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Abstract. Let A be a locally finite, �-graded, noetherian algebra with a balanced
dualizing complex. If A is a Hopf algebra, then A has finite injective dimension.
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In [2] and [3] Brown and Goodearl showed that a noetherian affine polynomial
identity (PI) Hopf algebra with finite injective dimension has various good homological
properties. They verified that many examples of noetherian affine PI Hopf algebras,
some of which are quantum groups at roots of unity, have finite injective dimension.
In [2, Question A] Brown asks if every noetherian affine PI Hopf algebra has finite
left and right injective dimension. Recently we gave an affirmative answer to Brown’s
question in [9, 0.1].

In this short note we are trying to provide some evidence that a noetherian affine
Hopf algebra, not necessarily PI, has finite injective dimension. We prove the following
statement.

THEOREM 1. Let A be a locally finite, �-graded, noetherian algebra with a balanced
dualizing complex. If A is a Hopf algebra, then A has finite left and right injective
dimension and satisfies the AS-Gorenstein condition.

The AS-Gorenstein condition is defined after Definition 2. The existence of
dualizing complexes over various graded rings was studied in [10] and some of which
are listed in Corollary 5 below. The proof of Theorem 1 is given at the end. We refer to
[5] for the definition of Hopf algebra. Note that we don’t assume that A is connected
graded nor that the coalgebra structure is compatible with the grading. The statement is
still limited because of the graded hypothesis. It would be nice if the graded hypothesis
could be deleted.

Let k be a base field. Let A be locally finite and �-graded over k, namely,
A = ⊕∞

i=0 Ai and dimkAi < ∞ for all i. Sometimes we will simply say A is graded.
Usually an A-module means a �-graded left A-module. Let A◦ denote the opposite
ring of A. An A◦-module means a �-graded right A-module. An A ⊗ A◦-module means
a �-graded A-bimodule. An A-module is said to be finite if it is finitely generated.

First we recall some definitions and results due to Yekutieli [10] and Van den Bergh
[6]. Other definitions, results and notations can be found in [6], [7] and [10]. Let Db

f (A)
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be the derived category of bounded complexes of left graded A-modules with finite
cohomological modules.

DEFINITION 2 [10, 3.3]. A complex R ∈ Db (A ⊗ A◦) is called dualizing if it satisfies
the following conditions:

(2.1) R has finite graded injective dimension over A and over A◦;
(2.2) R has finite cohomologies over A and over A◦;
(2.3) The canonical morphisms A → RHomA (R, R) and A → RHomA◦ (R, R)

are isomorphisms in D (A ⊗A◦).

If A is noetherian and has finite left and right graded injective dimension, then
(2.1) holds for R := A. The conditions (2.2) and (2.3) are automatic in this case.
Therefore R =A is a dualizing complex. We say A satisfies the AS-Gorenstein condition
(where AS stands for Artin and Schelter) if A has finite left and right graded injective
dimension, say d, and for any graded simple A-module M, Exti

A(M, A) = 0 for i �= d
and Extd

A(M, A) is a graded simple A◦-module.
Graded rings with balanced dualizing complexs (see Definition 3) can be viewed

as a generalization of AS-Gorenstein rings. To define the balanced condition we need
recall several basic notions. Let A be a left noetherian graded algebra and let m be the
graded Jacobson radical of A. We say A satisfies the left χ -condition if Exti

A(A/m, M)
is finite dimensional over k for all i and all graded finite A-modules M. The right
χ -condition is defined similarly. If A is noetherian and satisfies both left and right
χ -condition, we say A satisfies the χ -condition.

For any graded A-module M, the m-torsion functor Γm is defined to be

Γm(M) = {x ∈ M | mnx = 0,∀n 	 0}.
The systems {mn} and {A≥n} are cofinal to each other and Γm(M) is the union of the
finite dimensional submodules of M. The derived functor RΓm is defined on the derived
category D+(A). For any complex X ∈ D+(A), the ith local cohomology is defined to
be

Hi
m(X) = RiΓm(X).

The left cohomological dimension of A (or of Γm) is

cd(A) = sup
{
i | Hi

m(M) �= 0, for all graded A-modules M
}
.

If M is a graded module, let M′ denote the graded dual of M, namely,

M′ =
⊕

n∈Z

Homk(M−n, k).

The graded dual (−)′ can be applied to complexes too. Let A′ be the graded dual of
the bimodule A. Then A′ is an A-bimodule and AA′ is the injective hull of the graded
A-module A/m.

DEFINITION 3 [10, 4.1]. A dualizing complex R over A is called balanced if there
are isomorphisms

RΓm(R) ∼= RΓm◦(R) ∼= A′ (3.1)

in D (A ⊗ A◦).
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If a balanced dualizing complex over A exists, then it is unique and has nice
functorial properties. The next result of Van den Bergh says that there is a natural way
to construct the balanced dualizing complex. Hence the balanced dualizing complex
over A is viewed as a natural object associated to A.

THEOREM 4 [6, 6.3 and 5.1]. Let A be a noetherian graded algebra.
(1) A admits a balanced dualizing complex if and only if A satisfies the following

two conditions:
(4.1) A satisfies the χ-condition, and
(4.2) A has finite left and right cohomological dimension.

(2) If A admits a balanced dualizing complex R, then

R = (RΓmA)′. (4.3)

(3) If M is a graded A-module, then

RΓm(M)′ ∼= RHomA(M, R). (4.4)

The original results of Van den Bergh were stated for connected graded rings, but
his proofs work for locally finite �-graded rings. The same results were proved in the
semilocal case in a slightly more general setting (see [4] and [8]).

The existence of balanced dualizing complex is considered to be a mild condition
and it can be verified for PI rings, (graded) FBN rings and rings having enough normal
elements. The definition of a graded FBN ring can be found in [1, p. 286]. Recall that
a graded ring A has enough normal elements if every non-artinian graded prime factor
A/p contains a normal element of positive degree [11, p. 36]. Therefore we have the
following corollary to Theorems 1 and 4.

COROLLARY 5. Let A be a locally finite, �-graded, noetherian algebra. Suppose
either A is graded FBN (e.g. FBN, PI), or A has enough normal elements. If A is a Hopf
algebra, then A has finite injective dimension and satisfies the AS-Gorenstein condition.

Proof. By [1, 8.8 and 8.13] A satisfies (4.1) and (4.2). Theorem 4 implies that A has
a balanced dualizing complex. Now the assertion follows from Theorem 1. �

We need a few lemmas for the proof of Theorem 1. Let injdim denote the graded
injective dimension.

LEMMA 6. Let A be a graded noetherian algebra with a balanced dualizing com-
plex R.

(1) If M is a graded A-module and dimkM < ∞, then Exti
A(M, R) = 0 for all i �= 0

and Ext0
A(M, R) ∼= M′.

(2) injdimAR = injdimRA = 0.

Proof. (1). By the definition of the balanced condition (3.1) Exti
A(M, R) = 0 for all

i �= 0 and

Ext0
A(M, R) ∼= HomA(M, A′) ∼= Homk(M, k) = M′.

(2). By (1) it remains to show that Exti
A(M, R) = 0 for all graded A-modules M

and for all i > 0. By (4.4),

Exti
A(M, R) ∼= (R−iΓm(M))′ = (0)′ = 0

for all i > 0. �
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Let A be a Hopf algebra over k, which is not necessarily graded. Let k also denote
the trivial module A/ε−1(0) where ε : A → k is the counit of A. The following lemma
is proved by Brown and Goodearl [3, 1.11]. A proof is also given in [7, 4.8].

LEMMA 7. Let A be a Hopf algebra and let d := inf{i | Exti
A(k, A) �= 0}.

(1) For every nonzero finite dimensional A-module V, d = inf{i | Exti
A(V, A) �= 0}.

(2) Extd
A(−, A) is exact on finite dimensional modules.

We now go back to graded rings. The next lemma is a graded version of [7, 4.2(3)]
and its proof is the same as the proof of [7, 4.2(3)].

LEMMA 8. Let Ω be a finite graded A-module. If HomA(Ω,−) is an exact functor
on finite dimensional graded A-modules, then Ω is graded projective.

Proof of Theorem 1. Let A be a graded algebra with a balanced dualizing complex
R. Suppose A is a Hopf algebra. Let d be as in Lemma 7. By Lemma 7(1),

d = min
{
i | Exti

A(A/m, A) �= 0
}
.

Hence RiΓm(A) = 0 for all i < d and RdΓm(A) �= 0. It follows from (4.3) that hi(R) = 0
for all i > −d and Ω := h−d(R) �= 0. Therefore, for any graded A-module M,

Extd
A(R, M) ∼= HomA(Ω, M).

Let F be the duality functor RHomA(−, R). If N is a finite dimensional graded right
A-module, then F(N) ∼= N ′ (see Lemma 6(1)) and

Extd
A◦ (N, AA) ∼= Extd

A(F(A), F(N)) ∼= Extd
A(R, N ′) ∼= HomA(Ω, N ′). (9.1)

It follows from Lemma 7(1) that the left-most term of (9.1) is exact on finite
dimensional modules N. By (9.1) and the fact that (−)′ is exact, the right-most term of
(9.1) is exact on finite dimensional modules M := N ′, namely, the functor HomA(Ω,−)
is exact on finite-dimensional graded left A-modules. By the definition of dualizing
complex (2.2), Ω is finite over A and over A◦. By Lemma 8, Ω is graded projective.
By Lemma 7(1) and (9.1), Hom(Ω, M) �= 0 for every nonzero finite-dimensional A-
module M. Hence Ω is a graded progenerator. Since R is bounded above at the
position −d, R ∼= X ⊕ Ω[d] where X is bounded above at −d − 1. If X is not quasi-
isomorphic to 0, then Ext−i

A (Ω[d], X) �= 0 for some i > 0, which gives a nonzero element
in Ext−i

A (R, R) for some i > 0. This contradicts the fact Ext−i
A (R, R) = 0 for all i �= 0 (see

(2.3)). Therefore we obtain that R = Ω[d]. By Lemma 6(2), injdimAR = 0, which implies
that injdimAΩ = d.

The right-hand versions of these statements hold too.
Since Ω is a progenerator, the injective dimension of AA is equal to the injective

dimension of AΩ, which is d. Similarly injdim AA = d.
By (4.3),

RΓm(A) = (R)′ ∼= (Ω[d])′ = Ω ′[−d].

Since ΩA is a progenerator, AΩ ′ is a cofinitely generated injective cogenerator. For
any finite dimensional module M,

RHomA(M, A) = RHomA(M, RΓm(A)) ∼= RHomA(M,Ω ′[−d]).
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Hence Exti(M, A) = 0 for all i �= d and Extd
A(M, A) ∼= HomA(M,Ω ′). In particular,

Extd
A(M, A) is finite dimensional and Extd

A(−, A) is exact on finite dimensional
A-modules. Since A is a dualizing complex (not balanced though), the double-Ext
spectral sequence [11, 1.7]

Extp
A◦

(
Ext−q

A (M, A), A
) ⇒ M

shows that the functors Extd
A(−, A) and Extd

A◦ (−, A) induce a duality between the
category of finite dimensional graded left A-modules and that of right modules.
Therefore Extd

A(M, A) is a graded simple A◦-module if and only if M is a graded simple
A-module. Thus we proved the AS-Gorenstein condition. �

REMARK. A version of Theorem 1 holds for graded Hopf algebras. Here a graded
Hopf algebra is slightly different from a graded algebra which is also a Hopf algebra.
In a graded Hopf algebra the coalgebra structure is compatible with the �2-grading
and the Koszul sign convention applies for permuting symbols (see [5, pp. 205–6]). The
proof of the statement is similar to the proof of Theorem 1.
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