
From Lemma 24 we know that the restriction of ®(t) to H(C,; Q) equals
(_ gﬂ
n49(~2u(t)’

for any 1 € A. Let pf* denote the restriction of p¥ in H(C,.; Q). Thus we have
that

(_1)g 2g s K,k ~
X A% =" pt" mod€y,(t).
=0

Hence by substituting t = —a?, for each i we obtain

nlg H (a1 — a3) = Z p:f(_all)k
p=Llp#i k=0
Since the direct sum of restriction maps
H(C:Q) — @ H(Ci Q)
HEA

isinjective [8, Prop. 3] we have that

n 29 n—1
(;ig)g( II (@-—6;;)) = 3 pa(-0)" (a4)
p k=0

Solving the equations (44) we obtain

1)9tn &2

n 29—1
pk n4g ZSk ( H 5 - 519)) ’ (45)
p=

Lp#i

where S¥ equals the kth elementary symmetric polynomial in {6, : p # i}.

Wewill show later, in Proposition 27, that therelations p* ; aboveareinsufficient
to prove any vanishing of the Pontryagin ring in ranks greater than three. For now
consider the rank three case. We write

o =01 — 02, B = d2 — 03, v = 03 — 01.

We know from Lemma 17 that the Pontryagin ring is generated by the elementary
symmetric polynomialsin o2, 32 and 2. Therelations p° ;, p* |, p? , read as

(@B)? 1+ (B2 1+ (ya)¥ 1 =0, (46)
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(61 +63) (@B)®~F + (82 +00)(B7) % + (d3 + 82) (y)¥ 1 =0, (47)

(0203) ()~ + (8201) (BY) ™1 + (8302) (ve)* 1 = 0. (48)
The equations (46), a1 x (46) — (47), and (48) +a1x (47) —azx (46) then show
(62)F (@B)2~ + (33)* (81" + (61)F (va)®~t =0, (49)

for k =0, 1, 2. Note that
(6:)" 2 = ax(6:)" % — a2(6:)" "t + az(6)",
and hence equation (49) holdsfor all nonnegative k. Further note that
72 = (a1)? — daz + 2a15, — 3(52), (50)

and so combining equation (49) with equation (50) and two similar equations for
o? and /32 we see that

72 (52)" (@B + o2 (83) (67)% L + (50 (ra)¥ L = 0,

for any nonnegativek, . Let r, s, t be three nonnegativeintegers with an even sum.
Note

200 = (a1 — 3d2) — 7, 206 = (302 — a1) — 7,

and hence (o 3% + a*3")v!, when written in terms of ay,d> and «y is an even
functionin ~.

Now any element of the Pontryagin ring can be written as a sum of elements of
the form

F(u,v,w) = avf'9% + a’BU9" + a®f9° + at Uy
+al By + o By,
where v + v + w is even. From the argument above we know that
F(2g—1+r29—1+s,t)=0, (51)
forr,s,t > 0andr + s+ t even. If v > 1 then we have
F(u,v,w) = —F(u—Lv,w+1) — F(u—21v+1w), (52)

sincea+ 3 +v=0.
Suppose how that u > v > w. Weclaim F(u,v,w) = 0if u+v+w > 6g — 4.
Note that
max{u,v,w} > max{u — 1,v + 1, w + 1},

unless v — v equals zero or one. In either case we find that u > v > 2¢g — 1 and
hence F'(u, v, w) = 0 by (51). Hence by repeated applications of identity (52) we
seethat F'(u,v, w) = 0whenu + v +w > 6g — 4 and so we have:
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THEOREM 2. The Pontryagin ring of the moduli space M (3,d) vanishes in
degrees 12¢ — 8 and above.

Remark 25. Theorem 2 falls short of Neeman's conjecture [10] which statesthat
the Pontryaginring of M (n, d) should vanishin degreesabove 2gn°—4g(n—1)4-2.
When n = 3 thisgives 10g + 2.

Remark 26. In the rank two case the relations (45) show that

((a1)? — 4az)? = 0

and that the Pontryagin ring of M (2, d) vanishesin degrees greater than or equal
to 4q, duplicating Kirwan's proof of the Newstead—Ramanan conjecture.

To conclude we show now that the relations p* ; are inadequate to show any
vanishing of the Pontryagin ring when n > 4. From equation (45) we see that
the ideal of the Pontryagin ring is contained in the ideal generated by the formal
expressions

n 29—1
( 11 (5Z~—5p)> . (53)

=1,p#i

Let I denote the ideal generated by the relations (53) and consider this as an
ideal of C[d1,...,d,]. By Hilbert's Nullstellensatz the radical /I of I consists
of those elements of the Pontryagin ring which vanish on the intersection of the
subspaces given by

[ —6,) =0, i=1,...,n (54)
pFi

We shall consider the even and odd cases for n separately.

(i) niseven—write n = 2m. Theintersection of the subspaces (54) consists of
(2m)!/(2™m])) distinct m-dimensional subspaces of C™. One of these subspaces
is given by the equations

01 =102, k=21...,m. (55)

We know from Lemma 17 that the total Pontryagin class p(7") of M(n, d) equals
I @+ 6 —0)»%,

1<k<I<n

and in the subspace (55) p(T") then equals

[T @+ (621 —62-1)%)%.

1<<I<m

In particular we see that none of the Pontryagin classes of M (n, d) vanish on the
subspace (55).
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(i) n isodd —writen = 2m + 1. Theintersection of the subspaces(54) consists
of (2k +1)!/(3- 2% (k — 1)!) distinct k-dimensional subspacesof C". One of these
subspacesis given by the equations

01 =02 =103, O =041, k=2,...,m. (56)

In the subspace (56) the total Pontryagin class of M (n, d) equals

[T @+ (61— 02)3)™ I @+ (62 — 62)2)%

2<k<m 2<k<iI<m

In particular we see that none of the Pontryagin classes of M (n, d) vanish on the
subspace (56).

Thuswe seethat none of the Pontryagin classes p,.(T") are nilpotent modul o the
formal relations (53). Hence:

PROPOSITION 27. For n > 4 the Pontryagin classes p, (T') € H* (M (n, d); Q)
are not nilpotent modulo p* ; for 0 < k& < n — 1. In particular these relations are
inadequate to prove any non-trivial vanishing of the Pontryagin ring.
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